Skip to main content
Top
Published in: Critical Care 1/2021

Open Access 01-12-2021 | Physical Therapy | Research

A randomized controlled trial to determine whether beta-hydroxy-beta-methylbutyrate and/or eicosapentaenoic acid improves diaphragm and quadriceps strength in critically Ill mechanically ventilated patients

Authors: Gerald S. Supinski, Paul F. Netzel, Philip M. Westgate, Elizabeth A. Schroder, Lin Wang, Leigh Ann Callahan

Published in: Critical Care | Issue 1/2021

Login to get access

Abstract

Background

Intensive care unit acquired weakness is a serious problem, contributing to respiratory failure and reductions in ambulation. Currently, there is no pharmacological therapy for this condition. Studies indicate, however, that both beta-hydroxy-beta-methylbutyrate (HMB) and eicosapentaenoic acid (EPA) increase muscle function in patients with cancer and in older adults. The purpose of this study was to determine whether HMB and/or EPA administration would increase diaphragm and quadriceps strength in mechanically ventilated patients.

Methods

Studies were performed on 83 mechanically ventilated patients who were recruited from the Medical Intensive Care Units at the University of Kentucky. Diaphragm strength was assessed as the trans-diaphragmatic pressure generated by supramaximal magnetic phrenic nerve stimulation (PdiTw). Quadriceps strength was assessed as leg force generated by supramaximal magnetic femoral nerve stimulation (QuadTw). Diaphragm and quadriceps thickness were assessed by ultrasound. Baseline measurements of muscle strength and size were performed, and patients were then randomized to one of four treatment groups (placebo, HMB 3 gm/day, EPA 2 gm/day and HMB plus EPA). Strength and size measurements were repeated 11 days after study entry. ANCOVA statistical testing was used to compare variables across the four experimental groups.

Results

Treatments failed to increase the strength and thickness of either the diaphragm or quadriceps when compared to placebo. In addition, treatments also failed to decrease the duration of mechanical ventilation after study entry.

Conclusions

These results indicate that a 10-day course of HMB and/or EPA does not improve skeletal muscle strength in critically ill mechanically ventilated patients. These findings also confirm previous reports that diaphragm and leg strength in these patients are profoundly low. Additional studies will be needed to examine the effects of other anabolic agents and innovative forms of physical therapy.
Trial registration: ClinicalTrials.gov, NCT01270516. Registered 5 January 2011, https://​clinicaltrials.​gov/​ct2/​show/​NCT01270516?​term=​Supinski&​draw=​2&​rank=​4.
Appendix
Available only for authorised users
Literature
1.
go back to reference Supinski GS, Callahan LA. Diaphragm weakness in mechanically ventilated critically ill patients. Crit Care. 2013;17(3):R120.CrossRef Supinski GS, Callahan LA. Diaphragm weakness in mechanically ventilated critically ill patients. Crit Care. 2013;17(3):R120.CrossRef
2.
go back to reference Supinski GS, Westgate P, Callahan LA. Correlation of maximal inspiratory pressure to transdiaphragmatic twitch pressure in intensive care unit patients. Crit Care. 2016;20:77.CrossRef Supinski GS, Westgate P, Callahan LA. Correlation of maximal inspiratory pressure to transdiaphragmatic twitch pressure in intensive care unit patients. Crit Care. 2016;20:77.CrossRef
3.
go back to reference Laghi F, Cattapan SE, Jubran A, Parthasarathy S, Warshawsky P, Choi YS, et al. Is weaning failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med. 2003;167(2):120–7.CrossRef Laghi F, Cattapan SE, Jubran A, Parthasarathy S, Warshawsky P, Choi YS, et al. Is weaning failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med. 2003;167(2):120–7.CrossRef
4.
go back to reference Watson AC, Hughes PD, Louise Harris M, Hart N, Ware RJ, Wendon J, et al. Measurement of twitch transdiaphragmatic, esophageal, and endotracheal tube pressure with bilateral anterolateral magnetic phrenic nerve stimulation in patients in the intensive care unit. Crit Care Med. 2001;29(7):1325–31.CrossRef Watson AC, Hughes PD, Louise Harris M, Hart N, Ware RJ, Wendon J, et al. Measurement of twitch transdiaphragmatic, esophageal, and endotracheal tube pressure with bilateral anterolateral magnetic phrenic nerve stimulation in patients in the intensive care unit. Crit Care Med. 2001;29(7):1325–31.CrossRef
5.
go back to reference Supinski GS, Callahan LA. How important is diaphragm function as a determinant of outcomes for MICU patients in respiratory failure? Physiology. 2015;30(5):336–7.CrossRef Supinski GS, Callahan LA. How important is diaphragm function as a determinant of outcomes for MICU patients in respiratory failure? Physiology. 2015;30(5):336–7.CrossRef
6.
go back to reference Tobin MJ, Laghi F, Jubran A. Ventilatory failure, ventilator support, and ventilator weaning. Compr Physiol. 2012;2(4):2871–921.CrossRef Tobin MJ, Laghi F, Jubran A. Ventilatory failure, ventilator support, and ventilator weaning. Compr Physiol. 2012;2(4):2871–921.CrossRef
7.
go back to reference Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N, Al-Saidi F, et al. One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med. 2003;348(8):683–93.CrossRef Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N, Al-Saidi F, et al. One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med. 2003;348(8):683–93.CrossRef
8.
go back to reference Herridge MS, Tansey CM, Matte A, Tomlinson G, Diaz-Granados N, Cooper A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293–304.CrossRef Herridge MS, Tansey CM, Matte A, Tomlinson G, Diaz-Granados N, Cooper A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293–304.CrossRef
9.
go back to reference Investigators TS, Hodgson C, Bellomo R, Berney S, Bailey M, Buhr H, et al. Early mobilization and recovery in mechanically ventilated patients in the ICU: a bi-national, multi-centre, prospective cohort study. Crit Care. 2015;19:81.CrossRef Investigators TS, Hodgson C, Bellomo R, Berney S, Bailey M, Buhr H, et al. Early mobilization and recovery in mechanically ventilated patients in the ICU: a bi-national, multi-centre, prospective cohort study. Crit Care. 2015;19:81.CrossRef
10.
go back to reference Dos Santos C, Hussain SN, Mathur S, Picard M, Herridge M, Correa J, et al. Mechanisms of chronic muscle wasting and dysfunction after an intensive care unit stay. A pilot study. Am J Respir Crit Care Med. 2016;194(7):821–30.CrossRef Dos Santos C, Hussain SN, Mathur S, Picard M, Herridge M, Correa J, et al. Mechanisms of chronic muscle wasting and dysfunction after an intensive care unit stay. A pilot study. Am J Respir Crit Care Med. 2016;194(7):821–30.CrossRef
11.
go back to reference De Jonghe B, Sharshar T, Hopkinson N, Outin H. Paresis following mechanical ventilation. Curr Opin Crit Care. 2004;10(1):47–52.CrossRef De Jonghe B, Sharshar T, Hopkinson N, Outin H. Paresis following mechanical ventilation. Curr Opin Crit Care. 2004;10(1):47–52.CrossRef
12.
go back to reference De Jonghe B, Bastuji-Garin S, Durand MC, Malissin I, Rodrigues P, Cerf C, et al. Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit Care Med. 2007;35(9):2007–15.CrossRef De Jonghe B, Bastuji-Garin S, Durand MC, Malissin I, Rodrigues P, Cerf C, et al. Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit Care Med. 2007;35(9):2007–15.CrossRef
13.
go back to reference Bear DE, Langan A, Dimidi E, Wandrag L, Harridge SDR, Hart N, et al. Beta-hydroxy-beta-methylbutyrate and its impact on skeletal muscle mass and physical function in clinical practice: a systematic review and meta-analysis. Am J Clin Nutr. 2019;109(4):1119–32.CrossRef Bear DE, Langan A, Dimidi E, Wandrag L, Harridge SDR, Hart N, et al. Beta-hydroxy-beta-methylbutyrate and its impact on skeletal muscle mass and physical function in clinical practice: a systematic review and meta-analysis. Am J Clin Nutr. 2019;109(4):1119–32.CrossRef
14.
go back to reference Lalia AZ, Dasari S, Robinson MM, Abid H, Morse DM, Klaus KA, et al. Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults. Aging. 2017;9(4):1096–129.CrossRef Lalia AZ, Dasari S, Robinson MM, Abid H, Morse DM, Klaus KA, et al. Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults. Aging. 2017;9(4):1096–129.CrossRef
15.
go back to reference Mirza KA, Pereira SL, Voss AC, Tisdale MJ. Comparison of the anticatabolic effects of leucine and Ca-beta-hydroxy-beta-methylbutyrate in experimental models of cancer cachexia. Nutrition. 2014;30(7–8):807–13.CrossRef Mirza KA, Pereira SL, Voss AC, Tisdale MJ. Comparison of the anticatabolic effects of leucine and Ca-beta-hydroxy-beta-methylbutyrate in experimental models of cancer cachexia. Nutrition. 2014;30(7–8):807–13.CrossRef
16.
go back to reference Fearon KC, Von Meyenfeldt MF, Moses AG, Van Geenen R, Roy A, Gouma DJ, et al. Effect of a protein and energy dense N-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial. Gut. 2003;52(10):1479–86.CrossRef Fearon KC, Von Meyenfeldt MF, Moses AG, Van Geenen R, Roy A, Gouma DJ, et al. Effect of a protein and energy dense N-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial. Gut. 2003;52(10):1479–86.CrossRef
17.
go back to reference Kaczka P, Michalczyk MM, Jastrzab R, Gawelczyk M, Kubicka K. Mechanism of action and the effect of beta-hydroxy-beta-methylbutyrate (HMB) supplementation on different types of physical performance - a systematic review. J Hum Kinet. 2019;68:211–22.CrossRef Kaczka P, Michalczyk MM, Jastrzab R, Gawelczyk M, Kubicka K. Mechanism of action and the effect of beta-hydroxy-beta-methylbutyrate (HMB) supplementation on different types of physical performance - a systematic review. J Hum Kinet. 2019;68:211–22.CrossRef
18.
go back to reference Dutt V, Gupta S, Dabun R, Injeti E, Mittal A. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action. Pharmacol Res. 2015;99:86–100.CrossRef Dutt V, Gupta S, Dabun R, Injeti E, Mittal A. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action. Pharmacol Res. 2015;99:86–100.CrossRef
19.
go back to reference Bear DE, Langan A, Dimidi E, Wandrag L, Harridge SDR, Hart N, et al. β-hydroxy-β-methylbutyrate and its impact on skeletal muscle mass and physical function in clinical practice: a systematic review and meta-analysis. Am J Clin Nutr. 2019;109(4):1119–32.CrossRef Bear DE, Langan A, Dimidi E, Wandrag L, Harridge SDR, Hart N, et al. β-hydroxy-β-methylbutyrate and its impact on skeletal muscle mass and physical function in clinical practice: a systematic review and meta-analysis. Am J Clin Nutr. 2019;109(4):1119–32.CrossRef
20.
go back to reference Nakamura K, Kihata A, Naraba H, Kanda N, Takahashi Y, Sonoo T, et al. β-Hydroxy-β-methylbutyrate, arginine, and glutamine complex on muscle volume loss in critically ill patients: a randomized control trial. J Parenter Enteral Nutr. 2020;44(2):205–12.CrossRef Nakamura K, Kihata A, Naraba H, Kanda N, Takahashi Y, Sonoo T, et al. β-Hydroxy-β-methylbutyrate, arginine, and glutamine complex on muscle volume loss in critically ill patients: a randomized control trial. J Parenter Enteral Nutr. 2020;44(2):205–12.CrossRef
21.
go back to reference Supinski GS, Morris PE, Dhar S, Callahan LA. Diaphragm dysfunction in critical illness. Chest. 2018;153(4):1040–51.CrossRef Supinski GS, Morris PE, Dhar S, Callahan LA. Diaphragm dysfunction in critical illness. Chest. 2018;153(4):1040–51.CrossRef
22.
go back to reference Laghi F, Khan N, Schnell T, Aleksonis D, Hammond K, Shaikh H, et al. New device for nonvolitional evaluation of quadriceps force in ventilated patients. Muscle Nerve. 2018;57(5):784–91.CrossRef Laghi F, Khan N, Schnell T, Aleksonis D, Hammond K, Shaikh H, et al. New device for nonvolitional evaluation of quadriceps force in ventilated patients. Muscle Nerve. 2018;57(5):784–91.CrossRef
23.
go back to reference Supinski GS, Valentine EN, Netzel PF, Schroder EA, Wang L, Callahan LA. Does standard physical therapy increaseb quadriceps strength in chronically ventilated patients? A pilot study. Crit Care Med. 2020;48(11):1595–603.CrossRef Supinski GS, Valentine EN, Netzel PF, Schroder EA, Wang L, Callahan LA. Does standard physical therapy increaseb quadriceps strength in chronically ventilated patients? A pilot study. Crit Care Med. 2020;48(11):1595–603.CrossRef
24.
go back to reference Rice TW, Wheeler AP, Thompson BT, Steingrub J, Hite RD, Moss M, et al. Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA. 2012;307(8):795–803.CrossRef Rice TW, Wheeler AP, Thompson BT, Steingrub J, Hite RD, Moss M, et al. Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA. 2012;307(8):795–803.CrossRef
25.
go back to reference Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med. 1991;324(21):1445–50.CrossRef Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med. 1991;324(21):1445–50.CrossRef
26.
go back to reference Deutz NE, Matheson EM, Matarese LE, Luo M, Baggs GE, Nelson JL, et al. Readmission and mortality in malnourished, older, hospitalized adults treated with a specialized oral nutritional supplement: a randomized clinical trial. Clin Nutr. 2016;35(1):18–26.CrossRef Deutz NE, Matheson EM, Matarese LE, Luo M, Baggs GE, Nelson JL, et al. Readmission and mortality in malnourished, older, hospitalized adults treated with a specialized oral nutritional supplement: a randomized clinical trial. Clin Nutr. 2016;35(1):18–26.CrossRef
27.
go back to reference Singer P, Theilla M, Fisher H, Gibstein L, Grozovski E, Cohen J. Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury. Crit Care Med. 2006;34(4):1033–8.CrossRef Singer P, Theilla M, Fisher H, Gibstein L, Grozovski E, Cohen J. Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury. Crit Care Med. 2006;34(4):1033–8.CrossRef
28.
go back to reference Supinski GS, Callahan LA. beta-hydroxy-beta-methylbutyrate (HMB) prevents sepsis-induced diaphragm dysfunction in mice. Respir Physiol Neurobiol. 2014;196:63–8.CrossRef Supinski GS, Callahan LA. beta-hydroxy-beta-methylbutyrate (HMB) prevents sepsis-induced diaphragm dysfunction in mice. Respir Physiol Neurobiol. 2014;196:63–8.CrossRef
29.
go back to reference Supinski GS, Vanags J, Callahan LA. Eicosapentaenoic acid preserves diaphragm force generation following endotoxin administration. Crit Care. 2010;14(2):R35.CrossRef Supinski GS, Vanags J, Callahan LA. Eicosapentaenoic acid preserves diaphragm force generation following endotoxin administration. Crit Care. 2010;14(2):R35.CrossRef
30.
go back to reference Crowell KT, Soybel DI, Lang CH. Restorative mechanisms regulating protein balance in skeletal muscle during recovery from sepsis. Shock. 2017;47(4):463–73.CrossRef Crowell KT, Soybel DI, Lang CH. Restorative mechanisms regulating protein balance in skeletal muscle during recovery from sepsis. Shock. 2017;47(4):463–73.CrossRef
31.
go back to reference Eley HL, Russell ST, Tisdale MJ. Mechanism of activation of dsRNA-dependent protein kinase (PKR) in muscle atrophy. Cell Signal. 2010;22(5):783–90.CrossRef Eley HL, Russell ST, Tisdale MJ. Mechanism of activation of dsRNA-dependent protein kinase (PKR) in muscle atrophy. Cell Signal. 2010;22(5):783–90.CrossRef
32.
go back to reference Wollersheim T, Grunow JJ, Carbon NM, Haas K, Malleike J, Ramme SF, et al. Muscle wasting and function after muscle activation and early protocol-based physiotherapy: an explorative trial. J Cachexia Sarcopenia Muscle. 2019;10(4):734–47.CrossRef Wollersheim T, Grunow JJ, Carbon NM, Haas K, Malleike J, Ramme SF, et al. Muscle wasting and function after muscle activation and early protocol-based physiotherapy: an explorative trial. J Cachexia Sarcopenia Muscle. 2019;10(4):734–47.CrossRef
33.
go back to reference Fossat G, Baudin F, Courtes L, Bobet S, Dupont A, Bretagnol A, et al. Effect of in-bed leg cycling and electrical stimulation of the quadriceps on global muscle strength in critically ill adults: a randomized clinical trial. JAMA. 2018;320(4):368–78.CrossRef Fossat G, Baudin F, Courtes L, Bobet S, Dupont A, Bretagnol A, et al. Effect of in-bed leg cycling and electrical stimulation of the quadriceps on global muscle strength in critically ill adults: a randomized clinical trial. JAMA. 2018;320(4):368–78.CrossRef
34.
go back to reference Grunow JJ, Goll M, Carbon NM, Liebl ME, Weber-Carstens S, Wollersheim T. Differential contractile response of critically ill patients to neuromuscular electrical stimulation. Crit Care. 2019;23(1):308.CrossRef Grunow JJ, Goll M, Carbon NM, Liebl ME, Weber-Carstens S, Wollersheim T. Differential contractile response of critically ill patients to neuromuscular electrical stimulation. Crit Care. 2019;23(1):308.CrossRef
35.
go back to reference Callahan LA, Supinski GS. Prevention and treatment of ICU-acquired weakness: is there a stimulating answer? Crit Care Med. 2013;41(10):2457–8.CrossRef Callahan LA, Supinski GS. Prevention and treatment of ICU-acquired weakness: is there a stimulating answer? Crit Care Med. 2013;41(10):2457–8.CrossRef
36.
go back to reference Martin AD, Smith BK, Davenport PD, Harman E, Gonzalez-Rothi RJ, Baz M, et al. Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial. Crit Care. 2011;15(2):R84.CrossRef Martin AD, Smith BK, Davenport PD, Harman E, Gonzalez-Rothi RJ, Baz M, et al. Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial. Crit Care. 2011;15(2):R84.CrossRef
37.
go back to reference Condessa RL, Brauner JS, Saul AL, Baptista M, Silva AC, Vieira SR. Inspiratory muscle training did not accelerate weaning from mechanical ventilation but did improve tidal volume and maximal respiratory pressures: a randomised trial. J Physiother. 2013;59(2):101–7.CrossRef Condessa RL, Brauner JS, Saul AL, Baptista M, Silva AC, Vieira SR. Inspiratory muscle training did not accelerate weaning from mechanical ventilation but did improve tidal volume and maximal respiratory pressures: a randomised trial. J Physiother. 2013;59(2):101–7.CrossRef
38.
39.
go back to reference Evans D, Shure D, Clark L, Criner GJ, Dres M, de Abreu MG, et al. Temporary transvenous diaphragm pacing vs standard of care for weaning from mechanical ventilation: study protocol for a randomized trial. Trials. 2019;20(1):60.CrossRef Evans D, Shure D, Clark L, Criner GJ, Dres M, de Abreu MG, et al. Temporary transvenous diaphragm pacing vs standard of care for weaning from mechanical ventilation: study protocol for a randomized trial. Trials. 2019;20(1):60.CrossRef
Metadata
Title
A randomized controlled trial to determine whether beta-hydroxy-beta-methylbutyrate and/or eicosapentaenoic acid improves diaphragm and quadriceps strength in critically Ill mechanically ventilated patients
Authors
Gerald S. Supinski
Paul F. Netzel
Philip M. Westgate
Elizabeth A. Schroder
Lin Wang
Leigh Ann Callahan
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2021
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-021-03737-9

Other articles of this Issue 1/2021

Critical Care 1/2021 Go to the issue