Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 1/2013

01-01-2013 | Neuro-ophthalmology

Physiological evidence for impairment in autosomal dominant optic atrophy at the pre-ganglion level

Authors: Aldina Reis, Catarina Mateus, Teresa Viegas, Ralph Florijn, Arthur Bergen, Eduardo Silva, Miguel Castelo-Branco

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 1/2013

Login to get access

Abstract

Background

Functional studies in patients with autosomal dominant optic atrophy (ADOA) are usually confined to analysis of physiological and clinical impact at the ganglion cell (GG) and post GC levels. Here we aimed to investigate the impact of the disease at a pre-GC level and its correlation with GC/post-GC related measures.

Methods

Visual function was assessed in a population of 22 subjects (44 eyes) from 13 families with ADOA submitted to OPA1 mutation analysis. Quantitative psychophysical methods were used to assess konio and parvocellular chromatic pathways (Cambridge Colour Test) and distinct achromatic spatial frequency channels (Metropsis Contrast Sensitivity Test). Preganglionic and GC measures were assessed with the Multifocal Electroretinogram (mfERG) and Pattern Electroretinogram (PERG) respectively. Global Pattern and Multifocal VEP (visual evoked potentials) were used to assess retinocortical processing, in order to characterize impaired processing at the post GC level. Perimetric sensitivity, retinal and ganglion cell nerve fibre layer (RNFL) thickness measurements were also obtained.

Results

Chromatic thresholds were significantly increased for protan, deutan and tritan axes (p < <0.001 for all comparisons) and achromatic contrast sensitivity (CS) was reduced for all studied six spatial frequency channels (p < <0.001). We observed significant decreases in peripapillary (p ≤ 0.0008), macular (ring2: p = 0.02; ring 3: p < 0.0001) RNFL, as well as in overall retinal thickness (p < 0.0001 in all regions, except the central one). Interestingly, we found significant decreases in pre-ganglionic multifocal ERG response amplitudes (P1-wave: p ≤ 0.005) that were correlated with retinal thickness (ring 2: r = 0.512; p = 0.026/ring 3: r = 0.583; p = 0.011) and visual acuity (r = 0.458; p = 0.03, central ring 1).
Reductions in GC and optic nerve responses amplitude (PERG: p < 0.0001, P50 and N95 components; Pattern VEP: p < 0.0001, P100) were accompanied by abnormalities of the MfVEP, primarily in central locations (ring 1: p = 0.0007; ring 2: p = 0.012).

Conclusions

In the ADOA model of ganglion cell damage, parvo-, konio- and magnocellular pathways are concomitantly affected. Structural changes and physiological impairment also occurs at a preganglionic level, suggesting a retrograde damage mechanism with a significant clinical impact on visual function, as shown by correlation analysis. Cortical impairment is only moderately explained by the retinal phenotype, suggesting additional damage mechanisms at the cortical level.
Literature
1.
go back to reference Kjer B, Eiberg H, Kjer P, Rosenberg T (1996) Dominant optic atrophy (OPA1) mapped to chromosome 3q region, II: clinical and epidemiological aspects. Acta Ophthalmol Scand 74:3–7PubMedCrossRef Kjer B, Eiberg H, Kjer P, Rosenberg T (1996) Dominant optic atrophy (OPA1) mapped to chromosome 3q region, II: clinical and epidemiological aspects. Acta Ophthalmol Scand 74:3–7PubMedCrossRef
2.
go back to reference Kjer P (1959) Infantile optic atrophy with dominant mode of inheritance: a clinical and genetic study of 19 Danish families. Acta Opthalmol 164(54):1–147 Kjer P (1959) Infantile optic atrophy with dominant mode of inheritance: a clinical and genetic study of 19 Danish families. Acta Opthalmol 164(54):1–147
3.
go back to reference Batten B (1896) A family suffering from hereditary optic atrophy. Trans Ophthalmol Soc U K 16:125 Batten B (1896) A family suffering from hereditary optic atrophy. Trans Ophthalmol Soc U K 16:125
4.
go back to reference Eiberg H, Kjer P, Rosenberg T (1994) Dominant optic atrophy (OPA1) mapped to chromosome 3q region, I: linkage analysis. Hum Mol Genet 3:977–980PubMedCrossRef Eiberg H, Kjer P, Rosenberg T (1994) Dominant optic atrophy (OPA1) mapped to chromosome 3q region, I: linkage analysis. Hum Mol Genet 3:977–980PubMedCrossRef
5.
go back to reference Bonneau D, Souied E, Gerber S, Rozet JM, D’Haens E, Journel H, Plessis G, Weissenbach J, Munnich A, Kaplan J (1995) No evidence of genetic heterogeneity in dominant optic atrophy. J Med Genet 32:951–953PubMedCrossRef Bonneau D, Souied E, Gerber S, Rozet JM, D’Haens E, Journel H, Plessis G, Weissenbach J, Munnich A, Kaplan J (1995) No evidence of genetic heterogeneity in dominant optic atrophy. J Med Genet 32:951–953PubMedCrossRef
6.
go back to reference Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS, Wissinger B (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26(2):211–215PubMedCrossRef Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS, Wissinger B (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26(2):211–215PubMedCrossRef
7.
go back to reference Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, Hamel CP (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26(2):207–210PubMedCrossRef Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, Hamel CP (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26(2):207–210PubMedCrossRef
8.
go back to reference Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF (2009) Inherited mitochondrial optic neuropathies. J Med Genet 46:145–158PubMedCrossRef Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF (2009) Inherited mitochondrial optic neuropathies. J Med Genet 46:145–158PubMedCrossRef
9.
go back to reference Newman NJ (2005) Hereditary optic neuropathies: from the mitochondria to the optic nerve. Am J Ophthalmol 140(3):517–523PubMed Newman NJ (2005) Hereditary optic neuropathies: from the mitochondria to the optic nerve. Am J Ophthalmol 140(3):517–523PubMed
10.
go back to reference Votruba M, Aijaz S, Moore AT (2003) A review of primary hereditary optic neuropathies. J Inherit Metab Dis 26:209–227PubMedCrossRef Votruba M, Aijaz S, Moore AT (2003) A review of primary hereditary optic neuropathies. J Inherit Metab Dis 26:209–227PubMedCrossRef
11.
go back to reference Elliot MD, Traboulsi EI, Maumenee IH (1993) Visual prognosis in autosomal dominant optic atrophy (Kjer type). Am J Ophthalmol 115:360–367 Elliot MD, Traboulsi EI, Maumenee IH (1993) Visual prognosis in autosomal dominant optic atrophy (Kjer type). Am J Ophthalmol 115:360–367
12.
go back to reference Votruba M, Fitzke FW, Holder GE, Carter A, Bhattacharya SS, Moore AT (1998) Clinical features in affected individuals from 21 pedigrees with dominant optic atrophy. Arch Ophthalmol 116:351–358PubMed Votruba M, Fitzke FW, Holder GE, Carter A, Bhattacharya SS, Moore AT (1998) Clinical features in affected individuals from 21 pedigrees with dominant optic atrophy. Arch Ophthalmol 116:351–358PubMed
13.
go back to reference Kline LB, Glaser JS (1979) Dominant optic atrophy. The clinical profile. Arch Ophthalmol 97(9):1680–1686PubMedCrossRef Kline LB, Glaser JS (1979) Dominant optic atrophy. The clinical profile. Arch Ophthalmol 97(9):1680–1686PubMedCrossRef
14.
go back to reference Kok-van Alphen CC (1970) Four families with the dominant infantile from of optic nerve atrophy. Acta Ophthalmol 48:905–916 Kok-van Alphen CC (1970) Four families with the dominant infantile from of optic nerve atrophy. Acta Ophthalmol 48:905–916
15.
go back to reference Holder GE (1987) Abnormalities of the pattern ERG in optic nerve lesions: changes specific for proximal retinal dysfunction. In: Barber C, Blum T (eds) Evoked potentials III. Butterworths, London, pp 221–224 Holder GE (1987) Abnormalities of the pattern ERG in optic nerve lesions: changes specific for proximal retinal dysfunction. In: Barber C, Blum T (eds) Evoked potentials III. Butterworths, London, pp 221–224
16.
go back to reference Holder GE, Votruba M, Carter AC, Bhattacharya SS, Fitzke FW, Moore AT (1999) Electrophysiological findings in dominant optic atrophy (DOA) linking to the OPA1 locus on chromosome 3q 28-qter. Doc Ophthalmol 95(3–4):217–228 Holder GE, Votruba M, Carter AC, Bhattacharya SS, Fitzke FW, Moore AT (1999) Electrophysiological findings in dominant optic atrophy (DOA) linking to the OPA1 locus on chromosome 3q 28-qter. Doc Ophthalmol 95(3–4):217–228
17.
go back to reference Booij JC, Bakker A, Kulumbetova J, Moutaoukil Y, Smeets B, Verheij J, Kroes HY, Klaver CC, van Schooneveld M, Bergen AA, Florijn RJ (2011) Simultaneous mutation detection in 90 retinal disease genes in multiple patients using a custom-designed 300-kb retinal resequencing chip. Ophthalmology 118(1):160–167PubMedCrossRef Booij JC, Bakker A, Kulumbetova J, Moutaoukil Y, Smeets B, Verheij J, Kroes HY, Klaver CC, van Schooneveld M, Bergen AA, Florijn RJ (2011) Simultaneous mutation detection in 90 retinal disease genes in multiple patients using a custom-designed 300-kb retinal resequencing chip. Ophthalmology 118(1):160–167PubMedCrossRef
18.
go back to reference Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG (1995) Optical coherence tomography of the human retina. Arch Ophtahlmol 113:325–332CrossRef Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG (1995) Optical coherence tomography of the human retina. Arch Ophtahlmol 113:325–332CrossRef
19.
go back to reference Zeimer R, Shaidi M, Mori M, Zou S, Asrani S (1996) A new method for rapid mapping of the retinal thickness at the posterior pole. Invest Ophthalmol Vis Sci 37:1994–2001PubMed Zeimer R, Shaidi M, Mori M, Zou S, Asrani S (1996) A new method for rapid mapping of the retinal thickness at the posterior pole. Invest Ophthalmol Vis Sci 37:1994–2001PubMed
20.
go back to reference Kiernan DF, Mieler WF, Hariprasad SM (2010) Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol 149:18–31PubMedCrossRef Kiernan DF, Mieler WF, Hariprasad SM (2010) Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol 149:18–31PubMedCrossRef
21.
go back to reference Henderson AP, Trip SA, Schlottmann PG, Altmann DR, Garway-Heath DF, Plant GT, Miller DH (2008) An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography. Brain 131:277–287PubMed Henderson AP, Trip SA, Schlottmann PG, Altmann DR, Garway-Heath DF, Plant GT, Miller DH (2008) An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography. Brain 131:277–287PubMed
22.
go back to reference Regan BC, Reffin JP, Mollon JD (1994) Luminance noise and the rapid determination of discrimination ellipses in colour deficiency. Vis Res 34:1279–1299PubMedCrossRef Regan BC, Reffin JP, Mollon JD (1994) Luminance noise and the rapid determination of discrimination ellipses in colour deficiency. Vis Res 34:1279–1299PubMedCrossRef
23.
go back to reference Campos SH, Forjaz V, Kozak LR, Silva E, Castelo-Branco M (2005) Quantitative phenotyping of chromatic dysfunction in Best macular distrophy. Arch Ophthalmol 123:944–949PubMedCrossRef Campos SH, Forjaz V, Kozak LR, Silva E, Castelo-Branco M (2005) Quantitative phenotyping of chromatic dysfunction in Best macular distrophy. Arch Ophthalmol 123:944–949PubMedCrossRef
24.
go back to reference Castelo-Branco M, Faria P, Forjaz V, Kozak LR, Azevedo H (2004) Simultaneous comparison of relative damage to chromatic pathways in ocular hypertension and glaucoma: correlation with clinical measures. Invest Ophthalmol Vis Sci 45:499–505PubMedCrossRef Castelo-Branco M, Faria P, Forjaz V, Kozak LR, Azevedo H (2004) Simultaneous comparison of relative damage to chromatic pathways in ocular hypertension and glaucoma: correlation with clinical measures. Invest Ophthalmol Vis Sci 45:499–505PubMedCrossRef
25.
go back to reference Morales J, Weitzmann ML, González de la Rosa M (2000) Comparison between tendency-oriented perimetry (TOP) and Octopus threshold perimetry. Ophthalmology 107:134–142PubMedCrossRef Morales J, Weitzmann ML, González de la Rosa M (2000) Comparison between tendency-oriented perimetry (TOP) and Octopus threshold perimetry. Ophthalmology 107:134–142PubMedCrossRef
26.
go back to reference Holder GE, Brigell MG, Hawlina M, Meigen T, Vaegan, Bach M, International Society for Clinical Electrophysiology of Vision (2007) ISCEV standard for clinical pattern electroretinography—2007 update. Doc Ophthalmol 114:111–116PubMedCrossRef Holder GE, Brigell MG, Hawlina M, Meigen T, Vaegan, Bach M, International Society for Clinical Electrophysiology of Vision (2007) ISCEV standard for clinical pattern electroretinography—2007 update. Doc Ophthalmol 114:111–116PubMedCrossRef
27.
go back to reference Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan (2010) ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 120:111–119PubMedCrossRef Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan (2010) ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 120:111–119PubMedCrossRef
28.
go back to reference Hood D, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Marmor MF, McCulloch DL, Palmowski-Wolfe AM, International Society for Clinical Electrophysiology of Vision (2011) ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 Edition). Doc Ophthalmol 124:1–13PubMedCrossRef Hood D, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Marmor MF, McCulloch DL, Palmowski-Wolfe AM, International Society for Clinical Electrophysiology of Vision (2011) ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 Edition). Doc Ophthalmol 124:1–13PubMedCrossRef
29.
go back to reference Hood DC, Zhang X, Hong JE, Chen CS (2002) Quantifying the benefits of additional channels of multifocal VEP recording. Doc Ophthalmol 104:303–320PubMedCrossRef Hood DC, Zhang X, Hong JE, Chen CS (2002) Quantifying the benefits of additional channels of multifocal VEP recording. Doc Ophthalmol 104:303–320PubMedCrossRef
30.
31.
go back to reference Yu-Wai-Man P, Shankar SP, Biousse V, Miller NR, Bean LJ, Coffee B, Hegde M, Newman NJ (2011) Genetic screening for OPA1 and OPA3 mutations in patients with suspected inherited optic neuropathies. Ophthalmology 118(3):558–563PubMedCrossRef Yu-Wai-Man P, Shankar SP, Biousse V, Miller NR, Bean LJ, Coffee B, Hegde M, Newman NJ (2011) Genetic screening for OPA1 and OPA3 mutations in patients with suspected inherited optic neuropathies. Ophthalmology 118(3):558–563PubMedCrossRef
32.
go back to reference Delettre C, Griffoin JM, Kaplan J, Dollfus H, Lorenz B, Faivre L, Lenaers G, Belenguer P, Hamel CP (2001) Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet 109(6): 584–591 PubMedCrossRef Delettre C, Griffoin JM, Kaplan J, Dollfus H, Lorenz B, Faivre L, Lenaers G, Belenguer P, Hamel CP (2001) Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet 109(6): 584–591 PubMedCrossRef
33.
go back to reference Carelli V, Ross-Cisneros FN, Sadun AA (2002) Optic nerve degeneration and mitochondrial dysfunction: genetic and acquired optic neuropathies. Neurochem Int 40(6):573–584PubMedCrossRef Carelli V, Ross-Cisneros FN, Sadun AA (2002) Optic nerve degeneration and mitochondrial dysfunction: genetic and acquired optic neuropathies. Neurochem Int 40(6):573–584PubMedCrossRef
34.
go back to reference Pesch UE, Fries JE, Bette S, Kalbacher H, Wissinger B, Alexander C, Kohler K (2004) OPA1, the disease gene for autosomal dominant optic atrophy, is specifically expressed in ganglion cells and intrinsic neurons of the retina. Invest Ophthalmol Vis Sci 45(11):4217–4225PubMedCrossRef Pesch UE, Fries JE, Bette S, Kalbacher H, Wissinger B, Alexander C, Kohler K (2004) OPA1, the disease gene for autosomal dominant optic atrophy, is specifically expressed in ganglion cells and intrinsic neurons of the retina. Invest Ophthalmol Vis Sci 45(11):4217–4225PubMedCrossRef
35.
go back to reference Carelli V, Ross-Cisneros FN, Sadun AA (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 23(1):53–89PubMedCrossRef Carelli V, Ross-Cisneros FN, Sadun AA (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 23(1):53–89PubMedCrossRef
36.
go back to reference Johnston PB, Gaster RN, Smith VC, Tripathi RC (1979) A clinicopathological study of autosomal dominant optic atrophy. Am J Ophthalmol 88:868–875PubMed Johnston PB, Gaster RN, Smith VC, Tripathi RC (1979) A clinicopathological study of autosomal dominant optic atrophy. Am J Ophthalmol 88:868–875PubMed
37.
go back to reference Kjer P, Jensen OA, Klinken L (1983) Histopathology of eye, optic nerve and brain in a case of dominant optic atrophy. Acta Opthalmol 61:300–312CrossRef Kjer P, Jensen OA, Klinken L (1983) Histopathology of eye, optic nerve and brain in a case of dominant optic atrophy. Acta Opthalmol 61:300–312CrossRef
38.
go back to reference Yu-Wai-Man P, Bailie M, Atawan A, Chinnery PF, Griffiths PG (2011) Pattern of retinal ganglion cell loss in dominant optic atrophy due to OPA1 mutations. Eye 25(5):596–602PubMedCrossRef Yu-Wai-Man P, Bailie M, Atawan A, Chinnery PF, Griffiths PG (2011) Pattern of retinal ganglion cell loss in dominant optic atrophy due to OPA1 mutations. Eye 25(5):596–602PubMedCrossRef
39.
go back to reference Barboni P, Savini G, Parisi V, Carbonelli M, La Morgia C, Maresca A, Sadun F, De Negri AM, Carta A, Sadun AA, Carelli V (2011) Retinal nerve fiber layer thickness in dominant optic atrophy measurements by optical coherence tomography and correlation with age. Ophthalmology 118(10):2076–2080PubMedCrossRef Barboni P, Savini G, Parisi V, Carbonelli M, La Morgia C, Maresca A, Sadun F, De Negri AM, Carta A, Sadun AA, Carelli V (2011) Retinal nerve fiber layer thickness in dominant optic atrophy measurements by optical coherence tomography and correlation with age. Ophthalmology 118(10):2076–2080PubMedCrossRef
40.
go back to reference Holder GE (2001) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20(4):531–561PubMedCrossRef Holder GE (2001) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20(4):531–561PubMedCrossRef
41.
42.
go back to reference Holder GE, Gale RP, Acheson JF, Robson AG (2009) Electrodiagnostic assessment in optic nerve disease. Curr Opin Neurol 22(1):3–10PubMedCrossRef Holder GE, Gale RP, Acheson JF, Robson AG (2009) Electrodiagnostic assessment in optic nerve disease. Curr Opin Neurol 22(1):3–10PubMedCrossRef
43.
go back to reference Wescott MC, Fitzke FW, Crabb DP, Hitchings RA (1999) Characteristics of frequency-of-seeing curves for a motion stimulus in glaucoma eyes, glaucoma suspect eyes, and normal eyes. Vis Res 39:631–639CrossRef Wescott MC, Fitzke FW, Crabb DP, Hitchings RA (1999) Characteristics of frequency-of-seeing curves for a motion stimulus in glaucoma eyes, glaucoma suspect eyes, and normal eyes. Vis Res 39:631–639CrossRef
44.
go back to reference Reis A, Mateus C, Macário MC, de Abreu JR, Castelo-Branco M (2011) Independent patterns of damage to retinocortical pathways in multiple sclerosis without a previous episode of optic neuritis. J Neurol 258:1695–1704PubMedCrossRef Reis A, Mateus C, Macário MC, de Abreu JR, Castelo-Branco M (2011) Independent patterns of damage to retinocortical pathways in multiple sclerosis without a previous episode of optic neuritis. J Neurol 258:1695–1704PubMedCrossRef
45.
go back to reference Silva MF, Maia-Lopes S, Mateus C, Guerreiro M, Sampaio J, Faria P, Castelo-Branco M (2008) Retinal and cortical patterns of spatial anisotropy in contrast sensitivity tasks. Vis Res 48:127–135PubMedCrossRef Silva MF, Maia-Lopes S, Mateus C, Guerreiro M, Sampaio J, Faria P, Castelo-Branco M (2008) Retinal and cortical patterns of spatial anisotropy in contrast sensitivity tasks. Vis Res 48:127–135PubMedCrossRef
46.
go back to reference Aijaz S, Erskine L, Jeffery G, Bhattacharya SS, Votruba M (2004) Developmental expression profile of the optic atrophy gene product: OPA1 is not localized exclusively in the mammalian retinal ganglion cell layer. Invest Ophthalmol Vis Sci 45:1667–1673PubMedCrossRef Aijaz S, Erskine L, Jeffery G, Bhattacharya SS, Votruba M (2004) Developmental expression profile of the optic atrophy gene product: OPA1 is not localized exclusively in the mammalian retinal ganglion cell layer. Invest Ophthalmol Vis Sci 45:1667–1673PubMedCrossRef
47.
go back to reference Ito Y, Nakamura M, Yamakoshi T, Lin J, Yatsuya H, Terasaki H (2007) Reduction of inner retinal thickness in patients with autosomal dominant optic atrophy associated with OPA1 mutations. Invest Ophthalmol Vis Sci 48(9):4079–4086PubMedCrossRef Ito Y, Nakamura M, Yamakoshi T, Lin J, Yatsuya H, Terasaki H (2007) Reduction of inner retinal thickness in patients with autosomal dominant optic atrophy associated with OPA1 mutations. Invest Ophthalmol Vis Sci 48(9):4079–4086PubMedCrossRef
48.
go back to reference Milea D, Sander B, Wegener M, Jensen H, Kjer B, Jørgensen TM, Lund-Andersen H, Larsen M (2010) Axonal loss occurs early in dominant optic atrophy. Acta Ophthalmol 88(3):342–346PubMed Milea D, Sander B, Wegener M, Jensen H, Kjer B, Jørgensen TM, Lund-Andersen H, Larsen M (2010) Axonal loss occurs early in dominant optic atrophy. Acta Ophthalmol 88(3):342–346PubMed
Metadata
Title
Physiological evidence for impairment in autosomal dominant optic atrophy at the pre-ganglion level
Authors
Aldina Reis
Catarina Mateus
Teresa Viegas
Ralph Florijn
Arthur Bergen
Eduardo Silva
Miguel Castelo-Branco
Publication date
01-01-2013
Publisher
Springer-Verlag
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 1/2013
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-012-2112-7

Other articles of this Issue 1/2013

Graefe's Archive for Clinical and Experimental Ophthalmology 1/2013 Go to the issue