Skip to main content
Top
Published in: Journal of Translational Medicine 1/2024

Open Access 01-12-2024 | Pigmentary Retinopathy | Research

The mechanistic functional landscape of retinitis pigmentosa: a machine learning-driven approach to therapeutic target discovery

Authors: Marina Esteban-Medina, Carlos Loucera, Kinza Rian, Sheyla Velasco, Lorena Olivares-González, Regina Rodrigo, Joaquin Dopazo, Maria Peña-Chilet

Published in: Journal of Translational Medicine | Issue 1/2024

Login to get access

Abstract

Background

Retinitis pigmentosa is the prevailing genetic cause of blindness in developed nations with no effective treatments. In the pursuit of unraveling the intricate dynamics underlying this complex disease, mechanistic models emerge as a tool of proven efficiency rooted in systems biology, to elucidate the interplay between RP genes and their mechanisms. The integration of mechanistic models and drug-target interactions under the umbrella of machine learning methodologies provides a multifaceted approach that can boost the discovery of novel therapeutic targets, facilitating further drug repurposing in RP.

Methods

By mapping Retinitis Pigmentosa-related genes (obtained from Orphanet, OMIM and HPO databases) onto KEGG signaling pathways, a collection of signaling functional circuits encompassing Retinitis Pigmentosa molecular mechanisms was defined. Next, a mechanistic model of the so-defined disease map, where the effects of interventions can be simulated, was built. Then, an explainable multi-output random forest regressor was trained using normal tissue transcriptomic data to learn causal connections between targets of approved drugs from DrugBank and the functional circuits of the mechanistic disease map. Selected target genes involvement were validated on rd10 mice, a murine model of Retinitis Pigmentosa.

Results

A mechanistic functional map of Retinitis Pigmentosa was constructed resulting in 226 functional circuits belonging to 40 KEGG signaling pathways. The method predicted 109 targets of approved drugs in use with a potential effect over circuits corresponding to nine hallmarks identified. Five of those targets were selected and experimentally validated in rd10 mice: Gabre, Gabra1 (GABARα1 protein), Slc12a5 (KCC2 protein), Grin1 (NR1 protein) and Glr2a. As a result, we provide a resource to evaluate the potential impact of drug target genes in Retinitis Pigmentosa.

Conclusions

The possibility of building actionable disease models in combination with machine learning algorithms to learn causal drug-disease interactions opens new avenues for boosting drug discovery. Such mechanistically-based hypotheses can guide and accelerate the experimental validations prioritizing drug target candidates. In this work, a mechanistic model describing the functional disease map of Retinitis Pigmentosa was developed, identifying five promising therapeutic candidates targeted by approved drug. Further experimental validation will demonstrate the efficiency of this approach for a systematic application to other rare diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferrari S, Di Iorio E, Barbaro V, Ponzin D, Sorrentino FS, Parmeggiani F. Retinitis pigmentosa: genes and disease mechanisms. Curr Genom. 2011;12(4):238–49.CrossRef Ferrari S, Di Iorio E, Barbaro V, Ponzin D, Sorrentino FS, Parmeggiani F. Retinitis pigmentosa: genes and disease mechanisms. Curr Genom. 2011;12(4):238–49.CrossRef
2.
go back to reference Parmeggiani F. Clinics, epidemiology and genetics of retinitis pigmentosa. Curr Genom. 2011;12(4):236–7.CrossRef Parmeggiani F. Clinics, epidemiology and genetics of retinitis pigmentosa. Curr Genom. 2011;12(4):236–7.CrossRef
4.
go back to reference Daiger SP, Sullivan LS, Bowne SJ. Genes and mutations causing retinitis pigmentosa. Clin Genet. 2013;84(2):132–41.PubMedCrossRef Daiger SP, Sullivan LS, Bowne SJ. Genes and mutations causing retinitis pigmentosa. Clin Genet. 2013;84(2):132–41.PubMedCrossRef
5.
go back to reference Sorrentino FS, Gallenga CE, Bonifazzi C, Perri P. A challenge to the striking genotypic heterogeneity of retinitis pigmentosa: a better understanding of the pathophysiology using the newest genetic strategies. Eye. 2016;30(12):1542–8.PubMedPubMedCentralCrossRef Sorrentino FS, Gallenga CE, Bonifazzi C, Perri P. A challenge to the striking genotypic heterogeneity of retinitis pigmentosa: a better understanding of the pathophysiology using the newest genetic strategies. Eye. 2016;30(12):1542–8.PubMedPubMedCentralCrossRef
7.
go back to reference Boycott KM, Hartley T, Biesecker LG, Gibbs RA, Innes AM, Riess O, et al. A diagnosis for all rare genetic diseases: the horizon and the next frontiers. Cell. 2019;177(1):32–7.PubMedCrossRef Boycott KM, Hartley T, Biesecker LG, Gibbs RA, Innes AM, Riess O, et al. A diagnosis for all rare genetic diseases: the horizon and the next frontiers. Cell. 2019;177(1):32–7.PubMedCrossRef
8.
go back to reference Henrie A, Hemphill SE, Ruiz-Schultz N, Cushman B, DiStefano MT, Azzariti D, et al. ClinVar miner: demonstrating utility of a web-based tool for viewing and filtering ClinVar data. Hum Mutat. 2018;39(8):1051–60.PubMedPubMedCentralCrossRef Henrie A, Hemphill SE, Ruiz-Schultz N, Cushman B, DiStefano MT, Azzariti D, et al. ClinVar miner: demonstrating utility of a web-based tool for viewing and filtering ClinVar data. Hum Mutat. 2018;39(8):1051–60.PubMedPubMedCentralCrossRef
9.
go back to reference Yu MK, Kramer M, Dutkowski J, Srivas R, Licon K, Kreisberg J, et al. Translation of genotype to phenotype by a hierarchy of cell subsystems. Cell Syst. 2016;2(2):77–88.PubMedPubMedCentralCrossRef Yu MK, Kramer M, Dutkowski J, Srivas R, Licon K, Kreisberg J, et al. Translation of genotype to phenotype by a hierarchy of cell subsystems. Cell Syst. 2016;2(2):77–88.PubMedPubMedCentralCrossRef
10.
go back to reference Amadoz A, Sebastian-Leon P, Vidal E, Salavert F, Dopazo J. Using activation status of signaling pathways as mechanism-based biomarkers to predict drug sensitivity. Sci Rep. 2015;5:18494.ADSPubMedPubMedCentralCrossRef Amadoz A, Sebastian-Leon P, Vidal E, Salavert F, Dopazo J. Using activation status of signaling pathways as mechanism-based biomarkers to predict drug sensitivity. Sci Rep. 2015;5:18494.ADSPubMedPubMedCentralCrossRef
11.
go back to reference Salavert F, Hidago MR, Amadoz A, Çubuk C, Medina I, Crespo D, et al. Actionable pathways: interactive discovery of therapeutic targets using signaling pathway models. Nucleic Acids Res. 2016;44(W1):W212–6.PubMedPubMedCentralCrossRef Salavert F, Hidago MR, Amadoz A, Çubuk C, Medina I, Crespo D, et al. Actionable pathways: interactive discovery of therapeutic targets using signaling pathway models. Nucleic Acids Res. 2016;44(W1):W212–6.PubMedPubMedCentralCrossRef
12.
go back to reference Hidalgo MR, Cubuk C, Amadoz A, Salavert F, Carbonell-Caballero J, Dopazo J. High throughput estimation of functional cell activities reveals disease mechanisms and predicts relevant clinical outcomes. Oncotarget. 2017;8(3):5160–78.PubMedCrossRef Hidalgo MR, Cubuk C, Amadoz A, Salavert F, Carbonell-Caballero J, Dopazo J. High throughput estimation of functional cell activities reveals disease mechanisms and predicts relevant clinical outcomes. Oncotarget. 2017;8(3):5160–78.PubMedCrossRef
13.
go back to reference Cubuk C, Hidalgo MR, Amadoz A, Pujana MA, Mateo F, Herranz C, et al. Gene expression integration into pathway modules reveals a pan-cancer metabolic landscape. Cancer Res. 2018;78(21):6059–72.PubMedCrossRef Cubuk C, Hidalgo MR, Amadoz A, Pujana MA, Mateo F, Herranz C, et al. Gene expression integration into pathway modules reveals a pan-cancer metabolic landscape. Cancer Res. 2018;78(21):6059–72.PubMedCrossRef
14.
go back to reference Falco MM, Peña-Chilet M, Loucera C, Hidalgo MR, Dopazo J. Mechanistic models of signaling pathways deconvolute the glioblastoma single-cell functional landscape. NAR Cancer. 2020;2(2): zcaa011.PubMedPubMedCentralCrossRef Falco MM, Peña-Chilet M, Loucera C, Hidalgo MR, Dopazo J. Mechanistic models of signaling pathways deconvolute the glioblastoma single-cell functional landscape. NAR Cancer. 2020;2(2): zcaa011.PubMedPubMedCentralCrossRef
15.
go back to reference Peña-Chilet M, Esteban-Medina M, Falco MM, Rian K, Hidalgo MR, Loucera C, et al. Using mechanistic models for the clinical interpretation of complex genomic variation. Sci Rep. 2019;9(1):18937.ADSPubMedPubMedCentralCrossRef Peña-Chilet M, Esteban-Medina M, Falco MM, Rian K, Hidalgo MR, Loucera C, et al. Using mechanistic models for the clinical interpretation of complex genomic variation. Sci Rep. 2019;9(1):18937.ADSPubMedPubMedCentralCrossRef
16.
go back to reference Razzoli M, Frontini A, Gurney A, Mondini E, Cubuk C, Katz LS, et al. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis. Mol Metab. 2016;5(1):19–33.PubMedCrossRef Razzoli M, Frontini A, Gurney A, Mondini E, Cubuk C, Katz LS, et al. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis. Mol Metab. 2016;5(1):19–33.PubMedCrossRef
17.
go back to reference Esteban-Medina M, Peña-Chilet M, Loucera C, Dopazo J. Exploring the druggable space around the Fanconi anemia pathway using machine learning and mechanistic models. BMC Bioinform. 2019;20(1):370.CrossRef Esteban-Medina M, Peña-Chilet M, Loucera C, Dopazo J. Exploring the druggable space around the Fanconi anemia pathway using machine learning and mechanistic models. BMC Bioinform. 2019;20(1):370.CrossRef
18.
go back to reference Loucera C, Esteban-Medina M, Rian K, Falco MM, Dopazo J, Peña-Chilet M. Drug repurposing for COVID-19 using machine learning and mechanistic models of signal transduction circuits related to SARS-CoV-2 infection. Signal Transduct Target Ther. 2020;5(1):290.PubMedPubMedCentralCrossRef Loucera C, Esteban-Medina M, Rian K, Falco MM, Dopazo J, Peña-Chilet M. Drug repurposing for COVID-19 using machine learning and mechanistic models of signal transduction circuits related to SARS-CoV-2 infection. Signal Transduct Target Ther. 2020;5(1):290.PubMedPubMedCentralCrossRef
19.
go back to reference Çubuk C, Can FE, Peña-Chilet M, Dopazo J. Mechanistic models of signaling pathways reveal the drug action mechanisms behind gender-specific gene expression for cancer treatments. Cells. 2020;9(7):1579.PubMedPubMedCentralCrossRef Çubuk C, Can FE, Peña-Chilet M, Dopazo J. Mechanistic models of signaling pathways reveal the drug action mechanisms behind gender-specific gene expression for cancer treatments. Cells. 2020;9(7):1579.PubMedPubMedCentralCrossRef
20.
go back to reference Hidalgo MR, Amadoz A, Çubuk C, Carbonell-Caballero J, Dopazo J. Models of cell signaling uncover molecular mechanisms of high-risk neuroblastoma and predict disease outcome. Biol Direct. 2018;13(1):1–12.CrossRef Hidalgo MR, Amadoz A, Çubuk C, Carbonell-Caballero J, Dopazo J. Models of cell signaling uncover molecular mechanisms of high-risk neuroblastoma and predict disease outcome. Biol Direct. 2018;13(1):1–12.CrossRef
21.
go back to reference Montanuy H, Martínez-Barriocanal Á, Antonio Casado J, Rovirosa L, Ramírez MJ, Nieto R, et al. Gefitinib and afatinib show potential efficacy for Fanconi anemia-related head and neck cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26(12):3044–57.CrossRef Montanuy H, Martínez-Barriocanal Á, Antonio Casado J, Rovirosa L, Ramírez MJ, Nieto R, et al. Gefitinib and afatinib show potential efficacy for Fanconi anemia-related head and neck cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26(12):3044–57.CrossRef
22.
go back to reference Loucera C, Peña-Chilet M, Esteban-Medina M, Muñoyerro-Muñiz D, Villegas R, Lopez-Miranda J, et al. Real world evidence of calcifediol or vitamin D prescription and mortality rate of COVID-19 in a retrospective cohort of hospitalized Andalusian patients. Sci Rep. 2021;11(1):23380.ADSPubMedPubMedCentralCrossRef Loucera C, Peña-Chilet M, Esteban-Medina M, Muñoyerro-Muñiz D, Villegas R, Lopez-Miranda J, et al. Real world evidence of calcifediol or vitamin D prescription and mortality rate of COVID-19 in a retrospective cohort of hospitalized Andalusian patients. Sci Rep. 2021;11(1):23380.ADSPubMedPubMedCentralCrossRef
23.
go back to reference Loucera C, Carmona R, Esteban-Medina M, Bostelmann G, Muñoyerro-Muñiz D, Villegas R, et al. Real-world evidence with a retrospective cohort of 15,968 COVID-19 hospitalized patients suggests 21 new effective treatments. Virol J. 2023;20:226.PubMedPubMedCentralCrossRef Loucera C, Carmona R, Esteban-Medina M, Bostelmann G, Muñoyerro-Muñiz D, Villegas R, et al. Real-world evidence with a retrospective cohort of 15,968 COVID-19 hospitalized patients suggests 21 new effective treatments. Virol J. 2023;20:226.PubMedPubMedCentralCrossRef
24.
go back to reference Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–673.PubMedCrossRef Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–673.PubMedCrossRef
25.
go back to reference Simoens S, Cassiman D, Dooms M, Picavet E. Orphan drugs for rare diseases: is it time to revisit their special market access status? Drugs. 2012;72(11):1437–43.PubMedCrossRef Simoens S, Cassiman D, Dooms M, Picavet E. Orphan drugs for rare diseases: is it time to revisit their special market access status? Drugs. 2012;72(11):1437–43.PubMedCrossRef
26.
go back to reference Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58.PubMedCrossRef Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58.PubMedCrossRef
28.
go back to reference Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005;33(Database Issue):D514–7.PubMedCrossRef Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005;33(Database Issue):D514–7.PubMedCrossRef
29.
go back to reference Köhler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, Vasilevsky NA, et al. The human phenotype ontology in 2021. Nucleic Acids Res. 2021;49(D1):D1207–17.PubMedCrossRef Köhler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, Vasilevsky NA, et al. The human phenotype ontology in 2021. Nucleic Acids Res. 2021;49(D1):D1207–17.PubMedCrossRef
30.
go back to reference Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42(Database issue):D199–205.PubMedCrossRef Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42(Database issue):D199–205.PubMedCrossRef
31.
go back to reference Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–5.CrossRef Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–5.CrossRef
33.
go back to reference Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–82.PubMedCrossRef Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–82.PubMedCrossRef
34.
go back to reference Hidalgo MR. hipathia: HiPathia: high-throughput pathway analysis. 2019. Hidalgo MR. hipathia: HiPathia: high-throughput pathway analysis. 2019.
37.
go back to reference Segal M, Xiao Y. Multivariate random forests. WIREs Data Min Knowl Discov. 2011;1(1):80–7.CrossRef Segal M, Xiao Y. Multivariate random forests. WIREs Data Min Knowl Discov. 2011;1(1):80–7.CrossRef
38.
go back to reference Lundberg SM, Lee SI, et al. A unified approach to interpreting model predictions. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al., editors. Advances in neural information processing systems 30. New York: Curran Associates, Inc.; 2017. p. 4765–74. Lundberg SM, Lee SI, et al. A unified approach to interpreting model predictions. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al., editors. Advances in neural information processing systems 30. New York: Curran Associates, Inc.; 2017. p. 4765–74.
39.
go back to reference Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, et al. From local explanations to global understanding with explainable AI for trees. Nat Mach Intell. 2020;2(1):2522–5839.CrossRef Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, et al. From local explanations to global understanding with explainable AI for trees. Nat Mach Intell. 2020;2(1):2522–5839.CrossRef
40.
go back to reference Nogueira S, Sechidis K, Brown G. On the stability of feature selection algorithms. J Mach Learn Res. 2018;18(174):1–54.MathSciNet Nogueira S, Sechidis K, Brown G. On the stability of feature selection algorithms. J Mach Learn Res. 2018;18(174):1–54.MathSciNet
41.
go back to reference Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinform. 2010;11(1):367.CrossRef Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinform. 2010;11(1):367.CrossRef
42.
43.
44.
go back to reference Olivares-González L, Velasco S, Gallego I, Esteban-Medina M, Puras G, Loucera C, et al. An SPM-enriched marine oil supplement shifted microglia polarization toward M2, ameliorating retinal degeneration in rd10 mice. Antioxidants. 2022;12(1):98.PubMedPubMedCentralCrossRef Olivares-González L, Velasco S, Gallego I, Esteban-Medina M, Puras G, Loucera C, et al. An SPM-enriched marine oil supplement shifted microglia polarization toward M2, ameliorating retinal degeneration in rd10 mice. Antioxidants. 2022;12(1):98.PubMedPubMedCentralCrossRef
46.
go back to reference Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S, Romero FJ, van Veen T, Zrenner E, et al. Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol. 2008;38(3):253–69.PubMedCrossRef Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S, Romero FJ, van Veen T, Zrenner E, et al. Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol. 2008;38(3):253–69.PubMedCrossRef
47.
48.
go back to reference Murakami Y, Notomi S, Hisatomi T, Nakazawa T, Ishibashi T, Miller JW, et al. Photoreceptor cell death and rescue in retinal detachment and degenerations. Prog Retin Eye Res. 2013;37:114–40.PubMedCrossRef Murakami Y, Notomi S, Hisatomi T, Nakazawa T, Ishibashi T, Miller JW, et al. Photoreceptor cell death and rescue in retinal detachment and degenerations. Prog Retin Eye Res. 2013;37:114–40.PubMedCrossRef
49.
go back to reference Murakami Y, Matsumoto H, Roh M, Giani A, Kataoka K, Morizane Y, et al. Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration. Cell Death Differ. 2014;21(2):270–7.PubMedCrossRef Murakami Y, Matsumoto H, Roh M, Giani A, Kataoka K, Morizane Y, et al. Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration. Cell Death Differ. 2014;21(2):270–7.PubMedCrossRef
50.
go back to reference Yoshida N, Ikeda Y, Notomi S, Ishikawa K, Murakami Y, Hisatomi T, et al. Clinical evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Ophthalmology. 2013;120(1):100–5.PubMedCrossRef Yoshida N, Ikeda Y, Notomi S, Ishikawa K, Murakami Y, Hisatomi T, et al. Clinical evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Ophthalmology. 2013;120(1):100–5.PubMedCrossRef
52.
go back to reference Cullen SP, Henry CM, Kearney CJ, Logue SE, Feoktistova M, Tynan GA, et al. Fas/CD95-induced chemokines can serve as “find-me” signals for apoptotic cells. Mol Cell. 2013;49(6):1034–48.PubMedCrossRef Cullen SP, Henry CM, Kearney CJ, Logue SE, Feoktistova M, Tynan GA, et al. Fas/CD95-induced chemokines can serve as “find-me” signals for apoptotic cells. Mol Cell. 2013;49(6):1034–48.PubMedCrossRef
53.
go back to reference Olivares-González L, Martínez-Fernández de la Cámara C, Hervás D, Millán JM, Rodrigo R. HIF-1α stabilization reduces retinal degeneration in a mouse model of retinitis pigmentosa. FASEB J. 2018;32(5):2438–51.PubMedCrossRef Olivares-González L, Martínez-Fernández de la Cámara C, Hervás D, Millán JM, Rodrigo R. HIF-1α stabilization reduces retinal degeneration in a mouse model of retinitis pigmentosa. FASEB J. 2018;32(5):2438–51.PubMedCrossRef
54.
go back to reference Martínez-Fernández de la Cámara C, Olivares-González L, Hervás D, Salom D, Millán JM, Rodrigo R. Infliximab reduces Zaprinast-induced retinal degeneration in cultures of porcine retina. J Neuroinflamm. 2014;11:172.CrossRef Martínez-Fernández de la Cámara C, Olivares-González L, Hervás D, Salom D, Millán JM, Rodrigo R. Infliximab reduces Zaprinast-induced retinal degeneration in cultures of porcine retina. J Neuroinflamm. 2014;11:172.CrossRef
56.
go back to reference Van Herreweghe F, Festjens N, Declercq W, Vandenabeele P. Tumor necrosis factor-mediated cell death: to break or to burst, that’s the question. Cell Mol Life Sci. 2010;67(10):1567–79.PubMedCrossRef Van Herreweghe F, Festjens N, Declercq W, Vandenabeele P. Tumor necrosis factor-mediated cell death: to break or to burst, that’s the question. Cell Mol Life Sci. 2010;67(10):1567–79.PubMedCrossRef
57.
go back to reference Olivares-González L, Velasco S, Millán JM, Rodrigo R. Intravitreal administration of adalimumab delays retinal degeneration in rd10 mice. FASEB J. 2020;34(10):13839–61.PubMedCrossRef Olivares-González L, Velasco S, Millán JM, Rodrigo R. Intravitreal administration of adalimumab delays retinal degeneration in rd10 mice. FASEB J. 2020;34(10):13839–61.PubMedCrossRef
58.
go back to reference Najjar M, Saleh D, Zelic M, Nogusa S, Shah S, Tai A, et al. RIPK1 and RIPK3 kinases promote cell-death-independent inflammation by toll-like receptor 4. Immunity. 2016;45(1):46–59.PubMedPubMedCentralCrossRef Najjar M, Saleh D, Zelic M, Nogusa S, Shah S, Tai A, et al. RIPK1 and RIPK3 kinases promote cell-death-independent inflammation by toll-like receptor 4. Immunity. 2016;45(1):46–59.PubMedPubMedCentralCrossRef
59.
go back to reference Moriwaki K, Chan FKM. The inflammatory signal adaptor RIPK3: functions beyond necroptosis. Int Rev Cell Mol Biol. 2017;328:253–75.PubMedCrossRef Moriwaki K, Chan FKM. The inflammatory signal adaptor RIPK3: functions beyond necroptosis. Int Rev Cell Mol Biol. 2017;328:253–75.PubMedCrossRef
60.
go back to reference Abais JM, Xia M, Zhang Y, Boini KM, Li PL. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal. 2015;22(13):1111–29.PubMedPubMedCentralCrossRef Abais JM, Xia M, Zhang Y, Boini KM, Li PL. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal. 2015;22(13):1111–29.PubMedPubMedCentralCrossRef
61.
go back to reference Totsuka K, Ueta T, Uchida T, Roggia MF, Nakagawa S, Vavvas DG, et al. Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells. Exp Eye Res. 2019;181:316–24.PubMedCrossRef Totsuka K, Ueta T, Uchida T, Roggia MF, Nakagawa S, Vavvas DG, et al. Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells. Exp Eye Res. 2019;181:316–24.PubMedCrossRef
62.
go back to reference Gil J, Almeida S, Oliveira CR, Rego AC. Cytosolic and mitochondrial ROS in staurosporine-induced retinal cell apoptosis. Free Radic Biol Med. 2003;35(11):1500–14.PubMedCrossRef Gil J, Almeida S, Oliveira CR, Rego AC. Cytosolic and mitochondrial ROS in staurosporine-induced retinal cell apoptosis. Free Radic Biol Med. 2003;35(11):1500–14.PubMedCrossRef
63.
go back to reference Tajiri S, Oyadomari S, Yano S, Morioka M, Gotoh T, Hamada JI, et al. Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ. 2004;11(4):403–15.PubMedCrossRef Tajiri S, Oyadomari S, Yano S, Morioka M, Gotoh T, Hamada JI, et al. Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ. 2004;11(4):403–15.PubMedCrossRef
64.
go back to reference Eijkelkamp N, Linley JE, Baker MD, Minett MS, Cregg R, Werdehausen R, et al. Neurological perspectives on voltage-gated sodium channels. Brain J Neurol. 2012;135(Pt 9):2585–612.CrossRef Eijkelkamp N, Linley JE, Baker MD, Minett MS, Cregg R, Werdehausen R, et al. Neurological perspectives on voltage-gated sodium channels. Brain J Neurol. 2012;135(Pt 9):2585–612.CrossRef
65.
go back to reference Das S, Chen Y, Yan J, Christensen G, Belhadj S, Tolone A, et al. The role of cGMP-signalling and calcium-signalling in photoreceptor cell death: perspectives for therapy development. Pflüg Arch Eur J Physiol. 2021;473(9):1411–21.CrossRef Das S, Chen Y, Yan J, Christensen G, Belhadj S, Tolone A, et al. The role of cGMP-signalling and calcium-signalling in photoreceptor cell death: perspectives for therapy development. Pflüg Arch Eur J Physiol. 2021;473(9):1411–21.CrossRef
66.
go back to reference Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 2015;67(4):821–70.PubMedPubMedCentralCrossRef Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 2015;67(4):821–70.PubMedPubMedCentralCrossRef
68.
go back to reference Duan F, Xiao Z, Wang Y, Sun X, Tang Z, Wang R, et al. Metabolic alterations in the visual pathway of retinitis pigmentosa rats: a longitudinal multimodal magnetic resonance imaging study with histopathological validation. NMR Biomed. 2022;35(9): e4751.PubMedCrossRef Duan F, Xiao Z, Wang Y, Sun X, Tang Z, Wang R, et al. Metabolic alterations in the visual pathway of retinitis pigmentosa rats: a longitudinal multimodal magnetic resonance imaging study with histopathological validation. NMR Biomed. 2022;35(9): e4751.PubMedCrossRef
69.
70.
go back to reference Pfeiffer RL, Marc RE, Jones BW. Persistent remodeling and neurodegeneration in late-stage retinal degeneration. Prog Retin Eye Res. 2020;74: 100771.PubMedCrossRef Pfeiffer RL, Marc RE, Jones BW. Persistent remodeling and neurodegeneration in late-stage retinal degeneration. Prog Retin Eye Res. 2020;74: 100771.PubMedCrossRef
71.
go back to reference Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retinal degeneration. Prog Retin Eye Res. 2003;22(5):607–55.PubMedCrossRef Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retinal degeneration. Prog Retin Eye Res. 2003;22(5):607–55.PubMedCrossRef
72.
go back to reference Caravaca-Rodriguez D, Gaytan SP, Suaning GJ, Barriga-Rivera A. Implications of neural plasticity in retinal prosthesis. Invest Ophthalmol Vis Sci. 2022;63(11):11.PubMedPubMedCentralCrossRef Caravaca-Rodriguez D, Gaytan SP, Suaning GJ, Barriga-Rivera A. Implications of neural plasticity in retinal prosthesis. Invest Ophthalmol Vis Sci. 2022;63(11):11.PubMedPubMedCentralCrossRef
73.
go back to reference Kolb H, Fernandez E, Nelson R, editors. Webvision: the organization of the retina and visual system. Salt Lake City: University of Utah Health Sciences Center; 1995. Kolb H, Fernandez E, Nelson R, editors. Webvision: the organization of the retina and visual system. Salt Lake City: University of Utah Health Sciences Center; 1995.
74.
go back to reference Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, et al. The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature. 1999;397(6716):251–5.ADSPubMedCrossRef Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, et al. The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature. 1999;397(6716):251–5.ADSPubMedCrossRef
77.
go back to reference Pan F, Toychiev A, Zhang Y, Atlasz T, Ramakrishnan H, Roy K, et al. Inhibitory masking controls the threshold sensitivity of retinal ganglion cells. J Physiol. 2016;594(22):6679–99.PubMedPubMedCentralCrossRef Pan F, Toychiev A, Zhang Y, Atlasz T, Ramakrishnan H, Roy K, et al. Inhibitory masking controls the threshold sensitivity of retinal ganglion cells. J Physiol. 2016;594(22):6679–99.PubMedPubMedCentralCrossRef
78.
go back to reference Jensen RJ, Rizzo JF. Effects of GABA receptor antagonists on thresholds of P23H rat retinal ganglion cells to electrical stimulation of the retina. J Neural Eng. 2011;8(3): 035002.PubMedCrossRef Jensen RJ, Rizzo JF. Effects of GABA receptor antagonists on thresholds of P23H rat retinal ganglion cells to electrical stimulation of the retina. J Neural Eng. 2011;8(3): 035002.PubMedCrossRef
79.
go back to reference Jensen RJ. Blocking GABA(C) receptors increases light responsiveness of retinal ganglion cells in a rat model of retinitis pigmentosa. Exp Eye Res. 2012;105:21–6.ADSPubMedCrossRef Jensen RJ. Blocking GABA(C) receptors increases light responsiveness of retinal ganglion cells in a rat model of retinitis pigmentosa. Exp Eye Res. 2012;105:21–6.ADSPubMedCrossRef
80.
go back to reference Wang Q, Banerjee S, So C, Qiu C, Lam HIC, Tse D, et al. Unmasking inhibition prolongs neuronal function in retinal degeneration mouse model. FASEB J. 2020;34(11):15282–99.PubMedCrossRef Wang Q, Banerjee S, So C, Qiu C, Lam HIC, Tse D, et al. Unmasking inhibition prolongs neuronal function in retinal degeneration mouse model. FASEB J. 2020;34(11):15282–99.PubMedCrossRef
81.
go back to reference Srivastava P, Sinha-Mahapatra SK, Ghosh A, Srivastava I, Dhingra NK. Differential alterations in the expression of neurotransmitter receptors in inner retina following loss of photoreceptors in rd1 mouse. PLoS ONE. 2015;10(4): e0123896.PubMedPubMedCentralCrossRef Srivastava P, Sinha-Mahapatra SK, Ghosh A, Srivastava I, Dhingra NK. Differential alterations in the expression of neurotransmitter receptors in inner retina following loss of photoreceptors in rd1 mouse. PLoS ONE. 2015;10(4): e0123896.PubMedPubMedCentralCrossRef
82.
go back to reference Schur RM, Gao S, Yu G, Chen Y, Maeda A, Palczewski K, et al. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models. FASEB J. 2018;32(6):3289–300.PubMedPubMedCentralCrossRef Schur RM, Gao S, Yu G, Chen Y, Maeda A, Palczewski K, et al. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models. FASEB J. 2018;32(6):3289–300.PubMedPubMedCentralCrossRef
83.
go back to reference Czapiński P, Blaszczyk B, Czuczwar SJ. Mechanisms of action of antiepileptic drugs. Curr Top Med Chem. 2005;5(1):3–14.PubMedCrossRef Czapiński P, Blaszczyk B, Czuczwar SJ. Mechanisms of action of antiepileptic drugs. Curr Top Med Chem. 2005;5(1):3–14.PubMedCrossRef
84.
go back to reference Olney JW, Price MT, Fuller TA, Labruyere J, Samson L, Carpenter M, et al. The anti-excitotoxic effects of certain anesthetics, analgesics and sedative-hypnotics. Neurosci Lett. 1986;68(1):29–34.PubMedCrossRef Olney JW, Price MT, Fuller TA, Labruyere J, Samson L, Carpenter M, et al. The anti-excitotoxic effects of certain anesthetics, analgesics and sedative-hypnotics. Neurosci Lett. 1986;68(1):29–34.PubMedCrossRef
85.
go back to reference Iwata M, Inoue S, Kawaguchi M, Furuya H. Effects of diazepam and flumazenil on forebrain ischaemia in a rat model of benzodiazepine tolerance. Br J Anaesth. 2012;109(6):935–42.PubMedCrossRef Iwata M, Inoue S, Kawaguchi M, Furuya H. Effects of diazepam and flumazenil on forebrain ischaemia in a rat model of benzodiazepine tolerance. Br J Anaesth. 2012;109(6):935–42.PubMedCrossRef
86.
go back to reference Loucera C, Esteban-Medina M, Rian K, Falco MM, Dopazo J, Peña-Chilet M. Drug repurposing for COVID-19 using machine learning and mechanistic models of signal transduction circuits related to SARS-CoV-2 infection. Signal Transduct Target Ther. 2020;5(1):1–3. Loucera C, Esteban-Medina M, Rian K, Falco MM, Dopazo J, Peña-Chilet M. Drug repurposing for COVID-19 using machine learning and mechanistic models of signal transduction circuits related to SARS-CoV-2 infection. Signal Transduct Target Ther. 2020;5(1):1–3.
87.
go back to reference Choudhury C, Arul Murugan N, Priyakumar UD. Structure-based drug repurposing: traditional and advanced AI/ML-aided methods. Drug Discov Today. 2022;27(7):1847–61.PubMedPubMedCentralCrossRef Choudhury C, Arul Murugan N, Priyakumar UD. Structure-based drug repurposing: traditional and advanced AI/ML-aided methods. Drug Discov Today. 2022;27(7):1847–61.PubMedPubMedCentralCrossRef
88.
go back to reference Ostaszewski M, Niarakis A, Mazein A, Kuperstein I, Phair R, Orta-Resendiz A, et al. COVID19 disease map, a computational knowledge repository of virus-host interaction mechanisms. Mol Syst Biol. 2021;17(10): e10387.PubMedPubMedCentralCrossRef Ostaszewski M, Niarakis A, Mazein A, Kuperstein I, Phair R, Orta-Resendiz A, et al. COVID19 disease map, a computational knowledge repository of virus-host interaction mechanisms. Mol Syst Biol. 2021;17(10): e10387.PubMedPubMedCentralCrossRef
Metadata
Title
The mechanistic functional landscape of retinitis pigmentosa: a machine learning-driven approach to therapeutic target discovery
Authors
Marina Esteban-Medina
Carlos Loucera
Kinza Rian
Sheyla Velasco
Lorena Olivares-González
Regina Rodrigo
Joaquin Dopazo
Maria Peña-Chilet
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2024
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-024-04911-7

Other articles of this Issue 1/2024

Journal of Translational Medicine 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine