Skip to main content
Top
Published in: Brain Structure and Function 4/2019

01-05-2019 | Pica Syndrome | Original Article

Phase fMRI informs whole-brain function connectivity balance across lifespan with connection-specific aging effects during the resting state

Authors: Zikuan Chen, Qing Zhou, Vince Calhoun

Published in: Brain Structure and Function | Issue 4/2019

Login to get access

Abstract

A functional magnetic resonance imaging (fMRI) experiment produces complex-valued images consisting of pairwise magnitude and phase images. As different perspective on the same magnetic source, fMRI magnitude and phase data are complementary for brain function analysis. We collected 600-subject fMRI data during rest, decomposed via group-level independent component analysis (ICA) (mICA and pICA for magnitude and phase respectively), and calculated brain functional network connectivity matrices (mFC and pFC). The pFC matrix shows a fewer of significant connections balanced across positive and negative relationships. In comparison, the mFC matrix contains a positively-biased pattern with more significant connections. Our experiment data analyses also show that human brain maintains a whole-brain connection balance in resting state across an age span from 10 to 76 years, however, phase and magnitude data analyses reveal different connection-specific age effects on significant positive and negative subnetwork couplings.
Literature
go back to reference Abou Elseoud A, Littow H, Remes J, Starck T, Nikkinen J, Nissila J, Timonen M, Tervonen O, Kiviniemi V (2011) Group-ICA model order highlights patterns of functional brain connectivity. Front Syst Neurosci 5:37CrossRefPubMedPubMedCentral Abou Elseoud A, Littow H, Remes J, Starck T, Nikkinen J, Nissila J, Timonen M, Tervonen O, Kiviniemi V (2011) Group-ICA model order highlights patterns of functional brain connectivity. Front Syst Neurosci 5:37CrossRefPubMedPubMedCentral
go back to reference Adhikari MH, Hacker CD, Siegel JS, Griffa A, Hagmann P, Deco G, Corbetta M (2017) Decreased integration and information capacity in stroke measured by whole brain models of resting state activity. Brain 140(4):1068–1085CrossRefPubMedPubMedCentral Adhikari MH, Hacker CD, Siegel JS, Griffa A, Hagmann P, Deco G, Corbetta M (2017) Decreased integration and information capacity in stroke measured by whole brain models of resting state activity. Brain 140(4):1068–1085CrossRefPubMedPubMedCentral
go back to reference Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, Havlicek M, Rachakonda S, Fries J, Kalyanam R, Michael AM, Caprihan A, Turner JA, Eichele T, Adelsheim S, Bryan AD, Bustillo J, Clark VP, Feldstein Ewing SW, Filbey F, Ford CC, Hutchison K, Jung RE, Kiehl KA, Kodituwakku P, Komesu YM, Mayer AR, Pearlson GD, Phillips JP, Sadek JR, Stevens M, Teuscher U, Thoma RJ, Calhoun VD (2011) A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci 5:2PubMedPubMedCentral Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, Havlicek M, Rachakonda S, Fries J, Kalyanam R, Michael AM, Caprihan A, Turner JA, Eichele T, Adelsheim S, Bryan AD, Bustillo J, Clark VP, Feldstein Ewing SW, Filbey F, Ford CC, Hutchison K, Jung RE, Kiehl KA, Kodituwakku P, Komesu YM, Mayer AR, Pearlson GD, Phillips JP, Sadek JR, Stevens M, Teuscher U, Thoma RJ, Calhoun VD (2011) A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci 5:2PubMedPubMedCentral
go back to reference Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24(3):663–676CrossRefPubMed Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24(3):663–676CrossRefPubMed
go back to reference Aragri A, Scarabino T, Seifritz E, Comani S, Cirillo S, Tedeschi G, Esposito F, Di Salle F (2006) How does spatial extent of fMRI datasets affect independent component analysis decomposition? Hum Brain Mapp 27(9):736–746CrossRefPubMedPubMedCentral Aragri A, Scarabino T, Seifritz E, Comani S, Cirillo S, Tedeschi G, Esposito F, Di Salle F (2006) How does spatial extent of fMRI datasets affect independent component analysis decomposition? Hum Brain Mapp 27(9):736–746CrossRefPubMedPubMedCentral
go back to reference Arbabshirani MR, Calhoun VD (2011) Functional network connectivity during rest and task: comparison of healthy controls and schizophrenic patients. Conf Proc IEEE Eng Med Biol Soc 2011:4418–4421 Arbabshirani MR, Calhoun VD (2011) Functional network connectivity during rest and task: comparison of healthy controls and schizophrenic patients. Conf Proc IEEE Eng Med Biol Soc 2011:4418–4421
go back to reference Arja SK, Feng Z, Chen Z, Caprihan A, Kiehl KA, Adali T, Calhoun VD (2009) Changes in fMRI magnitude data and phase data observed in block-design and event-related tasks. Neuroimage 59(4):3748–3761 Arja SK, Feng Z, Chen Z, Caprihan A, Kiehl KA, Adali T, Calhoun VD (2009) Changes in fMRI magnitude data and phase data observed in block-design and event-related tasks. Neuroimage 59(4):3748–3761
go back to reference Balla DZ, Sanchez-Panchuelo RM, Wharton SJ, Hagberg GE, Scheffler K, Francis ST, Bowtell R (2014) Functional quantitative susceptibility mapping (fQSM). Neuroimage 100:112–124CrossRefPubMed Balla DZ, Sanchez-Panchuelo RM, Wharton SJ, Hagberg GE, Scheffler K, Francis ST, Bowtell R (2014) Functional quantitative susceptibility mapping (fQSM). Neuroimage 100:112–124CrossRefPubMed
go back to reference Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457):1001–1013CrossRefPubMedPubMedCentral Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457):1001–1013CrossRefPubMedPubMedCentral
go back to reference Bianciardi M, van Gelderen P, Duyn JH (2014) Investigation of BOLD fMRI resonance frequency shifts and quantitative susceptibility changes at 7 T. Hum Brain Mapp 35(5):2191–2205CrossRefPubMed Bianciardi M, van Gelderen P, Duyn JH (2014) Investigation of BOLD fMRI resonance frequency shifts and quantitative susceptibility changes at 7 T. Hum Brain Mapp 35(5):2191–2205CrossRefPubMed
go back to reference Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198CrossRefPubMed Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198CrossRefPubMed
go back to reference Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14(3):140–151CrossRefPubMedPubMedCentral Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14(3):140–151CrossRefPubMedPubMedCentral
go back to reference Calhoun VD, Liu J, Adali T (2009) A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45(1 Suppl):S163–S172CrossRefPubMed Calhoun VD, Liu J, Adali T (2009) A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45(1 Suppl):S163–S172CrossRefPubMed
go back to reference Caliandro P, Reale G, Vecchio F, Iacovelli C, Miraglia F, Masi G, Rossini PM (2017) Defining a functional network homeostasis after stroke: EEG-based approach is complementary to functional MRI. Brain 140(12):e71CrossRefPubMed Caliandro P, Reale G, Vecchio F, Iacovelli C, Miraglia F, Masi G, Rossini PM (2017) Defining a functional network homeostasis after stroke: EEG-based approach is complementary to functional MRI. Brain 140(12):e71CrossRefPubMed
go back to reference Chen Z, Calhoun VD (2011) Two pitfalls of BOLD fMRI magnitude-based neuroimage analysis: non-negativity and edge effect. J Neurosci Methods 199(2):363–369CrossRefPubMedPubMedCentral Chen Z, Calhoun VD (2011) Two pitfalls of BOLD fMRI magnitude-based neuroimage analysis: non-negativity and edge effect. J Neurosci Methods 199(2):363–369CrossRefPubMedPubMedCentral
go back to reference Chen Z, Calhoun V (2013) Understanding the morphological mismatch between magnetic susceptibility source and T2* image. Magn Reson Insights 6:65–81PubMedPubMedCentral Chen Z, Calhoun V (2013) Understanding the morphological mismatch between magnetic susceptibility source and T2* image. Magn Reson Insights 6:65–81PubMedPubMedCentral
go back to reference Chen Z, Calhoun V (2015) Nonlinear magnitude and linear phase behaviors of T2* imaging: theoretical approximation and Monte Carlo simulation. Magn Reson Imaging 33(4):390–400CrossRefPubMed Chen Z, Calhoun V (2015) Nonlinear magnitude and linear phase behaviors of T2* imaging: theoretical approximation and Monte Carlo simulation. Magn Reson Imaging 33(4):390–400CrossRefPubMed
go back to reference Chen Z, Calhoun V (2016) T2* phase imaging and processing for magnetic susceptibility mapping. Biomed Phys Eng Express 2:025015CrossRef Chen Z, Calhoun V (2016) T2* phase imaging and processing for magnetic susceptibility mapping. Biomed Phys Eng Express 2:025015CrossRef
go back to reference Chen Z, Caprihan A, Damaraju E, Rachakonda S, Calhoun V (2018a) Functional brain connectivity in resting-state fMRI using phase and magnitude data. J Neurosci Methods 293:299–309CrossRefPubMed Chen Z, Caprihan A, Damaraju E, Rachakonda S, Calhoun V (2018a) Functional brain connectivity in resting-state fMRI using phase and magnitude data. J Neurosci Methods 293:299–309CrossRefPubMed
go back to reference Dagher J, Nael K (2017) MR phase imaging with bipolar acquisition. NMR Biomed 34(4):e3523CrossRef Dagher J, Nael K (2017) MR phase imaging with bipolar acquisition. NMR Biomed 34(4):e3523CrossRef
go back to reference Damoiseaux JS (2017) Effects of aging on functional and structural brain connectivity. Neuroimage 160:32–40CrossRefPubMed Damoiseaux JS (2017) Effects of aging on functional and structural brain connectivity. Neuroimage 160:32–40CrossRefPubMed
go back to reference Dodel S, Herrmann JM, Geisel T (2002) Functional connectivity by cross-correlation clustering. Neurocomputing 44–46:1065–1070CrossRef Dodel S, Herrmann JM, Geisel T (2002) Functional connectivity by cross-correlation clustering. Neurocomputing 44–46:1065–1070CrossRef
go back to reference Du Y, Pearlson GD, Liu J, Sui J, Yu Q, He H, Castro E, Calhoun VD (2015) A group ICA based framework for evaluating resting fMRI markers when disease categories are unclear: application to schizophrenia, bipolar, and schizoaffective disorders. Neuroimage 122:272–280CrossRefPubMed Du Y, Pearlson GD, Liu J, Sui J, Yu Q, He H, Castro E, Calhoun VD (2015) A group ICA based framework for evaluating resting fMRI markers when disease categories are unclear: application to schizophrenia, bipolar, and schizoaffective disorders. Neuroimage 122:272–280CrossRefPubMed
go back to reference Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD (2011) Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp 32(12):2075–2095CrossRefPubMed Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD (2011) Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp 32(12):2075–2095CrossRefPubMed
go back to reference Feng Z, Caprihan A, Blagoev KB, Calhoun VD (2009) Biophysical modeling of phase changes in BOLD fMRI. Neuroimage 47(2):540–548CrossRefPubMed Feng Z, Caprihan A, Blagoev KB, Calhoun VD (2009) Biophysical modeling of phase changes in BOLD fMRI. Neuroimage 47(2):540–548CrossRefPubMed
go back to reference Ferreira LK, Regina AC, Kovacevic N, Martin Mda G, Santos PP, Carneiro Cde G, Kerr DS, Amaro E Jr, McIntosh AR, Busatto GF (2016) Aging effects on whole-brain functional connectivity in adults free of cognitive and psychiatric disorders. Cereb Cortex 26(9):3851–3865CrossRefPubMed Ferreira LK, Regina AC, Kovacevic N, Martin Mda G, Santos PP, Carneiro Cde G, Kerr DS, Amaro E Jr, McIntosh AR, Busatto GF (2016) Aging effects on whole-brain functional connectivity in adults free of cognitive and psychiatric disorders. Cereb Cortex 26(9):3851–3865CrossRefPubMed
go back to reference Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678CrossRefPubMedPubMedCentral Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678CrossRefPubMedPubMedCentral
go back to reference Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101(6):3270–3283CrossRefPubMedPubMedCentral Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101(6):3270–3283CrossRefPubMedPubMedCentral
go back to reference Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878CrossRefPubMed Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878CrossRefPubMed
go back to reference Guo Y, Pagnoni G (2008) A unified framework for group independent component analysis for multi-subject fMRI data. Neuroimage 42(3):1078–1093CrossRefPubMed Guo Y, Pagnoni G (2008) A unified framework for group independent component analysis for multi-subject fMRI data. Neuroimage 42(3):1078–1093CrossRefPubMed
go back to reference Jafri MJ, Pearlson GD, Stevens M, Calhoun VD (2008) A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 39(4):1666–1681CrossRefPubMed Jafri MJ, Pearlson GD, Stevens M, Calhoun VD (2008) A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 39(4):1666–1681CrossRefPubMed
go back to reference Kee Y, Liu Z, Zhou L, Dimov A, Cho J, de Rochefort L, Seo JK, Wang Y (2017) Quantitative susceptibility mapping (QSM) algorithms: mathematical rationale and computational implementations. IEEE Trans Biomed Eng 64(11):2531–2545CrossRefPubMed Kee Y, Liu Z, Zhou L, Dimov A, Cho J, de Rochefort L, Seo JK, Wang Y (2017) Quantitative susceptibility mapping (QSM) algorithms: mathematical rationale and computational implementations. IEEE Trans Biomed Eng 64(11):2531–2545CrossRefPubMed
go back to reference Lewis LD, Setsompop K, Rosen BR, Polimeni JR (2016) Fast fMRI can detect oscillatory neural activity in humans. Proc Natl Acad Sci USA 113(43):E6679–E6685CrossRefPubMedPubMedCentral Lewis LD, Setsompop K, Rosen BR, Polimeni JR (2016) Fast fMRI can detect oscillatory neural activity in humans. Proc Natl Acad Sci USA 113(43):E6679–E6685CrossRefPubMedPubMedCentral
go back to reference Li YO, Adali T, Calhoun VD (2007) A feature-selective independent component analysis method for functional MRI. Int J Biomed Imaging 2007:15635PubMedPubMedCentral Li YO, Adali T, Calhoun VD (2007) A feature-selective independent component analysis method for functional MRI. Int J Biomed Imaging 2007:15635PubMedPubMedCentral
go back to reference Litwin-Kumar A, Doiron B (2012) Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat Neurosci 15(11):1498–1505CrossRefPubMedPubMedCentral Litwin-Kumar A, Doiron B (2012) Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat Neurosci 15(11):1498–1505CrossRefPubMedPubMedCentral
go back to reference Liu Y, Huang L, Li M, Zhou Z, Hu D (2015) Anticorrelated networks in resting-state fMRI-BOLD data. Bio Med Mater Eng 26(Suppl 1):S1201–S1211CrossRef Liu Y, Huang L, Li M, Zhou Z, Hu D (2015) Anticorrelated networks in resting-state fMRI-BOLD data. Bio Med Mater Eng 26(Suppl 1):S1201–S1211CrossRef
go back to reference Marino J, Schummers J, Lyon DC, Schwabe L, Beck O, Wiesing P, Obermayer K, Sur M (2005) Invariant computations in local cortical networks with balanced excitation and inhibition. Nat Neurosci 8(2):194–201CrossRefPubMed Marino J, Schummers J, Lyon DC, Schwabe L, Beck O, Wiesing P, Obermayer K, Sur M (2005) Invariant computations in local cortical networks with balanced excitation and inhibition. Nat Neurosci 8(2):194–201CrossRefPubMed
go back to reference McKeown MJ, Hansen LK, Sejnowsk TJ (2003) Independent component analysis of functional MRI: what is signal and what is noise? Curr Opin Neurobiol 13(5):620–629CrossRefPubMedPubMedCentral McKeown MJ, Hansen LK, Sejnowsk TJ (2003) Independent component analysis of functional MRI: what is signal and what is noise? Curr Opin Neurobiol 13(5):620–629CrossRefPubMedPubMedCentral
go back to reference Menon RS (2002) Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI. Magn Reson Med 47(1):1–9CrossRefPubMed Menon RS (2002) Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI. Magn Reson Med 47(1):1–9CrossRefPubMed
go back to reference Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44(3):893–905CrossRefPubMed Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44(3):893–905CrossRefPubMed
go back to reference Ozbay PS, Warnock G, Rossi C, Kuhn F, Akin B, Pruessmann KP, Nanz D (2016) Probing neuronal activation by functional quantitative susceptibility mapping under a visual paradigm: a group level comparison with BOLD fMRI and PET. Neuroimage 137:52–60CrossRefPubMed Ozbay PS, Warnock G, Rossi C, Kuhn F, Akin B, Pruessmann KP, Nanz D (2016) Probing neuronal activation by functional quantitative susceptibility mapping under a visual paradigm: a group level comparison with BOLD fMRI and PET. Neuroimage 137:52–60CrossRefPubMed
go back to reference Robinson SD, Dymerska B, Bogner W, Barth M, Zaric O, Goluch S, Grabner G, Deligianni X, Bieri O, Trattnig S (2015) Combining phase images from array coils using a short echo time reference scan (COMPOSER). Magn Reson Med 77:318–327CrossRefPubMedPubMedCentral Robinson SD, Dymerska B, Bogner W, Barth M, Zaric O, Goluch S, Grabner G, Deligianni X, Bieri O, Trattnig S (2015) Combining phase images from array coils using a short echo time reference scan (COMPOSER). Magn Reson Med 77:318–327CrossRefPubMedPubMedCentral
go back to reference Robinson SD, Bredies K, Khabipova D, Dymerska B, Marques JP, Schweser F (2017a) An illustrated comparison of processing methods for MR phase imaging and QSM: combining array coil signals and phase unwrapping. NMR Biomed 30(4):e3601CrossRef Robinson SD, Bredies K, Khabipova D, Dymerska B, Marques JP, Schweser F (2017a) An illustrated comparison of processing methods for MR phase imaging and QSM: combining array coil signals and phase unwrapping. NMR Biomed 30(4):e3601CrossRef
go back to reference Robinson SD, Dymerska B, Bogner W, Barth M, Zaric O, Goluch S, Grabner G, Deligianni X, Bieri O, Trattnig S (2017b) Combining phase images from array coils using a short echo time reference scan (COMPOSER). Magn Reson Med 77(1):318–327CrossRefPubMed Robinson SD, Dymerska B, Bogner W, Barth M, Zaric O, Goluch S, Grabner G, Deligianni X, Bieri O, Trattnig S (2017b) Combining phase images from array coils using a short echo time reference scan (COMPOSER). Magn Reson Med 77(1):318–327CrossRefPubMed
go back to reference Rowe DB (2005) Modeling both the magnitude and phase of complex-valued fMRI data. Neuroimage 25(4):1310–1324CrossRefPubMed Rowe DB (2005) Modeling both the magnitude and phase of complex-valued fMRI data. Neuroimage 25(4):1310–1324CrossRefPubMed
go back to reference Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069CrossRefPubMed Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069CrossRefPubMed
go back to reference Schweser F, Deistung A, Reichenbach J (2016) Foundations of MRI phase imaging and processing for quantitative susceptibility mapping (QSM). Z Med Phys 26(1):6–34CrossRefPubMed Schweser F, Deistung A, Reichenbach J (2016) Foundations of MRI phase imaging and processing for quantitative susceptibility mapping (QSM). Z Med Phys 26(1):6–34CrossRefPubMed
go back to reference Wu JT, Wu HZ, Yan CG, Chen WX, Zhang HY, He Y, Yang HS (2011) Aging-related changes in the default mode network and its anti-correlated networks: a resting-state fMRI study. Neurosci Lett 504(1):62–67CrossRefPubMed Wu JT, Wu HZ, Yan CG, Chen WX, Zhang HY, He Y, Yang HS (2011) Aging-related changes in the default mode network and its anti-correlated networks: a resting-state fMRI study. Neurosci Lett 504(1):62–67CrossRefPubMed
Metadata
Title
Phase fMRI informs whole-brain function connectivity balance across lifespan with connection-specific aging effects during the resting state
Authors
Zikuan Chen
Qing Zhou
Vince Calhoun
Publication date
01-05-2019
Publisher
Springer Berlin Heidelberg
Keyword
Pica Syndrome
Published in
Brain Structure and Function / Issue 4/2019
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-019-01850-8

Other articles of this Issue 4/2019

Brain Structure and Function 4/2019 Go to the issue