Skip to main content
Top
Published in: BMC Cancer 1/2010

Open Access 01-12-2010 | Research article

Phenotypic effects of the circadian gene Cryptochrome 2 on cancer-related pathways

Authors: Aaron E Hoffman, Tongzhang Zheng, Yue Ba, Richard G Stevens, Chun-Hui Yi, Derek Leaderer, Yong Zhu

Published in: BMC Cancer | Issue 1/2010

Login to get access

Abstract

Background

Circadian genes continue to gain attention as important transcriptional regulators with the potential to influence a variety of biological pathways, including many cancer-related processes. The core circadian gene cryptochrome 2 (CRY2) is essential for proper circadian timing, and is a key component of the negative arm of the circadian feedback loop. As such, aberrant expression of CRY2 may influence carcinogenic processes and thereby impact cancer susceptibility.

Methods

We silenced CRY2 in breast cancer cell lines (MCF-7) using small-interfering oligos (siRNA) and measured the impact of CRY2 knockdown on a number of cancer-relevant parameters. Cell cycle distribution, cell viability, and apoptotic response were measured in CRY2 knockdown (CRY2-) and normal (CRY2+) cell populations using flow cytometry in cells with and without exposure to a mutagen challenge. DNA damage accumulation was measured using the single cell gel electrophoresis (comet) assay, and damage was quantified using the Olive tail moment, which considers the amount and distance of DNA migration away from the nucleus, indicative of DNA strand breaks. Expression changes in cancer-relevant transcripts were measured by whole genome microarray. The Student's t-test was used for statistical comparisons, and P-values obtained from the microarray were adjusted for multiple comparisons using the false discovery rate correction, in order to obtain an adjusted Q-value for each observation.

Results

The comet assay results indicated that upon exposure to the same dose of chemical mutagen, CRY2- cells accumulate significantly more unrepaired DNA damage than CRY2+ cells (P = 0.040), suggesting that CRY2 may be important for DNA repair. In addition, a number of transcripts with relevance for DNA damage repair displayed altered expression following CRY2 silencing. These included BCCIP (Q = 0.002), BCL2 (Q = 0.049), CCND1 (Q = 0.009), CDKN1A (Q < 0.001), GADD45A (Q = 0.002), HERC5 (Q < 0.001), MCM5 (Q = 0.042), PPP1R15A (Q < 0.001), SUMO1 (Q < 0.001), and UBA1 (Q = 0.023). However, no significant influence of CRY2 knockdown on cell cycle distributions, cell cycle checkpoints in response to mutagen challenge, or apoptotic response was detected.

Conclusions

In total, these data suggest a limited, but potentially important role for CRY2 in the regulation of DNA damage repair and the maintenance of genomic stability. Future investigations may focus on identifying the mechanisms by which CRY2 may regulate the expression of transcripts with known relevance for carcinogenesis.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Young MW, Kay SA: Time zones: a comparative genetics of circadian clocks. Nat Rev Genet. 2001, 2 (9): 702-715. 10.1038/35088576.CrossRefPubMed Young MW, Kay SA: Time zones: a comparative genetics of circadian clocks. Nat Rev Genet. 2001, 2 (9): 702-715. 10.1038/35088576.CrossRefPubMed
3.
go back to reference Reppert SM, Weaver DR: Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol. 2001, 63: 647-676. 10.1146/annurev.physiol.63.1.647.CrossRefPubMed Reppert SM, Weaver DR: Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol. 2001, 63: 647-676. 10.1146/annurev.physiol.63.1.647.CrossRefPubMed
4.
go back to reference Reppert SM, Weaver DR: Coordination of circadian timing in mammals. Nature. 2002, 418 (6901): 935-941. 10.1038/nature00965.CrossRefPubMed Reppert SM, Weaver DR: Coordination of circadian timing in mammals. Nature. 2002, 418 (6901): 935-941. 10.1038/nature00965.CrossRefPubMed
5.
go back to reference Le Minh N, Damiola F, Tronche F, Schutz G, Schibler U: Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. Embo J. 2001, 20 (24): 7128-7136. 10.1093/emboj/20.24.7128.CrossRefPubMedPubMedCentral Le Minh N, Damiola F, Tronche F, Schutz G, Schibler U: Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. Embo J. 2001, 20 (24): 7128-7136. 10.1093/emboj/20.24.7128.CrossRefPubMedPubMedCentral
6.
go back to reference Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ: Extensive and divergent circadian gene expression in liver and heart. Nature. 2002, 417 (6884): 78-83. 10.1038/nature744.CrossRefPubMed Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ: Extensive and divergent circadian gene expression in liver and heart. Nature. 2002, 417 (6884): 78-83. 10.1038/nature744.CrossRefPubMed
7.
go back to reference Duffield GE, Best JD, Meurers BH, Bittner A, Loros JJ, Dunlap JC: Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol. 2002, 12 (7): 551-557. 10.1016/S0960-9822(02)00765-0.CrossRefPubMed Duffield GE, Best JD, Meurers BH, Bittner A, Loros JJ, Dunlap JC: Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol. 2002, 12 (7): 551-557. 10.1016/S0960-9822(02)00765-0.CrossRefPubMed
8.
go back to reference Thresher RJ, Vitaterna MH, Miyamoto Y, Kazantsev A, Hsu DS, Petit C, Selby CP, Dawut L, Smithies O, Takahashi JS, Sancar A: Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science. 1998, 282 (5393): 1490-1494. 10.1126/science.282.5393.1490.CrossRefPubMed Thresher RJ, Vitaterna MH, Miyamoto Y, Kazantsev A, Hsu DS, Petit C, Selby CP, Dawut L, Smithies O, Takahashi JS, Sancar A: Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science. 1998, 282 (5393): 1490-1494. 10.1126/science.282.5393.1490.CrossRefPubMed
9.
go back to reference Unsal-Kacmaz K, Mullen TE, Kaufmann WK, Sancar A: Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol. 2005, 25 (8): 3109-3116. 10.1128/MCB.25.8.3109-3116.2005.CrossRefPubMedPubMedCentral Unsal-Kacmaz K, Mullen TE, Kaufmann WK, Sancar A: Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol. 2005, 25 (8): 3109-3116. 10.1128/MCB.25.8.3109-3116.2005.CrossRefPubMedPubMedCentral
10.
go back to reference Gauger MA, Sancar A: Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer. Cancer Res. 2005, 65 (15): 6828-6834. 10.1158/0008-5472.CAN-05-1119.CrossRefPubMed Gauger MA, Sancar A: Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer. Cancer Res. 2005, 65 (15): 6828-6834. 10.1158/0008-5472.CAN-05-1119.CrossRefPubMed
11.
go back to reference Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H: Control mechanism of the circadian clock for timing of cell division in vivo. Science. 2003, 302 (5643): 255-259. 10.1126/science.1086271.CrossRefPubMed Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H: Control mechanism of the circadian clock for timing of cell division in vivo. Science. 2003, 302 (5643): 255-259. 10.1126/science.1086271.CrossRefPubMed
12.
go back to reference Watson JV, Chambers SH, Smith PJ: A pragmatic approach to the analysis of DNA histograms with a definable G1 peak. Cytometry. 1987, 8 (1): 1-8. 10.1002/cyto.990080101.CrossRefPubMed Watson JV, Chambers SH, Smith PJ: A pragmatic approach to the analysis of DNA histograms with a definable G1 peak. Cytometry. 1987, 8 (1): 1-8. 10.1002/cyto.990080101.CrossRefPubMed
13.
go back to reference Olive PL, Banath JP, Durand RE: Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the "comet" assay. Radiat Res. 1990, 122 (1): 86-94. 10.2307/3577587.CrossRefPubMed Olive PL, Banath JP, Durand RE: Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the "comet" assay. Radiat Res. 1990, 122 (1): 86-94. 10.2307/3577587.CrossRefPubMed
14.
go back to reference Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995, 57 (1): 289-300. Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995, 57 (1): 289-300.
15.
go back to reference Buckley MF, Sweeney KJ, Hamilton JA, Sini RL, Manning DL, Nicholson RI, deFazio A, Watts CK, Musgrove EA, Sutherland RL: Expression and amplification of cyclin genes in human breast cancer. Oncogene. 1993, 8 (8): 2127-2133.PubMed Buckley MF, Sweeney KJ, Hamilton JA, Sini RL, Manning DL, Nicholson RI, deFazio A, Watts CK, Musgrove EA, Sutherland RL: Expression and amplification of cyclin genes in human breast cancer. Oncogene. 1993, 8 (8): 2127-2133.PubMed
16.
go back to reference Arnold A, Papanikolaou A: Cyclin D1 in breast cancer pathogenesis. J Clin Oncol. 2005, 23 (18): 4215-4224. 10.1200/JCO.2005.05.064.CrossRefPubMed Arnold A, Papanikolaou A: Cyclin D1 in breast cancer pathogenesis. J Clin Oncol. 2005, 23 (18): 4215-4224. 10.1200/JCO.2005.05.064.CrossRefPubMed
17.
go back to reference Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM: mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999, 98 (2): 193-205. 10.1016/S0092-8674(00)81014-4.CrossRefPubMed Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM: mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999, 98 (2): 193-205. 10.1016/S0092-8674(00)81014-4.CrossRefPubMed
18.
19.
go back to reference Xiang S, Coffelt SB, Mao L, Yuan L, Cheng Q, Hill SM: Period-2: a tumor suppressor gene in breast cancer. J Circadian Rhythms. 2008, 6: 4-10.1186/1740-3391-6-4.CrossRefPubMedPubMedCentral Xiang S, Coffelt SB, Mao L, Yuan L, Cheng Q, Hill SM: Period-2: a tumor suppressor gene in breast cancer. J Circadian Rhythms. 2008, 6: 4-10.1186/1740-3391-6-4.CrossRefPubMedPubMedCentral
20.
go back to reference Grechez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F: The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J Biol Chem. 2008, 283 (8): 4535-4542. 10.1074/jbc.M705576200.CrossRefPubMed Grechez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F: The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J Biol Chem. 2008, 283 (8): 4535-4542. 10.1074/jbc.M705576200.CrossRefPubMed
21.
go back to reference Kondratov RV, Gorbacheva VY, Antoch MP: The role of mammalian circadian proteins in normal physiology and genotoxic stress responses. Curr Top Dev Biol. 2007, 78: 173-216. full_text.CrossRefPubMed Kondratov RV, Gorbacheva VY, Antoch MP: The role of mammalian circadian proteins in normal physiology and genotoxic stress responses. Curr Top Dev Biol. 2007, 78: 173-216. full_text.CrossRefPubMed
22.
go back to reference Ozturk N, Lee JH, Gaddameedhi S, Sancar A: Loss of cryptochrome reduces cancer risk in p53 mutant mice. Proc Natl Acad Sci USA. 2009, 106 (8): 2841-2846. 10.1073/pnas.0813028106.CrossRefPubMedPubMedCentral Ozturk N, Lee JH, Gaddameedhi S, Sancar A: Loss of cryptochrome reduces cancer risk in p53 mutant mice. Proc Natl Acad Sci USA. 2009, 106 (8): 2841-2846. 10.1073/pnas.0813028106.CrossRefPubMedPubMedCentral
23.
go back to reference Kang TH, Reardon JT, Kemp M, Sancar A: Circadian oscillation of nucleotide excision repair in mammalian brain. Proc Natl Acad Sci USA. 2009, 106 (8): 2864-2867. 10.1073/pnas.0812638106.CrossRefPubMedPubMedCentral Kang TH, Reardon JT, Kemp M, Sancar A: Circadian oscillation of nucleotide excision repair in mammalian brain. Proc Natl Acad Sci USA. 2009, 106 (8): 2864-2867. 10.1073/pnas.0812638106.CrossRefPubMedPubMedCentral
24.
go back to reference Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, Hitomi K, Thresher RJ, Ishikawa T, Miyazaki J, Takahashi JS, Sancar A: Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci USA. 1999, 96 (21): 12114-12119. 10.1073/pnas.96.21.12114.CrossRefPubMedPubMedCentral Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, Hitomi K, Thresher RJ, Ishikawa T, Miyazaki J, Takahashi JS, Sancar A: Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci USA. 1999, 96 (21): 12114-12119. 10.1073/pnas.96.21.12114.CrossRefPubMedPubMedCentral
25.
go back to reference Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Ørntoft T, Lukas J, Bartek J: DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005, 434 (7035): 864-870. 10.1038/nature03482.CrossRefPubMed Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Ørntoft T, Lukas J, Bartek J: DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005, 434 (7035): 864-870. 10.1038/nature03482.CrossRefPubMed
26.
go back to reference Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA, Kastrinakis NG, Levy B, Kletsas D, Yoneta A, Herlyn M, Kittas C, Halazonetis TD: Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005, 434 (7035): 907-913. 10.1038/nature03485.CrossRefPubMed Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA, Kastrinakis NG, Levy B, Kletsas D, Yoneta A, Herlyn M, Kittas C, Halazonetis TD: Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005, 434 (7035): 907-913. 10.1038/nature03485.CrossRefPubMed
27.
go back to reference Gorbacheva VY, Kondratov RV, Zhang R, Cherukuri S, Gudkov AV, Takahashi JS, Antoch MP: Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proc Natl Acad Sci USA. 2005, 102 (9): 3407-3412. 10.1073/pnas.0409897102.CrossRefPubMedPubMedCentral Gorbacheva VY, Kondratov RV, Zhang R, Cherukuri S, Gudkov AV, Takahashi JS, Antoch MP: Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proc Natl Acad Sci USA. 2005, 102 (9): 3407-3412. 10.1073/pnas.0409897102.CrossRefPubMedPubMedCentral
28.
go back to reference Lis CG, Grutsch JF, Wood P, You M, Rich I, Hrushesky WJ: Circadian timing in cancer treatment: the biological foundation for an integrative approach. Integr Cancer Ther. 2003, 2 (2): 105-111. 10.1177/1534735403002002002.CrossRefPubMed Lis CG, Grutsch JF, Wood P, You M, Rich I, Hrushesky WJ: Circadian timing in cancer treatment: the biological foundation for an integrative approach. Integr Cancer Ther. 2003, 2 (2): 105-111. 10.1177/1534735403002002002.CrossRefPubMed
Metadata
Title
Phenotypic effects of the circadian gene Cryptochrome 2 on cancer-related pathways
Authors
Aaron E Hoffman
Tongzhang Zheng
Yue Ba
Richard G Stevens
Chun-Hui Yi
Derek Leaderer
Yong Zhu
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2010
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-10-110

Other articles of this Issue 1/2010

BMC Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine