Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

PINK1 positively regulates IL-1β-mediated signaling through Tollip and IRAK1 modulation

Authors: Hyun Jung Lee, Kwang Chul Chung

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

Parkinson disease (PD) is characterized by a slow, progressive degeneration of dopaminergic neurons in the substantianigra. The cause of neuronal loss in PD is not well understood, but several genetic loci, including PTEN-induced putative kinase 1 (PINK1), have been linked to early-onset autosomal recessive forms of familial PD. Neuroinflammation greatly contributes to PD neuronal degeneration and pathogenesis. IL-1 is one of the principal cytokines that regulates various immune and inflammatory responses via the activation of the transcription factors NF-κB and activating protein-1. Despite the close relationship between PD and neuroinflammation, the functional roles of PD-linked genes during inflammatory processes remain poorly understood.

Methods

To explore the functional roles of PINK1 in response to IL-1β stimulation, HEK293 cells, mouse embryonic fibroblasts derived from PINK1-null (PINK1 −/− ) and control (PINK1 +/+ ) mice, and 293 IL-1RI cells stably expressing type 1 IL-1 receptor were used. Immunoprecipitation and western blot analysis were performed to detect protein–protein interaction and protein ubiquitination. To confirm the effect of PINK1 on NF-κB activation, NF-κB-dependent firefly luciferase reporter assay was conducted.

Results

PINK1 specifically binds two components of the IL-1-mediated signaling cascade, Toll-interacting protein (Tollip) and IL-1 receptor-associated kinase 1 (IRAK1). The association of PINK1 with Tollip, a negative regulator of IL-1β signaling, increases upon IL-1β stimulation, which then facilitates the dissociation of Tollip from IRAK1 as well as the assembly of the IRAK1–TNF receptor-associated factor 6 (TRAF6) complex. PINK1 also enhances Lys63-linked polyubiquitination of IRAK1, an essential modification of recruitment of NF-κB essential modulator and subsequent IκB kinase activation, and increases formation of the intermediate signalosome including IRAK1, TRAF6, and transforming growth factor-β activated kinase 1. Furthermore, PINK1 stimulates IL-1β-induced NF-κB activity via suppression of Tollip inhibitory action.

Conclusions

These results suggest that PINK1 upregulates IL-1β-mediated signaling through the functional modulation of Tollip and IRAK1. These results further suggest that PINK1 stimulates the ubiquitination of proximal molecules and increases signalosome formation in the IL-1β-mediated signaling pathway. The present study therefore supports the idea of the close relationship between neuroinflammation and PD.
Literature
1.
go back to reference Olanow CW, Tatton WG: Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 1999, 22:123–144.CrossRefPubMed Olanow CW, Tatton WG: Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 1999, 22:123–144.CrossRefPubMed
2.
go back to reference Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ: Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 2004, 21:1158–1160.CrossRef Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ: Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 2004, 21:1158–1160.CrossRef
3.
go back to reference Gasser T: Update on the genetics of Parkinson's disease. Mov Disord 2007, 17:S343-S350.CrossRef Gasser T: Update on the genetics of Parkinson's disease. Mov Disord 2007, 17:S343-S350.CrossRef
4.
go back to reference Hirsch EC, Hunot S: Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol 2009, 8:382–397.CrossRefPubMed Hirsch EC, Hunot S: Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol 2009, 8:382–397.CrossRefPubMed
6.
go back to reference Burns K, Clatworthy J, Martin L, Martinon F, Plumpton C, Maschera B, Lewis A, Ray K, Tschopp J, Volpe F: Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol 2000, 2:346–351.CrossRefPubMed Burns K, Clatworthy J, Martin L, Martinon F, Plumpton C, Maschera B, Lewis A, Ray K, Tschopp J, Volpe F: Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol 2000, 2:346–351.CrossRefPubMed
7.
go back to reference Zhang G, Ghosh S: Negative regulation of toll-like receptor-mediated signaling by tollip. J Biol Chem 2002, 277:7059–7065.CrossRefPubMed Zhang G, Ghosh S: Negative regulation of toll-like receptor-mediated signaling by tollip. J Biol Chem 2002, 277:7059–7065.CrossRefPubMed
8.
go back to reference Li T, Hu J, Li L: Characterization of tollip protein upon lipopolysaccharide challenge. Mol Immunol 2004, 41:85–92.CrossRefPubMed Li T, Hu J, Li L: Characterization of tollip protein upon lipopolysaccharide challenge. Mol Immunol 2004, 41:85–92.CrossRefPubMed
9.
go back to reference Bulut Y, Faure E, Thomas L, Equils O, Arditi M: Cooperation of toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein a lipoprotein: role of toll-interacting protein and IL-1 receptor signaling molecules in toll-like receptor 2 signaling. J Immunol 2001, 167:987–994.CrossRefPubMed Bulut Y, Faure E, Thomas L, Equils O, Arditi M: Cooperation of toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein a lipoprotein: role of toll-interacting protein and IL-1 receptor signaling molecules in toll-like receptor 2 signaling. J Immunol 2001, 167:987–994.CrossRefPubMed
10.
go back to reference Burns K, Janssens S, Brissoni B, Olivos N, Beyaert R, Tschopp J: Inhibition of interleukin 1 receptor/toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med 2003, 197:263–268.CrossRefPubMedPubMedCentral Burns K, Janssens S, Brissoni B, Olivos N, Beyaert R, Tschopp J: Inhibition of interleukin 1 receptor/toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med 2003, 197:263–268.CrossRefPubMedPubMedCentral
11.
go back to reference Kobayashi K, Hernandez LD, Galán JE, Janeway CA Jr, Medzhitov R, Flavell RA: IRAK-M is a negative regulator of toll-like receptor signaling. Cell 2002, 110:191–202.CrossRefPubMed Kobayashi K, Hernandez LD, Galán JE, Janeway CA Jr, Medzhitov R, Flavell RA: IRAK-M is a negative regulator of toll-like receptor signaling. Cell 2002, 110:191–202.CrossRefPubMed
12.
go back to reference Muzio M, Ni J, Feng P, Dixit VM: IRAK (pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 1997, 278:1612–1615.CrossRefPubMed Muzio M, Ni J, Feng P, Dixit VM: IRAK (pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 1997, 278:1612–1615.CrossRefPubMed
13.
go back to reference Burns K, Martinon F, Esslinger C, Pahl H, Schneider P, Bodmer JL, Di Marco F, French L, Tschopp J: MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 1998, 273:12203–12209.CrossRefPubMed Burns K, Martinon F, Esslinger C, Pahl H, Schneider P, Bodmer JL, Di Marco F, French L, Tschopp J: MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 1998, 273:12203–12209.CrossRefPubMed
14.
go back to reference Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z: MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 1997, 7:837–847.CrossRefPubMed Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z: MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 1997, 7:837–847.CrossRefPubMed
15.
go back to reference Neumann D, Lienenklaus S, Rosati O, Martin MU: IL-1β-induced phosphorylation of PKB/Akt depends on the presence of IRAK-1. Eur J Immunol 2002, 32:3689–3698.CrossRefPubMed Neumann D, Lienenklaus S, Rosati O, Martin MU: IL-1β-induced phosphorylation of PKB/Akt depends on the presence of IRAK-1. Eur J Immunol 2002, 32:3689–3698.CrossRefPubMed
16.
go back to reference Lee HJ, Jang SH, Kim H, Yoon JH, Chung KC: PINK1 stimulates interleukin-1β-mediated inflammatory signaling via the positive regulation of TRAF6 and TAK1. Cell Mol Life Sci 2012, 69:3301–3315.CrossRefPubMed Lee HJ, Jang SH, Kim H, Yoon JH, Chung KC: PINK1 stimulates interleukin-1β-mediated inflammatory signaling via the positive regulation of TRAF6 and TAK1. Cell Mol Life Sci 2012, 69:3301–3315.CrossRefPubMed
17.
go back to reference Um JW, Stichel-Gunkel C, Lübbert H, Lee G, Chung KC: Molecular interaction between parkin and PINK1 in mammalian neuronal cells. Mol Cell Neurosci 2009, 40:421–432.CrossRefPubMed Um JW, Stichel-Gunkel C, Lübbert H, Lee G, Chung KC: Molecular interaction between parkin and PINK1 in mammalian neuronal cells. Mol Cell Neurosci 2009, 40:421–432.CrossRefPubMed
18.
go back to reference Silvestri L, Caputo V, Bellacchio E, Atorino L, Dallapiccola B, Valente EM, Casari G: Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 2005, 14:3477–3492.CrossRefPubMed Silvestri L, Caputo V, Bellacchio E, Atorino L, Dallapiccola B, Valente EM, Casari G: Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 2005, 14:3477–3492.CrossRefPubMed
19.
go back to reference Beilina A, Van Der Brug M, Ahmad R, Kesavapany S, Miller DW, Petsko GA, Cookson MR: Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci USA 2005, 102:5703–5708.CrossRefPubMedPubMedCentral Beilina A, Van Der Brug M, Ahmad R, Kesavapany S, Miller DW, Petsko GA, Cookson MR: Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci USA 2005, 102:5703–5708.CrossRefPubMedPubMedCentral
20.
go back to reference Yamakami M, Yokosawa H: Tom1 (Target of Myb 1) is a novel negative regulator of interleukin-1- and tumor necrosis factor-induced signaling pathways. Biol Pharm Bull 2004, 27:564–566.CrossRefPubMed Yamakami M, Yokosawa H: Tom1 (Target of Myb 1) is a novel negative regulator of interleukin-1- and tumor necrosis factor-induced signaling pathways. Biol Pharm Bull 2004, 27:564–566.CrossRefPubMed
21.
go back to reference Cao Z, Henzel WJ, Gao X: IRAK: a kinase associated with the interleukin-1 receptor. Science 1996, 23:1128–1131.CrossRef Cao Z, Henzel WJ, Gao X: IRAK: a kinase associated with the interleukin-1 receptor. Science 1996, 23:1128–1131.CrossRef
24.
go back to reference Conze DB, Wu CJ, Thomas JA, Landstrom A, Ashwell JD: Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-κB activation. Mol Cell Biol 2008, 28:3538–3547.CrossRefPubMedPubMedCentral Conze DB, Wu CJ, Thomas JA, Landstrom A, Ashwell JD: Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-κB activation. Mol Cell Biol 2008, 28:3538–3547.CrossRefPubMedPubMedCentral
25.
go back to reference Windheim M, Stafford M, Peggie M, Cohen P: Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IκB-α kinase. Mol Cell Biol 2008, 28:1783–1791.CrossRefPubMedPubMedCentral Windheim M, Stafford M, Peggie M, Cohen P: Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IκB-α kinase. Mol Cell Biol 2008, 28:1783–1791.CrossRefPubMedPubMedCentral
26.
go back to reference Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K: The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signaling pathway. Nature 1999, 398:252–256.CrossRefPubMed Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K: The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signaling pathway. Nature 1999, 398:252–256.CrossRefPubMed
27.
go back to reference Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, Ninomiya-Tsuji J, Matsumoto K: TAB2, A novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 2000, 5:649–658.CrossRefPubMed Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, Ninomiya-Tsuji J, Matsumoto K: TAB2, A novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 2000, 5:649–658.CrossRefPubMed
28.
go back to reference Jiang Z, Ninomiya-Tsuji J, Qian Y, Matsumoto K, Li X: Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol 2002, 22:7158–7167.CrossRefPubMedPubMedCentral Jiang Z, Ninomiya-Tsuji J, Qian Y, Matsumoto K, Li X: Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol 2002, 22:7158–7167.CrossRefPubMedPubMedCentral
30.
go back to reference Yamin TT, Miller DK: The interleukin-1 receptor-associated kinase is degraded by proteasomes following its phosphorylation. J Biol Chem 1997, 272:21540–21547.CrossRefPubMed Yamin TT, Miller DK: The interleukin-1 receptor-associated kinase is degraded by proteasomes following its phosphorylation. J Biol Chem 1997, 272:21540–21547.CrossRefPubMed
31.
go back to reference Li S, Strelow A, Fontana EJ, Wesche H: IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci USA 2002, 99:5567–5572.CrossRefPubMedPubMedCentral Li S, Strelow A, Fontana EJ, Wesche H: IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci USA 2002, 99:5567–5572.CrossRefPubMedPubMedCentral
32.
go back to reference Brissoni B, Agostini L, Kropf M, Martinon F, Swoboda V, Lippens S, Everett H, Aebi N, Janssens S, Meylan E, Felberbaum-Corti M, Hirling H, Gruenberg J, Tschopp J, Burns K: Intracellular trafficking of interleukin-1 receptor I requires tollip. Curr Biol 2006, 16:2265–2270.CrossRefPubMed Brissoni B, Agostini L, Kropf M, Martinon F, Swoboda V, Lippens S, Everett H, Aebi N, Janssens S, Meylan E, Felberbaum-Corti M, Hirling H, Gruenberg J, Tschopp J, Burns K: Intracellular trafficking of interleukin-1 receptor I requires tollip. Curr Biol 2006, 16:2265–2270.CrossRefPubMed
33.
go back to reference Katoh Y, Shiba Y, Mitsuhashi H, Yanagida Y, Takatsu H, Nakayama K: Tollip and Tom1 form a complex and recruit ubiquitin-conjugated proteins onto early endosomes. J Biol Chem 2004, 279:24435–24443.CrossRefPubMed Katoh Y, Shiba Y, Mitsuhashi H, Yanagida Y, Takatsu H, Nakayama K: Tollip and Tom1 form a complex and recruit ubiquitin-conjugated proteins onto early endosomes. J Biol Chem 2004, 279:24435–24443.CrossRefPubMed
34.
go back to reference Yamakami M, Yoshimori T, Yokosawa H: Tom1, A VHS domain-containing protein, interacts with tollip, ubiquitin, and clathrin. J Biol Chem 2003, 278:52865–52872.CrossRefPubMed Yamakami M, Yoshimori T, Yokosawa H: Tom1, A VHS domain-containing protein, interacts with tollip, ubiquitin, and clathrin. J Biol Chem 2003, 278:52865–52872.CrossRefPubMed
35.
go back to reference Ciarrocchi A, D'Angelo R, Cordiglieri C, Rispoli A, Santi S, Riccio M, Carone S, Mancia AL, Paci S, Cipollini E, Ambrosetti D, Melli M: Tollip is a mediator of protein sumoylation. PLoS One 2009, 4:e4404.CrossRefPubMedPubMedCentral Ciarrocchi A, D'Angelo R, Cordiglieri C, Rispoli A, Santi S, Riccio M, Carone S, Mancia AL, Paci S, Cipollini E, Ambrosetti D, Melli M: Tollip is a mediator of protein sumoylation. PLoS One 2009, 4:e4404.CrossRefPubMedPubMedCentral
36.
go back to reference Lee JY, Lee HJ, Lee EJ, Jang SH, Kim H, Yoon JH, Chung KC: Down syndrome candidate region-1 protein interacts with tollip and positively modulates interleukin-1 receptor-mediated signaling. Biochim Biophys Acta 2009, 1790:1673–1680.CrossRefPubMed Lee JY, Lee HJ, Lee EJ, Jang SH, Kim H, Yoon JH, Chung KC: Down syndrome candidate region-1 protein interacts with tollip and positively modulates interleukin-1 receptor-mediated signaling. Biochim Biophys Acta 2009, 1790:1673–1680.CrossRefPubMed
37.
go back to reference Plun-Favreau H, Klupsch K, Moisoi N, Gandhi S, Kjaer S, Frith D, Harvey K, Deas E, Harvey RJ, McDonald N, Wood NW, Martins LM, Downward J: The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat Cell Biol 2007, 9:1243–1252.CrossRefPubMed Plun-Favreau H, Klupsch K, Moisoi N, Gandhi S, Kjaer S, Frith D, Harvey K, Deas E, Harvey RJ, McDonald N, Wood NW, Martins LM, Downward J: The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat Cell Biol 2007, 9:1243–1252.CrossRefPubMed
39.
go back to reference Murata H, Sakaguchi M, Jin Y, Sakaguchi Y, Futami J, Yamada H, Kataoka K, Huh NH: A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: activation of AKT via mTORC2. J Biol Chem 2011, 286:7182–7189.CrossRefPubMed Murata H, Sakaguchi M, Jin Y, Sakaguchi Y, Futami J, Yamada H, Kataoka K, Huh NH: A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: activation of AKT via mTORC2. J Biol Chem 2011, 286:7182–7189.CrossRefPubMed
40.
go back to reference Pridgeon JW, Olzmann JA, Chin LS, Li L: PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 2007, 5:e172.CrossRefPubMedPubMedCentral Pridgeon JW, Olzmann JA, Chin LS, Li L: PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 2007, 5:e172.CrossRefPubMedPubMedCentral
41.
go back to reference Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, LaVoie MJ, Schwarz TL: PINK1 and parkin target miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011, 147:893–906.CrossRefPubMedPubMedCentral Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, LaVoie MJ, Schwarz TL: PINK1 and parkin target miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011, 147:893–906.CrossRefPubMedPubMedCentral
42.
go back to reference Rodriguez J, Crespo P: Working without kinase activity: phosphotransfer-independent functions of extracellular signal-regulated kinases. Sci Signal 2011, 4:re3.CrossRefPubMed Rodriguez J, Crespo P: Working without kinase activity: phosphotransfer-independent functions of extracellular signal-regulated kinases. Sci Signal 2011, 4:re3.CrossRefPubMed
43.
go back to reference Petit A, Kawarai T, Paitel E, Sanjo N, Maj M, Scheid M, Chen F, Gu Y, Hasegawa H, Salehi-Rad S, Wang L, Rogaeva E, Fraser P, Robinson B, St George-Hyslop P, Tandon A: Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem 2005, 280:34025–34032.CrossRefPubMed Petit A, Kawarai T, Paitel E, Sanjo N, Maj M, Scheid M, Chen F, Gu Y, Hasegawa H, Salehi-Rad S, Wang L, Rogaeva E, Fraser P, Robinson B, St George-Hyslop P, Tandon A: Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem 2005, 280:34025–34032.CrossRefPubMed
44.
go back to reference Takatori S, Ito G, Iwatsubo T: Cytoplasmic localization and proteasomal degradation of N-terminally cleaved form of PINK1. Neurosci Lett 2008, 430:13–17.CrossRefPubMed Takatori S, Ito G, Iwatsubo T: Cytoplasmic localization and proteasomal degradation of N-terminally cleaved form of PINK1. Neurosci Lett 2008, 430:13–17.CrossRefPubMed
46.
go back to reference Xiong H, Wang D, Chen L, Choo YS, Ma H, Tang C, Xia K, Jiang W, Ronai Z, Zhuang X, Zhang Z: Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest 2009, 119:650–660.CrossRefPubMedPubMedCentral Xiong H, Wang D, Chen L, Choo YS, Ma H, Tang C, Xia K, Jiang W, Ronai Z, Zhuang X, Zhang Z: Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest 2009, 119:650–660.CrossRefPubMedPubMedCentral
47.
go back to reference Martin MU, Wesche H: Summary and comparison of the signaling mechanisms of the toll/interleukin-1 receptor family. Biochim Biophys Acta 2002, 1592:265–280.CrossRefPubMed Martin MU, Wesche H: Summary and comparison of the signaling mechanisms of the toll/interleukin-1 receptor family. Biochim Biophys Acta 2002, 1592:265–280.CrossRefPubMed
48.
go back to reference Ordureau A, Smith H, Windheim M, Peggie M, Carrick E, Morrice N, Cohen P: The IRAK-catalysed activation of the E3 ligase function of pellino isoforms induces the Lys63-linked polyubiquitination of IRAK1. Biochem J 2008, 409:43–52.CrossRefPubMed Ordureau A, Smith H, Windheim M, Peggie M, Carrick E, Morrice N, Cohen P: The IRAK-catalysed activation of the E3 ligase function of pellino isoforms induces the Lys63-linked polyubiquitination of IRAK1. Biochem J 2008, 409:43–52.CrossRefPubMed
49.
go back to reference Xiao H, Qian W, Staschke K, Qian Y, Cui G, Deng L, Ehsani M, Wang X, Qian YW, Chen ZJ, Gilmour R, Jiang Z, Li X: Pellino 3b negatively regulates interleukin-1-induced TAK1-dependent NF-κB activation. J Biol Chem 2008, 283:14654–14664.CrossRefPubMedPubMedCentral Xiao H, Qian W, Staschke K, Qian Y, Cui G, Deng L, Ehsani M, Wang X, Qian YW, Chen ZJ, Gilmour R, Jiang Z, Li X: Pellino 3b negatively regulates interleukin-1-induced TAK1-dependent NF-κB activation. J Biol Chem 2008, 283:14654–14664.CrossRefPubMedPubMedCentral
50.
go back to reference Kollewe C, Mackensen AC, Neumann D, Knop J, Cao P, Li S, Wesche H, Martin MU: Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. J Biol Chem 2004, 279:5227–5236.CrossRefPubMed Kollewe C, Mackensen AC, Neumann D, Knop J, Cao P, Li S, Wesche H, Martin MU: Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. J Biol Chem 2004, 279:5227–5236.CrossRefPubMed
Metadata
Title
PINK1 positively regulates IL-1β-mediated signaling through Tollip and IRAK1 modulation
Authors
Hyun Jung Lee
Kwang Chul Chung
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-271

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue