Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Research

Physical, mechanical, and biological properties of collagen membranes for guided bone regeneration: a comparative in vitro study

Authors: Xiaolu Shi, Xianjing Li, Ye Tian, Xinyao Qu, Shaobo Zhai, Yang Liu, Wei Jia, Yan Cui, Shunli Chu

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

To provide a reference for clinical selection of collagen membranes by analyzing the properties of three kinds of collagen membranes widely used in clinics: Bio-Gide membrane from porcine dermis (PD), Heal-All membrane from bovine dermis (BD), and Lyoplant membrane from bovine pericardium (BP).

Methods

The barrier function of three kinds of collagen membranes were evaluated by testing the surface morphology, mechanical properties, hydrophilicity, and degradation rate of collagen membranes in collagenase and artificial saliva. In addition, the bioactivity of each collagen membrane as well as the proliferation and osteogenesis of MC3T3-E1 cells were evaluated. Mass spectrometry was also used to analyze the degradation products.

Results

The BP membrane had the highest tensile strength and Young’s modulus as well as the largest water contact angle. The PD membrane exhibited the highest elongation at break, the smallest water contact angle, and the lowest degradation weight loss. The BD membrane had the highest degradation weight loss, the highest number of proteins in its degradation product, the strongest effect on the proliferation of MC3T3-E1 cells, and the highest expression level of osteogenic genes.

Conclusions

The PD membrane is the best choice for shaping and maintenance time, while the BD membrane is good for osteogenesis, and the BP membrane is suitable for spatial maintenance. To meet the clinical requirements of guided bone regeneration, using two different kinds of collagen membranes concurrently to exert their respective advantages is an option worth considering.
Appendix
Available only for authorised users
Literature
1.
go back to reference French D, Grandin HM, Ofec R. Retrospective cohort study of 4,591 dental implants: Analysis of risk indicators for bone loss and prevalence of peri-implant mucositis and peri-implantitis. J Periodontol. 2019;90(7):691–700.PubMedPubMedCentralCrossRef French D, Grandin HM, Ofec R. Retrospective cohort study of 4,591 dental implants: Analysis of risk indicators for bone loss and prevalence of peri-implant mucositis and peri-implantitis. J Periodontol. 2019;90(7):691–700.PubMedPubMedCentralCrossRef
2.
go back to reference Abe GL, Sasaki JI, Katata C, Kohno T, Tsuboi R, Kitagawa H, Imazato S. Fabrication of novel poly(lactic acid/caprolactone) bilayer membrane for GBR application. Dent Mater. 2020;36(5):626–34.PubMedCrossRef Abe GL, Sasaki JI, Katata C, Kohno T, Tsuboi R, Kitagawa H, Imazato S. Fabrication of novel poly(lactic acid/caprolactone) bilayer membrane for GBR application. Dent Mater. 2020;36(5):626–34.PubMedCrossRef
3.
go back to reference Zhao D, Dong H, Niu Y, Fan W, Jiang M, Li K, Wei Q, Palin WM, Zhang Z. Electrophoretic deposition of novel semi-permeable coatings on 3D-printed Ti-Nb alloy meshes for guided alveolar bone regeneration. Dent Mater. 2022;38(2):431–43.PubMedCrossRef Zhao D, Dong H, Niu Y, Fan W, Jiang M, Li K, Wei Q, Palin WM, Zhang Z. Electrophoretic deposition of novel semi-permeable coatings on 3D-printed Ti-Nb alloy meshes for guided alveolar bone regeneration. Dent Mater. 2022;38(2):431–43.PubMedCrossRef
4.
go back to reference Sbricoli L, Guazzo R, Annunziata M, Gobbato L, Bressan E, Nastri L. Selection of Collagen Membranes for Bone Regeneration: A Literature Review. Materials. 2020;13(3):786. Sbricoli L, Guazzo R, Annunziata M, Gobbato L, Bressan E, Nastri L. Selection of Collagen Membranes for Bone Regeneration: A Literature Review. Materials. 2020;13(3):786.
5.
go back to reference Calciolari E, Ravanetti F, Strange A, Mardas N, Bozec L, Cacchioli A, Kostomitsopoulos N, Donos N. Degradation pattern of a porcine collagen membrane in an in vivo model of guided bone regeneration. J Periodontal Res. 2018;53(3):430–9.PubMedCrossRef Calciolari E, Ravanetti F, Strange A, Mardas N, Bozec L, Cacchioli A, Kostomitsopoulos N, Donos N. Degradation pattern of a porcine collagen membrane in an in vivo model of guided bone regeneration. J Periodontal Res. 2018;53(3):430–9.PubMedCrossRef
6.
go back to reference Jung RE, Brugger LV, Bienz SP, Husler J, Hammerle CHF, Zitzmann NU. Clinical and radiographical performance of implants placed with simultaneous guided bone regeneration using resorbable and nonresorbable membranes after 22–24 years, a prospective, controlled clinical trial. Clin Oral Implants Res. 2021;32(12):1455–65.PubMedPubMedCentralCrossRef Jung RE, Brugger LV, Bienz SP, Husler J, Hammerle CHF, Zitzmann NU. Clinical and radiographical performance of implants placed with simultaneous guided bone regeneration using resorbable and nonresorbable membranes after 22–24 years, a prospective, controlled clinical trial. Clin Oral Implants Res. 2021;32(12):1455–65.PubMedPubMedCentralCrossRef
7.
go back to reference Thoma DS, Bienz SP, Figuero E, Jung RE, Sanz-Martin I. Efficacy of lateral bone augmentation performed simultaneously with dental implant placement: A systematic review and meta-analysis. J Clin Periodontol. 2019;46:257–76.PubMedCrossRef Thoma DS, Bienz SP, Figuero E, Jung RE, Sanz-Martin I. Efficacy of lateral bone augmentation performed simultaneously with dental implant placement: A systematic review and meta-analysis. J Clin Periodontol. 2019;46:257–76.PubMedCrossRef
9.
go back to reference Dimitriou R, Mataliotakis GI, Calori GM, Giannoudis PV. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med. 2012;10:81. Dimitriou R, Mataliotakis GI, Calori GM, Giannoudis PV. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med. 2012;10:81.
10.
go back to reference Benic GI, Hämmerle CH. Horizontal bone augmentation by means of guided bone regeneration. Periodontol 2000. 2014;66(1):13-40. Benic GI, Hämmerle CH. Horizontal bone augmentation by means of guided bone regeneration. Periodontol 2000. 2014;66(1):13-40.
11.
go back to reference Wu Z, Wu J, Peng T, Li Y, Lin D, Xing B, Li C, Yang Y, Yang L, Zhang L et al. Preparation and Application of Starch/Polyvinyl Alcohol/Citric Acid Ternary Blend Antimicrobial Functional Food Packaging Films. Polymers. 2017;9(3):102. Wu Z, Wu J, Peng T, Li Y, Lin D, Xing B, Li C, Yang Y, Yang L, Zhang L et al. Preparation and Application of Starch/Polyvinyl Alcohol/Citric Acid Ternary Blend Antimicrobial Functional Food Packaging Films. Polymers. 2017;9(3):102.
12.
go back to reference Rezvanian M, Ahmad N, Mohd Amin MC, Ng SF. Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int J Biol Macromol. 2017;97:131–40.PubMedCrossRef Rezvanian M, Ahmad N, Mohd Amin MC, Ng SF. Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int J Biol Macromol. 2017;97:131–40.PubMedCrossRef
13.
go back to reference Tamburaci S, Tihminlioglu F. Development of Si doped nano hydroxyapatite reinforced bilayer chitosan nanocomposite barrier membranes for guided bone regeneration. Mater Sci Eng C Mater Biol Appl. 2021;128: 112298.PubMedCrossRef Tamburaci S, Tihminlioglu F. Development of Si doped nano hydroxyapatite reinforced bilayer chitosan nanocomposite barrier membranes for guided bone regeneration. Mater Sci Eng C Mater Biol Appl. 2021;128: 112298.PubMedCrossRef
15.
go back to reference Cheon SY, Kim J, Lee KY, Lee CM. Poly (l-lactic acid) membrane crosslinked with Genipin for guided bone regeneration. Int J Biol macromol. 2021;191:1228–39.PubMedCrossRef Cheon SY, Kim J, Lee KY, Lee CM. Poly (l-lactic acid) membrane crosslinked with Genipin for guided bone regeneration. Int J Biol macromol. 2021;191:1228–39.PubMedCrossRef
16.
go back to reference Gao X, Al-Baadani MA, Wu M, Tong N, Shen X, Ding X, Liu J. Study on the Local Anti-Osteoporosis Effect of Polaprezinc-Loaded Antioxidant Electrospun Membrane. Int J Nanomedicine. 2022;17:17–29.PubMedPubMedCentralCrossRef Gao X, Al-Baadani MA, Wu M, Tong N, Shen X, Ding X, Liu J. Study on the Local Anti-Osteoporosis Effect of Polaprezinc-Loaded Antioxidant Electrospun Membrane. Int J Nanomedicine. 2022;17:17–29.PubMedPubMedCentralCrossRef
17.
go back to reference Yang M, Vesterlund M, Siavelis I, Moura-Castro LH, Castor A, Fioretos T, Jafari R, Lilljebjorn H, Odom DT, Olsson L, et al. Proteogenomics and Hi-C reveal transcriptional dysregulation in high hyperdiploid childhood acute lymphoblastic leukemia. Nat Commun. 2019;10(1):1519. Yang M, Vesterlund M, Siavelis I, Moura-Castro LH, Castor A, Fioretos T, Jafari R, Lilljebjorn H, Odom DT, Olsson L, et al. Proteogenomics and Hi-C reveal transcriptional dysregulation in high hyperdiploid childhood acute lymphoblastic leukemia. Nat Commun. 2019;10(1):1519.
18.
go back to reference Balestra AC, Koussis K, Klages N, Howell SA, Flynn HR, Bantscheff M, Pasquarello C, Perrin AJ, Brusini L, Arboit P, et al. Ca2+ signals critical for egress and gametogenesis in malaria parasites depend on a multipass membrane protein that interacts with PKG. Sci Adv. 2021;7(13):eabe5396. Balestra AC, Koussis K, Klages N, Howell SA, Flynn HR, Bantscheff M, Pasquarello C, Perrin AJ, Brusini L, Arboit P, et al. Ca2+ signals critical for egress and gametogenesis in malaria parasites depend on a multipass membrane protein that interacts with PKG. Sci Adv. 2021;7(13):eabe5396.
19.
go back to reference Urban IA, Lozada JL, Wessing B, del Amo FSL, Wang HL. Vertical Bone Grafting and Periosteal Vertical Mattress Suture for the Fixation of Resorbable Membranes and Stabilization of Particulate Grafts in Horizontal Guided Bone Regeneration to Achieve More Predictable Results: A Technical Report. Int J Periodontics Restorative Dent. 2016;36(2):153–9.PubMedCrossRef Urban IA, Lozada JL, Wessing B, del Amo FSL, Wang HL. Vertical Bone Grafting and Periosteal Vertical Mattress Suture for the Fixation of Resorbable Membranes and Stabilization of Particulate Grafts in Horizontal Guided Bone Regeneration to Achieve More Predictable Results: A Technical Report. Int J Periodontics Restorative Dent. 2016;36(2):153–9.PubMedCrossRef
20.
go back to reference Jung RE, Fenner N, Hammerle CHF, Zitzmann NU. Long-term outcome of implants placed with guided bone regeneration (GBR) using resorbable and non-resorbable membranes after 12–14years. Clin Oral Implants Res. 2013;24(10):1065–73.PubMedCrossRef Jung RE, Fenner N, Hammerle CHF, Zitzmann NU. Long-term outcome of implants placed with guided bone regeneration (GBR) using resorbable and non-resorbable membranes after 12–14years. Clin Oral Implants Res. 2013;24(10):1065–73.PubMedCrossRef
21.
go back to reference Tang J, Han Y, Zhang F, Ge Z, Liu X, Lu Q. Buccal mucosa repair with electrospun silk fibroin matrix in a rat model. Int J Artif Organs. 2015;38(2):105–12.PubMedCrossRef Tang J, Han Y, Zhang F, Ge Z, Liu X, Lu Q. Buccal mucosa repair with electrospun silk fibroin matrix in a rat model. Int J Artif Organs. 2015;38(2):105–12.PubMedCrossRef
22.
go back to reference de Andrade PF, de Souza SLS, Macedo GD, Novaes AB, Grisi MFD, Taba M, Palioto DB. Acellular dermal matrix as a membrane for guided tissue regeneration in the treatment of class II furcation lesions: A histometric and clinical study in dogs. J Periodontol. 2007;78(7):1288–99.PubMedCrossRef de Andrade PF, de Souza SLS, Macedo GD, Novaes AB, Grisi MFD, Taba M, Palioto DB. Acellular dermal matrix as a membrane for guided tissue regeneration in the treatment of class II furcation lesions: A histometric and clinical study in dogs. J Periodontol. 2007;78(7):1288–99.PubMedCrossRef
23.
go back to reference Pakzaban P. Technique for Mini-open Decompression of Chiari Type I Malformation in Adults. Oper Neurosurg. 2017;13(4):465–70.CrossRef Pakzaban P. Technique for Mini-open Decompression of Chiari Type I Malformation in Adults. Oper Neurosurg. 2017;13(4):465–70.CrossRef
24.
go back to reference Kyu KK. Treatment of Peri-implantitis: Cases Report. Maxillofacial Plastic Reconstruct Surg. 2013;35(2):112-123. Kyu KK. Treatment of Peri-implantitis: Cases Report. Maxillofacial Plastic Reconstruct Surg. 2013;35(2):112-123.
25.
go back to reference Chen L, Cheng G, Meng S, Ding Y. Collagen Membrane Derived from Fish Scales for Application in Bone Tissue Engineering. Polymers. 2022;14(13):2532. Chen L, Cheng G, Meng S, Ding Y. Collagen Membrane Derived from Fish Scales for Application in Bone Tissue Engineering. Polymers. 2022;14(13):2532.
26.
go back to reference Doan TL, Le LD. Efficacy of the tent-pole technique in horizontal ridge augmentation. Pesquisa Brasileira em Odontopediatria e Clinica Integrada. 2020;20:1–8. Doan TL, Le LD. Efficacy of the tent-pole technique in horizontal ridge augmentation. Pesquisa Brasileira em Odontopediatria e Clinica Integrada. 2020;20:1–8.
27.
go back to reference Coïc M, Placet V, Jacquet E, Meyer C. Mechanical properties of collagen membranes used in guided bone regeneration: a comparative study of three models. Revue de stomatologie et de chirurgie maxillo-faciale. 2010;111(5–6):286–90.PubMedCrossRef Coïc M, Placet V, Jacquet E, Meyer C. Mechanical properties of collagen membranes used in guided bone regeneration: a comparative study of three models. Revue de stomatologie et de chirurgie maxillo-faciale. 2010;111(5–6):286–90.PubMedCrossRef
29.
go back to reference Zhang M, Zhou Z, Yun J, Liu R, Li J, Chen Y, Cai H, Jiang HB, Lee ES, Han J, et al. Effect of Different Membranes on Vertical Bone Regeneration: A Systematic Review and Network Meta-Analysis. BioMed Res Int. 2022;2022:7742687.PubMedPubMedCentral Zhang M, Zhou Z, Yun J, Liu R, Li J, Chen Y, Cai H, Jiang HB, Lee ES, Han J, et al. Effect of Different Membranes on Vertical Bone Regeneration: A Systematic Review and Network Meta-Analysis. BioMed Res Int. 2022;2022:7742687.PubMedPubMedCentral
30.
go back to reference Schieber R, Lasserre F, Hans M, Fernández-Yagüe M, Díaz-Ricart M, Escolar G, Ginebra MP, Mücklich F, Pegueroles M. Direct Laser Interference Patterning of CoCr Alloy Surfaces to Control Endothelial Cell and Platelet Response for Cardiovascular Applications. Adv Healthcare Mater. 2017;6(19). Schieber R, Lasserre F, Hans M, Fernández-Yagüe M, Díaz-Ricart M, Escolar G, Ginebra MP, Mücklich F, Pegueroles M. Direct Laser Interference Patterning of CoCr Alloy Surfaces to Control Endothelial Cell and Platelet Response for Cardiovascular Applications. Adv Healthcare Mater. 2017;6(19).
31.
go back to reference Strong SE, Eaves JD. The Dynamics of Water in Porous Two-Dimensional Crystals. J Phys Chem B. 2017;121(1):189–207.PubMedCrossRef Strong SE, Eaves JD. The Dynamics of Water in Porous Two-Dimensional Crystals. J Phys Chem B. 2017;121(1):189–207.PubMedCrossRef
32.
go back to reference Rothamel D, Schwarz F, Fienitz T, Smeets R, Dreiseidler T, Ritter L, Happe A, Zöller J. Biocompatibility and biodegradation of a native porcine pericardium membrane: results of in vitro and in vivo examinations. Int J Oral Maxillofac Implants. 2012;27(1):146–54.PubMed Rothamel D, Schwarz F, Fienitz T, Smeets R, Dreiseidler T, Ritter L, Happe A, Zöller J. Biocompatibility and biodegradation of a native porcine pericardium membrane: results of in vitro and in vivo examinations. Int J Oral Maxillofac Implants. 2012;27(1):146–54.PubMed
33.
go back to reference Bornert F, Herber V, Sandgren R, Witek L, Coelho PG, Pippenger BE, Shahdad S. Comparative barrier membrane degradation over time: Pericardium versus dermal membranes. Clin Exp Dental Res. 2021;7(5):711–8.CrossRef Bornert F, Herber V, Sandgren R, Witek L, Coelho PG, Pippenger BE, Shahdad S. Comparative barrier membrane degradation over time: Pericardium versus dermal membranes. Clin Exp Dental Res. 2021;7(5):711–8.CrossRef
34.
go back to reference Tal H, Kozlovsky A, Artzi Z, Nemcovsky CE, Moses O. Long-term bio-degradation of cross-linked and non-cross-linked collagen barriers in human guided bone regeneration. Clin Oral Implants Res. 2008;19(3):295–302.PubMedCrossRef Tal H, Kozlovsky A, Artzi Z, Nemcovsky CE, Moses O. Long-term bio-degradation of cross-linked and non-cross-linked collagen barriers in human guided bone regeneration. Clin Oral Implants Res. 2008;19(3):295–302.PubMedCrossRef
35.
go back to reference Brunel G, Piantoni P, Elharar F, Benqué E, Marin P, Zahedi S. Regeneration of rat calvarial defects using a bioabsorbable membrane technique: influence of collagen cross-linking. J Periodontol. 1996;67(12):1342–8.PubMedCrossRef Brunel G, Piantoni P, Elharar F, Benqué E, Marin P, Zahedi S. Regeneration of rat calvarial defects using a bioabsorbable membrane technique: influence of collagen cross-linking. J Periodontol. 1996;67(12):1342–8.PubMedCrossRef
36.
go back to reference Almutairi AS: Case Report: Managing the postoperative exposure of a non-resorbable membrane surgically. F1000Research. 2018;7:685. Almutairi AS: Case Report: Managing the postoperative exposure of a non-resorbable membrane surgically. F1000Research. 2018;7:685.
38.
go back to reference Mayrand D, Grenier D. Detection of collagenase activity in oral bacteria. Can J Microbiol. 1985;31(2):134–8.PubMedCrossRef Mayrand D, Grenier D. Detection of collagenase activity in oral bacteria. Can J Microbiol. 1985;31(2):134–8.PubMedCrossRef
39.
go back to reference Chen K, Zhou G, Li Q, Tang H, Wang S, Li P, Gu X, Fan Y. In vitro degradation, biocompatibility and antibacterial properties of pure zinc: assessing the potential of Zn as a guided bone regeneration membrane. J Mater Chem B. 2021;9(25):5114–27.PubMedCrossRef Chen K, Zhou G, Li Q, Tang H, Wang S, Li P, Gu X, Fan Y. In vitro degradation, biocompatibility and antibacterial properties of pure zinc: assessing the potential of Zn as a guided bone regeneration membrane. J Mater Chem B. 2021;9(25):5114–27.PubMedCrossRef
40.
go back to reference Sanz M, Dahlin C, Apatzidou D, Artzi Z, Bozic D, Calciolari E, De Bruyn H, Dommisch H, Donos N, Eickholz P, et al. Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region: Consensus report of group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. J Clin Periodontol. 2019;46(Suppl 21):82–91.PubMedCrossRef Sanz M, Dahlin C, Apatzidou D, Artzi Z, Bozic D, Calciolari E, De Bruyn H, Dommisch H, Donos N, Eickholz P, et al. Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region: Consensus report of group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. J Clin Periodontol. 2019;46(Suppl 21):82–91.PubMedCrossRef
41.
go back to reference Neto AMD, Sartoretto SC, Duarte IM, Resende RFB, Neves Novellino Alves AT, Mourão C, Calasans-Maia J, Montemezzi P, Tristão GC, Calasans-Maia MD. In Vivo Comparative Evaluation of Biocompatibility and Biodegradation of Bovine and Porcine Collagen Membranes. Membranes. 2020;10(12):423. Neto AMD, Sartoretto SC, Duarte IM, Resende RFB, Neves Novellino Alves AT, Mourão C, Calasans-Maia J, Montemezzi P, Tristão GC, Calasans-Maia MD. In Vivo Comparative Evaluation of Biocompatibility and Biodegradation of Bovine and Porcine Collagen Membranes. Membranes. 2020;10(12):423.
42.
go back to reference Vallecillo-Rivas M, Toledano-Osorio M, Vallecillo C, Toledano M, Osorio R. The Collagen Origin Influences the Degradation Kinetics of Guided Bone Regeneration Membranes. Polymers. 2021;13(17):3007. Vallecillo-Rivas M, Toledano-Osorio M, Vallecillo C, Toledano M, Osorio R. The Collagen Origin Influences the Degradation Kinetics of Guided Bone Regeneration Membranes. Polymers. 2021;13(17):3007.
43.
go back to reference Liu J, Zhang B, Song S, Ma M, Si S, Wang Y, Xu B, Feng K, Wu J, Guo Y. Bovine collagen peptides compounds promote the proliferation and differentiation of MC3T3-E1 pre-osteoblasts. PloS one. 2014;9(6): e99920.PubMedPubMedCentralCrossRef Liu J, Zhang B, Song S, Ma M, Si S, Wang Y, Xu B, Feng K, Wu J, Guo Y. Bovine collagen peptides compounds promote the proliferation and differentiation of MC3T3-E1 pre-osteoblasts. PloS one. 2014;9(6): e99920.PubMedPubMedCentralCrossRef
44.
go back to reference Rousseau M, Boulzaguet H, Biagianti J, Duplat D, Milet C, Lopez E, Bédouet L. Low molecular weight molecules of oyster nacre induce mineralization of the MC3T3-E1 cells. J Biomed Mater Res Part A. 2008;85(2):487–97.CrossRef Rousseau M, Boulzaguet H, Biagianti J, Duplat D, Milet C, Lopez E, Bédouet L. Low molecular weight molecules of oyster nacre induce mineralization of the MC3T3-E1 cells. J Biomed Mater Res Part A. 2008;85(2):487–97.CrossRef
45.
go back to reference El-Jawhari JJ, Moisley K, Jones E, Giannoudis PV. A crosslinked collagen membrane versus a non-crosslinked bilayer collagen membrane for supporting osteogenic functions of human bone marrow-multipotent stromal cells. Eur Cells Mater. 2019;37:292–309.CrossRef El-Jawhari JJ, Moisley K, Jones E, Giannoudis PV. A crosslinked collagen membrane versus a non-crosslinked bilayer collagen membrane for supporting osteogenic functions of human bone marrow-multipotent stromal cells. Eur Cells Mater. 2019;37:292–309.CrossRef
46.
go back to reference Yu X, Sun H, Yang J, Liu Y, Zhang Z, Wang J, Deng F. Evaluation of bone-regeneration effects and ectopic osteogenesis of collagen membrane chemically conjugated with stromal cell-derived factor-1 in vivo. Biomed Mater. 2019;15(1): 015009.PubMedCrossRef Yu X, Sun H, Yang J, Liu Y, Zhang Z, Wang J, Deng F. Evaluation of bone-regeneration effects and ectopic osteogenesis of collagen membrane chemically conjugated with stromal cell-derived factor-1 in vivo. Biomed Mater. 2019;15(1): 015009.PubMedCrossRef
47.
go back to reference Caballé-Serrano J, Munar-Frau A, Delgado L, Pérez R, Hernández-Alfaro F. Physicochemical characterization of barrier membranes for bone regeneration. J Mech Behav Biomed Mater. 2019;97:13–20.PubMedCrossRef Caballé-Serrano J, Munar-Frau A, Delgado L, Pérez R, Hernández-Alfaro F. Physicochemical characterization of barrier membranes for bone regeneration. J Mech Behav Biomed Mater. 2019;97:13–20.PubMedCrossRef
48.
go back to reference Lee JS, Mitulović G, Panahipour L, Gruber R. Proteomic Analysis of Porcine-Derived Collagen Membrane and Matrix. Materials (Basel). 2020;13(22):5187. Lee JS, Mitulović G, Panahipour L, Gruber R. Proteomic Analysis of Porcine-Derived Collagen Membrane and Matrix. Materials (Basel). 2020;13(22):5187.
49.
go back to reference Woo M, Seol BG, Kang KH, Choi YH, Cho EJ, Noh JS. Effects of collagen peptides from skate (Raja kenojei) skin on improvements of the insulin signaling pathway via attenuation of oxidative stress and inflammation. Food Funct. 2020;11(3):2017–25.PubMedCrossRef Woo M, Seol BG, Kang KH, Choi YH, Cho EJ, Noh JS. Effects of collagen peptides from skate (Raja kenojei) skin on improvements of the insulin signaling pathway via attenuation of oxidative stress and inflammation. Food Funct. 2020;11(3):2017–25.PubMedCrossRef
50.
go back to reference Lin H, Zheng Z, Yuan J, Zhang C, Cao W, Qin X. Collagen Peptides Derived from Sipunculus nudus Accelerate Wound Healing. Molecules. 2021;26(5):1385. Lin H, Zheng Z, Yuan J, Zhang C, Cao W, Qin X. Collagen Peptides Derived from Sipunculus nudus Accelerate Wound Healing. Molecules. 2021;26(5):1385.
51.
go back to reference Hakuta A, Yamaguchi Y, Okawa T, Yamamoto S, Sakai Y, Aihara M. Anti-inflammatory effect of collagen tripeptide in atopic dermatitis. J Dermatol Sci. 2017;88(3):357–64.PubMedCrossRef Hakuta A, Yamaguchi Y, Okawa T, Yamamoto S, Sakai Y, Aihara M. Anti-inflammatory effect of collagen tripeptide in atopic dermatitis. J Dermatol Sci. 2017;88(3):357–64.PubMedCrossRef
52.
go back to reference Banerjee P, Mehta A, Shanthi C. Investigation into the cyto-protective and wound healing properties of cryptic peptides from bovine Achilles tendon collagen. Chemico-Biol Interact. 2014;211:1–10.CrossRef Banerjee P, Mehta A, Shanthi C. Investigation into the cyto-protective and wound healing properties of cryptic peptides from bovine Achilles tendon collagen. Chemico-Biol Interact. 2014;211:1–10.CrossRef
53.
go back to reference Liu J, Si S, Qin Y, Zhang B, Song S, Guo Y. The effect of different molecular weight collagen peptides on MC3T3-E1 cells differentiation. Biomed Mater Eng. 2015;26(Suppl 1):S2041–2047.PubMed Liu J, Si S, Qin Y, Zhang B, Song S, Guo Y. The effect of different molecular weight collagen peptides on MC3T3-E1 cells differentiation. Biomed Mater Eng. 2015;26(Suppl 1):S2041–2047.PubMed
54.
go back to reference Khorsand B, Elangovan S, Hong L, Kormann MSD, Salem AK. A bioactive collagen membrane that enhances bone regeneration. J Biomed Mater Res Part B Appl Biomater. 2019;107(6):1824–32.CrossRef Khorsand B, Elangovan S, Hong L, Kormann MSD, Salem AK. A bioactive collagen membrane that enhances bone regeneration. J Biomed Mater Res Part B Appl Biomater. 2019;107(6):1824–32.CrossRef
55.
go back to reference Chen P, Wu Z, Leung A, Chen X, Landao-Bassonga E, Gao J, Chen L, Zheng M, Yao F, Yang H, et al. Fabrication of a silver nanoparticle-coated collagen membrane with anti-bacterial and anti-inflammatory activities for guided bone regeneration. Biomed Mater. 2018;13(6): 065014.PubMedCrossRef Chen P, Wu Z, Leung A, Chen X, Landao-Bassonga E, Gao J, Chen L, Zheng M, Yao F, Yang H, et al. Fabrication of a silver nanoparticle-coated collagen membrane with anti-bacterial and anti-inflammatory activities for guided bone regeneration. Biomed Mater. 2018;13(6): 065014.PubMedCrossRef
Metadata
Title
Physical, mechanical, and biological properties of collagen membranes for guided bone regeneration: a comparative in vitro study
Authors
Xiaolu Shi
Xianjing Li
Ye Tian
Xinyao Qu
Shaobo Zhai
Yang Liu
Wei Jia
Yan Cui
Shunli Chu
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-03223-4

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue