Skip to main content
Top
Published in: Respiratory Research 1/2006

Open Access 01-12-2006 | Research

Phenotypical and functional characterization of alveolar macrophage subpopulations in the lungs of NO2-exposed rats

Authors: Holger Garn, Anette Siese, Sabine Stumpf, Anka Wensing, Harald Renz, Diethard Gemsa

Published in: Respiratory Research | Issue 1/2006

Login to get access

Abstract

Background

Alveolar macrophages (AM) are known to play an important role in the regulation of inflammatory reactions in the lung, e.g. during the development of chronic lung diseases. Exposure of rats to NO2 has recently been shown to induce a shift in the activation type of AM that is characterized by reduced TNF-α and increased IL-10 production. So far it is unclear, whether a functional shift in the already present AM population or the occurrence of a new, phenotypically different AM population is responsible for these observations.

Methods

AM from rat and mice were analyzed by flow cytometry for surface marker expression and in vivo staining with PKH26 was applied to characterize newly recruited macrophages. Following magnetic bead separation, AM subpopulations were further analyzed for cytokine, inducible NO synthase (iNOS) and matrix metalloproteinase (MMP) mRNA expression using quantitative RT-PCR. Following in vitro stimulation, cytokines were quantitated in the culture supernatants by ELISA.

Results

In untreated rats the majority of AM showed a low expression of the surface antigen ED7 (CD11b) and a high ED9 (CD172) expression (ED7-/ED9high). In contrast, NO2 exposure induced the occurrence of a subpopulation characterized by the marker combination ED7+/ED9low. Comparable changes were observed in mice and by in vivo labeling of resident AM using the dye PKH26 we could demonstrate that CD11b positive cells mainly comprise newly recruited AM. Subsequent functional analyses of separated AM subpopulations of the rat revealed that ED7+ cells showed an increased expression and production of the antiinflammatory cytokine IL-10 whereas TNF-α production was lower compared to ED7- AM. However, iNOS and IL-12 expression were also increased in the ED7+ subpopulation. In addition, these cells showed a significantly higher mRNA expression for the matrix metalloproteinases MMP-7, -8, -9, and -12.

Conclusion

NO2 exposure induces the infiltration of an AM subpopulation that, on the one hand may exert antiinflammatory functions by the production of high amounts of IL-10 but on the other hand may contribute to the pathology of NO2-induced lung damage by selective expression of certain matrix metalloproteinases.
Literature
1.
go back to reference Crapo JD, Harmsen AG, Sherman MP, Musson RA: Pulmonary immunobiology and inflammation in pulmonary diseases. Am J Respir Crit Care Med 2000, 162:1983–1986.CrossRefPubMed Crapo JD, Harmsen AG, Sherman MP, Musson RA: Pulmonary immunobiology and inflammation in pulmonary diseases. Am J Respir Crit Care Med 2000, 162:1983–1986.CrossRefPubMed
3.
go back to reference Shapiro SD: The macrophage in chronic obstructive pulmonary disease. Am J Resp Crit Care Med 1999, 160:S29-S32.CrossRefPubMed Shapiro SD: The macrophage in chronic obstructive pulmonary disease. Am J Resp Crit Care Med 1999, 160:S29-S32.CrossRefPubMed
4.
go back to reference Lohmann-Matthes ML, Steinmüller C, Franke-Ullmann G: Pulmonary macrophages. Eur Respir J 1994, 7:1678–1689.PubMed Lohmann-Matthes ML, Steinmüller C, Franke-Ullmann G: Pulmonary macrophages. Eur Respir J 1994, 7:1678–1689.PubMed
5.
go back to reference Lavnikova N, Prokhorova S, Helyar L, Laskin DL: Isolation and partial characterization of subpopulations of alveolar macrophages, granulocytes, and highly enriched interstitial macrophages from rat lung. Am J Respir Cell Mol Biol 1993, 8:384–392.CrossRefPubMed Lavnikova N, Prokhorova S, Helyar L, Laskin DL: Isolation and partial characterization of subpopulations of alveolar macrophages, granulocytes, and highly enriched interstitial macrophages from rat lung. Am J Respir Cell Mol Biol 1993, 8:384–392.CrossRefPubMed
6.
go back to reference Laskin DL, Weinberger B, Laskin JD: Functional heterogeneity in liver and lung macrophages. J Leukoc Biol 2001, 70:163–170.PubMed Laskin DL, Weinberger B, Laskin JD: Functional heterogeneity in liver and lung macrophages. J Leukoc Biol 2001, 70:163–170.PubMed
7.
go back to reference Dorger M, Munzing S, Allmeling AM, Messmer K, Krombach F: Phenotypic and functional differences between rat alveolar, pleural, and peritoneal macrophages. Exp Lung Res 2001, 27:65–76.CrossRefPubMed Dorger M, Munzing S, Allmeling AM, Messmer K, Krombach F: Phenotypic and functional differences between rat alveolar, pleural, and peritoneal macrophages. Exp Lung Res 2001, 27:65–76.CrossRefPubMed
8.
go back to reference Ferrari-Lacraz S, Nicod LP, Chicheportiche R, Welgus HG, Dayer JM: Human lung tissue macrophages, but not alveolar macrophages, express matrix metalloproteinases after direct contact with activated T lymphocytes. Am J Respir Cell Mol Biol 2001, 24:442–451.CrossRefPubMed Ferrari-Lacraz S, Nicod LP, Chicheportiche R, Welgus HG, Dayer JM: Human lung tissue macrophages, but not alveolar macrophages, express matrix metalloproteinases after direct contact with activated T lymphocytes. Am J Respir Cell Mol Biol 2001, 24:442–451.CrossRefPubMed
9.
go back to reference Chelen CJ, Fang Y, Freeman GJ, Secrist H, Marshall JD, Hwang PT, Frankel LR, DeKruyff RH, Umetsu DT: Human alveolar macrophages present antigen ineffectively due to defective expression of B7 costimulatory cell surface molecules. J Clin Invest 1995, 95:1415–1421.CrossRefPubMedPubMedCentral Chelen CJ, Fang Y, Freeman GJ, Secrist H, Marshall JD, Hwang PT, Frankel LR, DeKruyff RH, Umetsu DT: Human alveolar macrophages present antigen ineffectively due to defective expression of B7 costimulatory cell surface molecules. J Clin Invest 1995, 95:1415–1421.CrossRefPubMedPubMedCentral
10.
go back to reference Knapp S, Leemans JC, Florquin S, Branger J, Maris NA, Pater J, van Rooijen N, van der PT: Alveolar macrophages have a protective antiinflammatory role during murine pneumococcal pneumonia. Am J Respir Crit Care Med 2003, 167:171–179.CrossRefPubMed Knapp S, Leemans JC, Florquin S, Branger J, Maris NA, Pater J, van Rooijen N, van der PT: Alveolar macrophages have a protective antiinflammatory role during murine pneumococcal pneumonia. Am J Respir Crit Care Med 2003, 167:171–179.CrossRefPubMed
11.
go back to reference Strickland D, Kees UR, Holt PG: Regulation of T-cell activation in the lung: aveolar macrophages induce reversible T-cell anergy in vitro associated with inhibition of interleukin-2 receptor signal transduction. Immunology 1996, 87:250–258.CrossRefPubMedPubMedCentral Strickland D, Kees UR, Holt PG: Regulation of T-cell activation in the lung: aveolar macrophages induce reversible T-cell anergy in vitro associated with inhibition of interleukin-2 receptor signal transduction. Immunology 1996, 87:250–258.CrossRefPubMedPubMedCentral
12.
go back to reference Maus U, Herold S, Muth H, Maus R, Ermert L, Ermert M, Weissmann N, Rosseau S, Seeger W, Grimminger F, et al.: Monocytes recruited into the alveolar air space of mice show a monocytic phenotype but upregulate CD14. Am J Physiol Lung Cell Mol Physiol 2001, 280:L58-L68.PubMed Maus U, Herold S, Muth H, Maus R, Ermert L, Ermert M, Weissmann N, Rosseau S, Seeger W, Grimminger F, et al.: Monocytes recruited into the alveolar air space of mice show a monocytic phenotype but upregulate CD14. Am J Physiol Lung Cell Mol Physiol 2001, 280:L58-L68.PubMed
13.
go back to reference Olker C, Siese A, Stumpf S, Muller B, Gemsa D, Garn H: Impaired superoxide radical production by bronchoalveolar lavage cells from NO(2)-exposed rats. Free Radic Biol Med 2004, 37:977–987.CrossRefPubMed Olker C, Siese A, Stumpf S, Muller B, Gemsa D, Garn H: Impaired superoxide radical production by bronchoalveolar lavage cells from NO(2)-exposed rats. Free Radic Biol Med 2004, 37:977–987.CrossRefPubMed
14.
go back to reference Garn H, Siese A, Stumpf S, Barth PJ, Müller B, Gemsa D: Shift towards an alternatively activated macrophage response in lungs of NO 2 -exposed rats. Am J Respir Cell Mol Biol 2003, 28:386–396.CrossRefPubMed Garn H, Siese A, Stumpf S, Barth PJ, Müller B, Gemsa D: Shift towards an alternatively activated macrophage response in lungs of NO 2 -exposed rats. Am J Respir Cell Mol Biol 2003, 28:386–396.CrossRefPubMed
15.
go back to reference Garn H, Friedetzky A, Kirchner A, Jäger R, Gemsa D: Experimental silicosis: A shift to a preferential IFN-γ-based Th1 response in thoracic lymph nodes. Am J Physiol Lung Cell Mol Physiol 2000, 278:L1221-L1230.PubMed Garn H, Friedetzky A, Kirchner A, Jäger R, Gemsa D: Experimental silicosis: A shift to a preferential IFN-γ-based Th1 response in thoracic lymph nodes. Am J Physiol Lung Cell Mol Physiol 2000, 278:L1221-L1230.PubMed
16.
go back to reference Wegmann M, Fehrenbach A, Heimann S, Fehrenbach H, Renz H, Garn H, Herz U: NO2-induced airway inflammation is associated with progressive airflow limitation and development of emphysema-like lesions in C57BL/6 mice. Exp Toxicol Pathol 2005, 56:341–350.CrossRefPubMed Wegmann M, Fehrenbach A, Heimann S, Fehrenbach H, Renz H, Garn H, Herz U: NO2-induced airway inflammation is associated with progressive airflow limitation and development of emphysema-like lesions in C57BL/6 mice. Exp Toxicol Pathol 2005, 56:341–350.CrossRefPubMed
17.
go back to reference Barth PJ, Uhlarik S, Bittinger A, Wagner U, Ruschoff J: Diffuse alveolar damage in the rat lung after short and long term exposure to nitrogen dioxide. Pathol Res Pract 1994, 190:33–41.CrossRefPubMed Barth PJ, Uhlarik S, Bittinger A, Wagner U, Ruschoff J: Diffuse alveolar damage in the rat lung after short and long term exposure to nitrogen dioxide. Pathol Res Pract 1994, 190:33–41.CrossRefPubMed
18.
go back to reference Barth PJ, Müller B, Wagner U, Bittinger A: Quantitative analysis of parenchymal and vascular alterations in NO 2 -induced lung injury in rats. Eur Respir J 1995, 8:1115–1121.CrossRefPubMed Barth PJ, Müller B, Wagner U, Bittinger A: Quantitative analysis of parenchymal and vascular alterations in NO 2 -induced lung injury in rats. Eur Respir J 1995, 8:1115–1121.CrossRefPubMed
19.
go back to reference Chitano P, Rado V, Di Stefano A, Papi A, Boniotti A, Zancuoghi G, Boschetto P, Romano M, Salmona M, Ciaccia A, et al.: Effect of subchronic in vivo exposure to nitrogen dioxide on lung tissue inflammation, airway microvascular leakage, and in vitro bronchial muscle responsiveness in rats. Occup Environ Med 1996, 53:379–386.CrossRefPubMedPubMedCentral Chitano P, Rado V, Di Stefano A, Papi A, Boniotti A, Zancuoghi G, Boschetto P, Romano M, Salmona M, Ciaccia A, et al.: Effect of subchronic in vivo exposure to nitrogen dioxide on lung tissue inflammation, airway microvascular leakage, and in vitro bronchial muscle responsiveness in rats. Occup Environ Med 1996, 53:379–386.CrossRefPubMedPubMedCentral
20.
go back to reference Rombout PJ, Dormans JA, Marra M, van Esch GJ: Influence of exposure regimen on nitrogen dioxide-induced morphological changes in the rat lung. Environ Res 1986, 41:466–480.CrossRefPubMed Rombout PJ, Dormans JA, Marra M, van Esch GJ: Influence of exposure regimen on nitrogen dioxide-induced morphological changes in the rat lung. Environ Res 1986, 41:466–480.CrossRefPubMed
21.
go back to reference Müller B, Barth PJ, Wichert Pv: Structural and functional impairment of surfactant protein A after exposure to nitrogen dioxide in rats. Am J Physiol 1992, 263:L177-L184.PubMed Müller B, Barth PJ, Wichert Pv: Structural and functional impairment of surfactant protein A after exposure to nitrogen dioxide in rats. Am J Physiol 1992, 263:L177-L184.PubMed
22.
go back to reference Müller B, Schäfer H, Barth PJ, Wichert Pv: Lung surfactant components in bronchoalveolar lavage after inhalation of NO 2 as markers of altered surfactant metabolism. Lung 1994, 172:61–72.CrossRefPubMed Müller B, Schäfer H, Barth PJ, Wichert Pv: Lung surfactant components in bronchoalveolar lavage after inhalation of NO 2 as markers of altered surfactant metabolism. Lung 1994, 172:61–72.CrossRefPubMed
23.
go back to reference Wegmann M, Renz H, Herz U: Long-term NO2 exposure induces pulmonary inflammation and progressive development of airflow obstruction in C57BL/6 mice: a mouse model for chronic obstructive pulmonary disease? Pathobiology 2002, 70:284–286.CrossRefPubMed Wegmann M, Renz H, Herz U: Long-term NO2 exposure induces pulmonary inflammation and progressive development of airflow obstruction in C57BL/6 mice: a mouse model for chronic obstructive pulmonary disease? Pathobiology 2002, 70:284–286.CrossRefPubMed
24.
go back to reference Blank J, Glasgow JE, Pietra GG, Burdette L, Weinbaum G: Nitrogen-dioxide-induced emphysema in rats. Lack of worsening by beta- aminopropionitrile treatment. Am Rev Respir Dis 1988, 137:376–379.CrossRefPubMed Blank J, Glasgow JE, Pietra GG, Burdette L, Weinbaum G: Nitrogen-dioxide-induced emphysema in rats. Lack of worsening by beta- aminopropionitrile treatment. Am Rev Respir Dis 1988, 137:376–379.CrossRefPubMed
25.
go back to reference Glasgow JE, Pietra GG, Abrams WR, Blank J, Oppenheim DM, Weinbaum G: Neutrophil recruitment and degranulation during induction of emphysema in the rat by nitrogen dioxide. Am Rev Respir Dis 1987, 135:1129–1136.PubMed Glasgow JE, Pietra GG, Abrams WR, Blank J, Oppenheim DM, Weinbaum G: Neutrophil recruitment and degranulation during induction of emphysema in the rat by nitrogen dioxide. Am Rev Respir Dis 1987, 135:1129–1136.PubMed
26.
go back to reference Pagani P, Romano M, Erroi A, Ferro M, Salmona M: Biochemical effects of acute and subacute nitrogen dioxide exposure in rat lung and bronchoalveolar fluid. Arch Environ Contam Toxicol 1994, 27:426–430.CrossRefPubMed Pagani P, Romano M, Erroi A, Ferro M, Salmona M: Biochemical effects of acute and subacute nitrogen dioxide exposure in rat lung and bronchoalveolar fluid. Arch Environ Contam Toxicol 1994, 27:426–430.CrossRefPubMed
27.
go back to reference Schaberg T, Lauer C, Lode H, Fischer J, Haller H: Increased number of alveolar macrophages expressing adhesion molecules of the leukocyte adhesion molecule family in smoking subjects. Association with cell-binding ability and superoxide anion production. Am Rev Respir Dis 1992, 146:1287–1293.CrossRefPubMed Schaberg T, Lauer C, Lode H, Fischer J, Haller H: Increased number of alveolar macrophages expressing adhesion molecules of the leukocyte adhesion molecule family in smoking subjects. Association with cell-binding ability and superoxide anion production. Am Rev Respir Dis 1992, 146:1287–1293.CrossRefPubMed
28.
go back to reference Gordon S: Pattern recognition receptors: doubling up for the innate immune response. Cell 2002, 111:927–930.CrossRefPubMed Gordon S: Pattern recognition receptors: doubling up for the innate immune response. Cell 2002, 111:927–930.CrossRefPubMed
29.
go back to reference Shibata Y, Berclaz PY, Chroneos ZC, Yoshida M, Whitsett JA, Trapnell BC: GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity 2001, 15:557–567.CrossRefPubMed Shibata Y, Berclaz PY, Chroneos ZC, Yoshida M, Whitsett JA, Trapnell BC: GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity 2001, 15:557–567.CrossRefPubMed
30.
go back to reference Monick MM, Carter AB, Gudmundsson G, Geist LJ, Hunninghake GW: Changes in PKC isoforms in human alveolar macrophages compared with blood monocytes. Am J Physiol 1998, 275:L389-L397.PubMed Monick MM, Carter AB, Gudmundsson G, Geist LJ, Hunninghake GW: Changes in PKC isoforms in human alveolar macrophages compared with blood monocytes. Am J Physiol 1998, 275:L389-L397.PubMed
31.
go back to reference Monick MM, Carter AB, Hunninghake GW: Human alveolar macrophages are markedly deficient in REF-1 and AP-1 DNA binding activity. J Biol Chem 1999, 274:18075–18080.CrossRefPubMed Monick MM, Carter AB, Hunninghake GW: Human alveolar macrophages are markedly deficient in REF-1 and AP-1 DNA binding activity. J Biol Chem 1999, 274:18075–18080.CrossRefPubMed
32.
go back to reference Jin M, Opalek JM, Marsh CB, Wu HM: Proteome comparison of alveolar macrophages with monocytes reveals distinct protein characteristics. Am J Respir Cell Mol Biol 2004, 31:322–329.CrossRefPubMed Jin M, Opalek JM, Marsh CB, Wu HM: Proteome comparison of alveolar macrophages with monocytes reveals distinct protein characteristics. Am J Respir Cell Mol Biol 2004, 31:322–329.CrossRefPubMed
33.
go back to reference Geissmann F, Jung S, Littman DR: Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003, 19:71–82.CrossRefPubMed Geissmann F, Jung S, Littman DR: Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003, 19:71–82.CrossRefPubMed
34.
go back to reference Sunderkotter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, Leenen PJ: Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 2004, 172:4410–4417.CrossRefPubMed Sunderkotter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, Leenen PJ: Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 2004, 172:4410–4417.CrossRefPubMed
35.
go back to reference Salez L, Singer M, Balloy V, Creminon C, Chignard M: Lack of IL-10 synthesis by murine alveolar macrophages upon lipopolysaccharide exposure. Comparison with peritoneal macrophages. J Leukoc Biol 2000, 67:545–552.PubMed Salez L, Singer M, Balloy V, Creminon C, Chignard M: Lack of IL-10 synthesis by murine alveolar macrophages upon lipopolysaccharide exposure. Comparison with peritoneal macrophages. J Leukoc Biol 2000, 67:545–552.PubMed
37.
go back to reference Brombacher F, Kastelein RA, Alber G: Novel IL-12 family members shed light on the orchestration of Th1 responses. Trends Immunol 2003, 24:207–212.CrossRefPubMed Brombacher F, Kastelein RA, Alber G: Novel IL-12 family members shed light on the orchestration of Th1 responses. Trends Immunol 2003, 24:207–212.CrossRefPubMed
38.
go back to reference Boring L, Gosling J, Chensue SW, Kunkel SL, Farese RV Jr, Broxmeyer HE, Charo IF: Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest 1997, 100:2552–2561.CrossRefPubMedPubMedCentral Boring L, Gosling J, Chensue SW, Kunkel SL, Farese RV Jr, Broxmeyer HE, Charo IF: Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest 1997, 100:2552–2561.CrossRefPubMedPubMedCentral
39.
go back to reference Blease K, Mehrad B, Standiford TJ, Lukacs NW, Gosling J, Boring L, Charo IF, Kunkel SL, Hogaboam CM: Enhanced pulmonary allergic responses to Aspergillus in CCR2-/- mice. J Immunol 2000, 165:2603–2611.CrossRefPubMed Blease K, Mehrad B, Standiford TJ, Lukacs NW, Gosling J, Boring L, Charo IF, Kunkel SL, Hogaboam CM: Enhanced pulmonary allergic responses to Aspergillus in CCR2-/- mice. J Immunol 2000, 165:2603–2611.CrossRefPubMed
40.
go back to reference Kim Y, Sung S, Kuziel WA, Feldman S, Fu SM, Rose CE Jr: Enhanced airway Th2 response after allergen challenge in mice deficient in CC chemokine receptor-2 (CCR2). J Immunol 2001, 166:5183–5192.CrossRefPubMed Kim Y, Sung S, Kuziel WA, Feldman S, Fu SM, Rose CE Jr: Enhanced airway Th2 response after allergen challenge in mice deficient in CC chemokine receptor-2 (CCR2). J Immunol 2001, 166:5183–5192.CrossRefPubMed
41.
42.
go back to reference Finlay GA, O'Driscoll LR, Russell KJ, D'Arcy EM, Masterson JB, FitzGerald MX, O'Connor CM: Matrix metalloproteinase expression and production by alveolar macrophages in emphysema. Am J Respir Crit Care Med 1997, 156:240–247.CrossRefPubMed Finlay GA, O'Driscoll LR, Russell KJ, D'Arcy EM, Masterson JB, FitzGerald MX, O'Connor CM: Matrix metalloproteinase expression and production by alveolar macrophages in emphysema. Am J Respir Crit Care Med 1997, 156:240–247.CrossRefPubMed
43.
go back to reference Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD: Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 1997, 277:2002–2004.CrossRefPubMed Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD: Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 1997, 277:2002–2004.CrossRefPubMed
44.
go back to reference Karkmann U, Radbruch A, Holzel V, Scheffold A: Enzymatic signal amplification for sensitive detection of intracellular antigens by flow cytometry. J Immunol Methods 1999, 230:113–120.CrossRefPubMed Karkmann U, Radbruch A, Holzel V, Scheffold A: Enzymatic signal amplification for sensitive detection of intracellular antigens by flow cytometry. J Immunol Methods 1999, 230:113–120.CrossRefPubMed
45.
go back to reference Lanone S, Zheng T, Zhu Z, Liu W, Lee CG, Ma B, Chen Q, Homer RJ, Wang J, Rabach LA, et al.: Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and -12 in IL-13-induced inflammation and remodeling. J Clin Invest 2002, 110:463–474.CrossRefPubMedPubMedCentral Lanone S, Zheng T, Zhu Z, Liu W, Lee CG, Ma B, Chen Q, Homer RJ, Wang J, Rabach LA, et al.: Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and -12 in IL-13-induced inflammation and remodeling. J Clin Invest 2002, 110:463–474.CrossRefPubMedPubMedCentral
46.
go back to reference Haro H, Crawford HC, Fingleton B, Shinomiya K, Spengler DM, Matrisian LM: Matrix metalloproteinase-7-dependent release of tumor necrosis factor- alpha in a model of herniated disc resorption. J Clin Invest 2000, 105:143–150.CrossRefPubMedPubMedCentral Haro H, Crawford HC, Fingleton B, Shinomiya K, Spengler DM, Matrisian LM: Matrix metalloproteinase-7-dependent release of tumor necrosis factor- alpha in a model of herniated disc resorption. J Clin Invest 2000, 105:143–150.CrossRefPubMedPubMedCentral
47.
go back to reference Yu Q, Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 2000, 14:163–176.PubMedPubMedCentral Yu Q, Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 2000, 14:163–176.PubMedPubMedCentral
48.
go back to reference Schonbeck U, Mach F, Libby P: Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J Immunol 1998, 161:3340–3346.PubMed Schonbeck U, Mach F, Libby P: Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J Immunol 1998, 161:3340–3346.PubMed
49.
go back to reference Frankenberger M, Menzel M, Betz R, Kassner G, Weber N, Kohlhaufl M, Haussinger K, Ziegler-Heitbrock L: Characterization of a population of small macrophages in induced sputum of patients with chronic obstructive pulmonary disease and healthy volunteers. Clin Exp Immunol 2004, 138:507–516.CrossRefPubMedPubMedCentral Frankenberger M, Menzel M, Betz R, Kassner G, Weber N, Kohlhaufl M, Haussinger K, Ziegler-Heitbrock L: Characterization of a population of small macrophages in induced sputum of patients with chronic obstructive pulmonary disease and healthy volunteers. Clin Exp Immunol 2004, 138:507–516.CrossRefPubMedPubMedCentral
Metadata
Title
Phenotypical and functional characterization of alveolar macrophage subpopulations in the lungs of NO2-exposed rats
Authors
Holger Garn
Anette Siese
Sabine Stumpf
Anka Wensing
Harald Renz
Diethard Gemsa
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2006
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-7-4

Other articles of this Issue 1/2006

Respiratory Research 1/2006 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine