Skip to main content
Top
Published in: Pediatric Rheumatology 1/2018

Open Access 01-12-2018 | Research article

Pilot study comparing the childhood arthritis and rheumatology research alliance consensus treatment plans for induction therapy of juvenile proliferative lupus nephritis

Authors: Jennifer C Cooper, Kelly Rouster-Stevens, Tracey B Wright, Joyce J Hsu, Marisa S Klein-Gitelman, Stacy P Ardoin, Laura E Schanberg, Hermine I Brunner, B Anne Eberhard, Linda Wagner-Weiner, Jay Mehta, Kathleen Haines, Deborah K McCurdy, Thomas A Phillips, Zhen Huang, Emily von Scheven, for the CARRA registry investigators

Published in: Pediatric Rheumatology | Issue 1/2018

Login to get access

Abstract

Background

To reduce treatment variability and facilitate comparative effectiveness studies, the Childhood Arthritis and Rheumatology Research Alliance (CARRA) published consensus treatment plans (CTPs) including one for juvenile proliferative lupus nephritis (LN). Induction immunosuppression CTPs outline treatment with either monthly intravenous (IV) cyclophosphamide (CYC) or mycophenolate mofetil (MMF) in conjunction with one of three corticosteroid (steroid) CTPs: primarily oral, primarily IV or mixed oral/IV. The acceptability and in-practice use of these CTPs are unknown. Therefore, the primary aims of the pilot study were to demonstrate feasibility of adhering to the LN CTPs and delineate barriers to implementation in clinical care in the US. Further, we aimed to explore the safety and effectiveness of the treatments for induction therapy.

Methods

Forty-one patients were enrolled from 10 CARRA sites. Patients had new-onset biopsy proven ISN/RPS class III or IV proliferative LN, were starting induction therapy with MMF or IV CYC and high-dose steroids and were followed for up to 24 months. Routine clinical data were collected at each visit. Provider reasons for CTP selection were assessed at baseline. Adherence to the CTPs was evaluated by provider survey and medication logs. Complete and partial renal responses were reported at 6 months.

Results

The majority of patients were female (83%) with a mean age of 14.7 years, SD 2.8. CYC was used more commonly than MMF for patients with ISN/RPS class IV LN (vs. class III), those who had hematuria, and those with adherence concerns. Overall adherence to the immunosuppression induction CTPs was acceptable with a majority of patients receiving the target MMF (86%) or CYC (63%) dose. However, adherence to the steroid CTPs was poor (37%) with large variability in dosing. Renal response endpoints were exploratory and did not show a significant difference between CYC and MMF.

Conclusions

Overall, the immunosuppression CTPs were followed as intended in the majority of patients however, adherence to the steroid CTPs was poor indicating revision is necessary. In addition, our pilot study revealed several sources of treatment selection bias that will need to be addressed in for future comparative effectiveness research.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hersh AO, et al. Differences in long-term disease activity and treatment of adult patients with childhood- and adult-onset systemic lupus erythematosus. Arthritis Rheum. 2009;61(1):13–20.CrossRef Hersh AO, et al. Differences in long-term disease activity and treatment of adult patients with childhood- and adult-onset systemic lupus erythematosus. Arthritis Rheum. 2009;61(1):13–20.CrossRef
2.
go back to reference Weening JJ, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. Kidney Int. 2004;65(2):521–30.CrossRef Weening JJ, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. Kidney Int. 2004;65(2):521–30.CrossRef
3.
go back to reference Tektonidou MG, Dasgupta A, Ward MM. Risk of end-stage renal disease in patients with lupus nephritis, 1971-2015: a systematic review and Bayesian meta-analysis. Arthritis Rheumatol. 2016;68(6):1432–41.CrossRef Tektonidou MG, Dasgupta A, Ward MM. Risk of end-stage renal disease in patients with lupus nephritis, 1971-2015: a systematic review and Bayesian meta-analysis. Arthritis Rheumatol. 2016;68(6):1432–41.CrossRef
4.
go back to reference Mina R, et al. Consensus treatment plans for induction therapy of newly diagnosed proliferative lupus nephritis in juvenile systemic lupus erythematosus. Arthritis Care Res (Hoboken). 2012;64(3):375–83.CrossRef Mina R, et al. Consensus treatment plans for induction therapy of newly diagnosed proliferative lupus nephritis in juvenile systemic lupus erythematosus. Arthritis Care Res (Hoboken). 2012;64(3):375–83.CrossRef
5.
go back to reference Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40(9):1725.CrossRef Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40(9):1725.CrossRef
6.
go back to reference Renal Disease Subcommittee of the American College of Rheumatology Ad Hoc Committee on Systemic Lupus Erythematosus Response, C. The American College of Rheumatology response criteria for proliferative and membranous renal disease in systemic lupus erythematosus clinical trials. Arthritis Rheum. 2006;54(2):421–32.CrossRef Renal Disease Subcommittee of the American College of Rheumatology Ad Hoc Committee on Systemic Lupus Erythematosus Response, C. The American College of Rheumatology response criteria for proliferative and membranous renal disease in systemic lupus erythematosus clinical trials. Arthritis Rheum. 2006;54(2):421–32.CrossRef
7.
go back to reference Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol. 2009;4(11):1832–43.CrossRef Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol. 2009;4(11):1832–43.CrossRef
8.
go back to reference Gladman DD, Ibanez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol. 2002;29(2):288–91.PubMed Gladman DD, Ibanez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol. 2002;29(2):288–91.PubMed
9.
go back to reference National Cancer Institute, P.R.O.C.S.G., Common Terminology Criteria for Adverse Events v4.0. 09–7473. National Cancer Institute, P.R.O.C.S.G., Common Terminology Criteria for Adverse Events v4.0. 097473.
10.
go back to reference Tamirou F, et al. Long-term follow-up of the MAINTAIN nephritis trial, comparing azathioprine and mycophenolate mofetil as maintenance therapy of lupus nephritis. Ann Rheum Dis. 2016;75(3):526–31.CrossRef Tamirou F, et al. Long-term follow-up of the MAINTAIN nephritis trial, comparing azathioprine and mycophenolate mofetil as maintenance therapy of lupus nephritis. Ann Rheum Dis. 2016;75(3):526–31.CrossRef
11.
go back to reference Houssiau FA, et al. Azathioprine versus mycophenolate mofetil for long-term immunosuppression in lupus nephritis: results from the MAINTAIN nephritis trial. Ann Rheum Dis. 2010;69(12):2083–9.CrossRef Houssiau FA, et al. Azathioprine versus mycophenolate mofetil for long-term immunosuppression in lupus nephritis: results from the MAINTAIN nephritis trial. Ann Rheum Dis. 2010;69(12):2083–9.CrossRef
12.
go back to reference Tian SY, et al. Immunosuppressive therapies for the maintenance treatment of proliferative lupus nephritis: a systematic review and network Metaanalysis. J Rheumatol. 2015;42(8):1392–400.CrossRef Tian SY, et al. Immunosuppressive therapies for the maintenance treatment of proliferative lupus nephritis: a systematic review and network Metaanalysis. J Rheumatol. 2015;42(8):1392–400.CrossRef
13.
go back to reference Houssiau FA, et al. The 10-year follow-up data of the euro-lupus nephritis trial comparing low-dose and high-dose intravenous cyclophosphamide. Ann Rheum Dis. 2010;69(1):61–4.CrossRef Houssiau FA, et al. The 10-year follow-up data of the euro-lupus nephritis trial comparing low-dose and high-dose intravenous cyclophosphamide. Ann Rheum Dis. 2010;69(1):61–4.CrossRef
14.
go back to reference Tamirou F, et al. Brief Report: The Euro-Lupus Low-Dose Intravenous Cyclophosphamide Regimen Does Not Impact the Ovarian Reserve, as Measured by Serum Levels of Anti-Mullerian Hormone. Arthritis Rheumat (Hoboken, N.J.). 2017;69(6):1267–71.CrossRef Tamirou F, et al. Brief Report: The Euro-Lupus Low-Dose Intravenous Cyclophosphamide Regimen Does Not Impact the Ovarian Reserve, as Measured by Serum Levels of Anti-Mullerian Hormone. Arthritis Rheumat (Hoboken, N.J.). 2017;69(6):1267–71.CrossRef
15.
go back to reference Wofsy D, Diamond B, Houssiau FA. Crossing the Atlantic: the Euro-Lupus Nephritis regimen in North America. Arthritis Rheumat (Hoboken, NJ). 2015;67(5):1144–6.CrossRef Wofsy D, Diamond B, Houssiau FA. Crossing the Atlantic: the Euro-Lupus Nephritis regimen in North America. Arthritis Rheumat (Hoboken, NJ). 2015;67(5):1144–6.CrossRef
16.
go back to reference Appel GB, et al. Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J Am Soc Nephrol. 2009;20(5):1103–12.CrossRef Appel GB, et al. Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J Am Soc Nephrol. 2009;20(5):1103–12.CrossRef
17.
go back to reference Group, A.T. Treatment of lupus nephritis with abatacept: the Abatacept and cyclophosphamide combination efficacy and safety study. Arthritis Rheumatol. 2014;66(11):3096–104.CrossRef Group, A.T. Treatment of lupus nephritis with abatacept: the Abatacept and cyclophosphamide combination efficacy and safety study. Arthritis Rheumatol. 2014;66(11):3096–104.CrossRef
18.
go back to reference Houssiau FA, et al. Early response to immunosuppressive therapy predicts good renal outcome in lupus nephritis: lessons from long-term followup of patients in the euro-lupus nephritis trial. Arthritis Rheum. 2004;50(12):3934–40.CrossRef Houssiau FA, et al. Early response to immunosuppressive therapy predicts good renal outcome in lupus nephritis: lessons from long-term followup of patients in the euro-lupus nephritis trial. Arthritis Rheum. 2004;50(12):3934–40.CrossRef
19.
go back to reference Bruce IN, Gladman DD, Urowitz MB. Factors associated with refractory renal disease in patients with systemic lupus erythematosus: the role of patient nonadherence. Arthritis Care Res. 2000;13(6):406–8.CrossRef Bruce IN, Gladman DD, Urowitz MB. Factors associated with refractory renal disease in patients with systemic lupus erythematosus: the role of patient nonadherence. Arthritis Care Res. 2000;13(6):406–8.CrossRef
20.
go back to reference Adler M, et al. An assessment of renal failure in an SLE cohort with special reference to ethnicity, over a 25-year period. Rheumatology (Oxford). 2006;45(9):1144–7.CrossRef Adler M, et al. An assessment of renal failure in an SLE cohort with special reference to ethnicity, over a 25-year period. Rheumatology (Oxford). 2006;45(9):1144–7.CrossRef
21.
go back to reference National High Blood Pressure Education Program Working Group on High Blood Pressure in, C. and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(2 Suppl 4th Report):555–76. National High Blood Pressure Education Program Working Group on High Blood Pressure in, C. and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(2 Suppl 4th Report):555–76.
Metadata
Title
Pilot study comparing the childhood arthritis and rheumatology research alliance consensus treatment plans for induction therapy of juvenile proliferative lupus nephritis
Authors
Jennifer C Cooper
Kelly Rouster-Stevens
Tracey B Wright
Joyce J Hsu
Marisa S Klein-Gitelman
Stacy P Ardoin
Laura E Schanberg
Hermine I Brunner
B Anne Eberhard
Linda Wagner-Weiner
Jay Mehta
Kathleen Haines
Deborah K McCurdy
Thomas A Phillips
Zhen Huang
Emily von Scheven
for the CARRA registry investigators
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Pediatric Rheumatology / Issue 1/2018
Electronic ISSN: 1546-0096
DOI
https://doi.org/10.1186/s12969-018-0279-0

Other articles of this Issue 1/2018

Pediatric Rheumatology 1/2018 Go to the issue