Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2018

Open Access 01-12-2018 | Research article

Phenolic compounds as antioxidants and chemopreventive drugs from Streptomyces cellulosae strain TES17 isolated from rhizosphere of Camellia sinensis

Authors: Riveka Rani, Saroj Arora, Jeevanjot Kaur, Rajesh Kumari Manhas

Published in: BMC Complementary Medicine and Therapies | Issue 1/2018

Login to get access

Abstract

Background

Oxidative stress in an intracellular environment created by the accumulation of reactive oxygen species results in oxidative damage to biomolecules which ultimately become a hallmark for severe diseases like cancer, aging, diabetes, and cardiovascular and neurodegenerative diseases.

Methods

Various in vitro assays were employed to assess the antioxidant potential of strain, DNA protective activity was demonstrated using DNA nicking assay and cytotoxicity of the extract was evaluated using MTT assay. Further identification of the compounds was done using UPLC analysis.

Results

The extract of Streptomyces cellulosae strain TES17 demonstrated significant antioxidant activity with percentage inhibition of 78.47 ± 0.23, 91.08 ± 0.98 and 82.08 ± 0.93 for DPPH, ABTS and superoxide radical assays at 5 mg/mL, respectively. Total antioxidant and reducing power were found to be 76.93 ± 0.76 and 231.96 ± 0.51 mg AAE/100 mg of dry extract, respectively. Moreover, the extract was shown to inhibit lipid peroxidation upto 67.18 ± 1.9% at 5 mg/mL. TPC and TFC measured in the extract was 55 mg GAE/100 mg and 11.17 ± 4.05 mg rutin/100 mg, respectively. The protective nature of the TES17 extract to oxidative stress induced damaged DNA was shown by percentage of supercoiled DNA i.e. Form I was increased from 26.38 to 38.20% at concentrations ranging from 2 μg to 10 μg. TES17 extract also showed the cytotoxic activity against lung cancer cell line with 74.7 ± 1.33% inhibition whereas, limited toxicity was observed against normal cell line with percentage viability of 87.71 ± 6.66 at same concentration (30 μg/mL) tested. The antioxidant capacity of extract was well correlated with its TPC and TFC and this in turn was in keeping with the UPLC analysis which also revealed the presence of phenolic compounds that were responsible for the antioxidant and cytotoxic potential of S. cellulosae strain TES17.

Conclusions

The present study describes that S. cellulosae strain TES17 isolated from the rhizosphere of Camellia sinensis (tea) plant; produces potent compounds with antioxidant activity, further might be developed into therapeutic drugs to combat oxidative stress.
Appendix
Available only for authorised users
Literature
1.
go back to reference Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem. 2002;80:780–7.CrossRefPubMed Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem. 2002;80:780–7.CrossRefPubMed
2.
go back to reference Hancock JT, Desikan R, Neill SJ. Role of reactive oxygen species in cell signaling pathways. Biochem Soc Trans. 2001;29:345–50.CrossRefPubMed Hancock JT, Desikan R, Neill SJ. Role of reactive oxygen species in cell signaling pathways. Biochem Soc Trans. 2001;29:345–50.CrossRefPubMed
3.
go back to reference Tan LT-H, Chan K-G, Khan TM, Bukhari SI, Saokaew S, Duangjai A, et al. Streptomyces sp. MUM212 as a source of antioxidants with radical scavenging and metal chelating properties. Front Pharmacol. 2017;8:276.CrossRefPubMedPubMedCentral Tan LT-H, Chan K-G, Khan TM, Bukhari SI, Saokaew S, Duangjai A, et al. Streptomyces sp. MUM212 as a source of antioxidants with radical scavenging and metal chelating properties. Front Pharmacol. 2017;8:276.CrossRefPubMedPubMedCentral
4.
go back to reference Floyd RA, Hensley K. Oxidative stress in brain aging: implications for therapeutics of neurodegenerative diseases. Neurobiol Aging. 2002;23:795–807.CrossRefPubMed Floyd RA, Hensley K. Oxidative stress in brain aging: implications for therapeutics of neurodegenerative diseases. Neurobiol Aging. 2002;23:795–807.CrossRefPubMed
6.
go back to reference Farooqui T, Farooqui AA. Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech Ageing Dev. 2009;130:203–15.CrossRefPubMed Farooqui T, Farooqui AA. Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech Ageing Dev. 2009;130:203–15.CrossRefPubMed
7.
go back to reference Fearon IM, Faux SP. Oxidative stress and cardiovascular disease: novel tools give (free) radical insight. J Mol Cell Cardiol. 2009;47:372–81.CrossRefPubMed Fearon IM, Faux SP. Oxidative stress and cardiovascular disease: novel tools give (free) radical insight. J Mol Cell Cardiol. 2009;47:372–81.CrossRefPubMed
8.
go back to reference Dizdaroglu M. Oxidatively induced DNA damage and its repair in cancer. Mutat Res Rev Mutat Res. 2015;763:212–45.CrossRefPubMed Dizdaroglu M. Oxidatively induced DNA damage and its repair in cancer. Mutat Res Rev Mutat Res. 2015;763:212–45.CrossRefPubMed
9.
go back to reference Apak R, Özyürek M, Güçlü K, Çapanoğlu E. Antioxidant activity/capacity measurement. 2. Hydrogen atom transfer (HAT)-based, mixed-mode (electron transfer (ET)/HAT), and lipid peroxidation assays. Agric Food Chem. 2016;64:1028–45.CrossRef Apak R, Özyürek M, Güçlü K, Çapanoğlu E. Antioxidant activity/capacity measurement. 2. Hydrogen atom transfer (HAT)-based, mixed-mode (electron transfer (ET)/HAT), and lipid peroxidation assays. Agric Food Chem. 2016;64:1028–45.CrossRef
10.
go back to reference Kumar PS, Al-Dhabi NA, Duraipandiyan V, Balachandran C, Kumar PP, Ignacimuthu S. In vitro antimicrobial, antioxidant and cytotoxic properties of Streptomyces lavendulae strain SCA5. BMC Microbiol. 2014;14:291.CrossRef Kumar PS, Al-Dhabi NA, Duraipandiyan V, Balachandran C, Kumar PP, Ignacimuthu S. In vitro antimicrobial, antioxidant and cytotoxic properties of Streptomyces lavendulae strain SCA5. BMC Microbiol. 2014;14:291.CrossRef
11.
go back to reference Rechner AR, Kuhnle G, Bremmer P, Hubbard GP, Moore KP, Rice-Evans CA. The metabolic fate of dietary polyphenols in humans. Free Radic Biol Med. 2002;33:220–35.CrossRefPubMed Rechner AR, Kuhnle G, Bremmer P, Hubbard GP, Moore KP, Rice-Evans CA. The metabolic fate of dietary polyphenols in humans. Free Radic Biol Med. 2002;33:220–35.CrossRefPubMed
12.
go back to reference Law JW-F, Ser H-L, Duangjai A, Saokaew S, Bukhari SI, Khan TM, et al. Streptomyces colonosanans sp. nov., a novel Actinobacterium isolated from Malaysia mangrove soil exhibiting Antioxidative activity and cytotoxic potential against human colon cancer cell lines. Front Microbiol. 2017;8:877.CrossRefPubMedPubMedCentral Law JW-F, Ser H-L, Duangjai A, Saokaew S, Bukhari SI, Khan TM, et al. Streptomyces colonosanans sp. nov., a novel Actinobacterium isolated from Malaysia mangrove soil exhibiting Antioxidative activity and cytotoxic potential against human colon cancer cell lines. Front Microbiol. 2017;8:877.CrossRefPubMedPubMedCentral
13.
go back to reference Zhang H, Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci. 2016;8:33–42.CrossRef Zhang H, Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci. 2016;8:33–42.CrossRef
14.
go back to reference Njateng GSS, Du Z, Gatsing D, Mouokeu RS, Liu Y, Zang HX, et al. Antibacterial and antioxidant properties of crude extract, fractions and compounds from the stem bark of Polyscias fulva Hiern (Araliaceae). BMC Complement Altern Med. 2017;17:99.CrossRefPubMedPubMedCentral Njateng GSS, Du Z, Gatsing D, Mouokeu RS, Liu Y, Zang HX, et al. Antibacterial and antioxidant properties of crude extract, fractions and compounds from the stem bark of Polyscias fulva Hiern (Araliaceae). BMC Complement Altern Med. 2017;17:99.CrossRefPubMedPubMedCentral
15.
go back to reference Bush K, Macielag M. New approaches in the treatment of bacterial infections. Curr Opin Chem Biol. 2000;4:433–9.CrossRefPubMed Bush K, Macielag M. New approaches in the treatment of bacterial infections. Curr Opin Chem Biol. 2000;4:433–9.CrossRefPubMed
16.
go back to reference Chin Y-W, Balunas MJ, Chai HB, Kinghorn AD. Drug discovery from natural sources. AAPS J. 2006;8:239–53.CrossRef Chin Y-W, Balunas MJ, Chai HB, Kinghorn AD. Drug discovery from natural sources. AAPS J. 2006;8:239–53.CrossRef
17.
go back to reference Ikeda H, Ishikawa J, Hanamato A, Shinose M, Kikuchi H, Shiba T, et al. Complete genome sequence and comparative analysis of the industrial microorganism Stretomyces avermitilis. Nat Biotechnol. 2003;21:526–31.CrossRefPubMed Ikeda H, Ishikawa J, Hanamato A, Shinose M, Kikuchi H, Shiba T, et al. Complete genome sequence and comparative analysis of the industrial microorganism Stretomyces avermitilis. Nat Biotechnol. 2003;21:526–31.CrossRefPubMed
18.
19.
go back to reference Schatz A, Waksman SE. Effect of streptomycin and other antibiotic substances upon Mycobacterium tuberculosis and related organisms. Proc Soc Exp Biol Med. 1944;57:244–8.CrossRef Schatz A, Waksman SE. Effect of streptomycin and other antibiotic substances upon Mycobacterium tuberculosis and related organisms. Proc Soc Exp Biol Med. 1944;57:244–8.CrossRef
20.
go back to reference Hopwood DA. Streptomyces in nature and medicine: the antibiotic makers. NewYork: Oxford University Press; 2007. Hopwood DA. Streptomyces in nature and medicine: the antibiotic makers. NewYork: Oxford University Press; 2007.
21.
go back to reference Manivasagan P, Venkatesan J, Sivakumar K, Kim SK. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res. 2014;169:262–78.CrossRefPubMed Manivasagan P, Venkatesan J, Sivakumar K, Kim SK. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res. 2014;169:262–78.CrossRefPubMed
22.
go back to reference Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. 2009;321:341–61.CrossRef Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. 2009;321:341–61.CrossRef
23.
go back to reference Yamamura H, Ashizawa H, Hamada M, Hosoyama A, Komaki H, Otoguro M, et al. Streptomyces hokutonensis sp. nov., a novel actinomycete isolated from the strawberry root rhizosphere. J Antibiot. 2014;67:465–70.CrossRefPubMed Yamamura H, Ashizawa H, Hamada M, Hosoyama A, Komaki H, Otoguro M, et al. Streptomyces hokutonensis sp. nov., a novel actinomycete isolated from the strawberry root rhizosphere. J Antibiot. 2014;67:465–70.CrossRefPubMed
24.
go back to reference Guo K, Fang T, Wang J, Wu AA, Wang Y, Jiang J, et al. Two new spirooxindole alkaloids from rhizosphere strain Streptomyces sp. xzqh-9. Bioorg Med Chem Lett. 2014;24:4995–8.CrossRefPubMed Guo K, Fang T, Wang J, Wu AA, Wang Y, Jiang J, et al. Two new spirooxindole alkaloids from rhizosphere strain Streptomyces sp. xzqh-9. Bioorg Med Chem Lett. 2014;24:4995–8.CrossRefPubMed
25.
go back to reference Nguyen TM, Kim J. Streptomyces bambusae sp. nov., showing antifungal and antibacterial activities, isolated from bamboo (Bambuseae) rhizosphere soil using a modified culture method. Curr Microbiol. 2015;71:658–68.CrossRefPubMed Nguyen TM, Kim J. Streptomyces bambusae sp. nov., showing antifungal and antibacterial activities, isolated from bamboo (Bambuseae) rhizosphere soil using a modified culture method. Curr Microbiol. 2015;71:658–68.CrossRefPubMed
26.
go back to reference Camargo LEA, Pedroso LS, Vendrame SC, Mainardes RM, Khalil NM. Antioxidant and antifungal activities of Camellia sinensis (L.) Kuntze leaves obtained by different forms of production. Braz J Biol. 2016;76:428–34.CrossRefPubMed Camargo LEA, Pedroso LS, Vendrame SC, Mainardes RM, Khalil NM. Antioxidant and antifungal activities of Camellia sinensis (L.) Kuntze leaves obtained by different forms of production. Braz J Biol. 2016;76:428–34.CrossRefPubMed
27.
go back to reference Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med. 1992;21:334–50.CrossRefPubMed Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med. 1992;21:334–50.CrossRefPubMed
28.
go back to reference Chan EWC, Lim YY, Chew YL. Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia. Food Chem. 2007;102:1214–22.CrossRef Chan EWC, Lim YY, Chew YL. Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia. Food Chem. 2007;102:1214–22.CrossRef
29.
go back to reference Saito T, Miyata G. The nutraceutical benefit. Part I: green tea. Nutr. 2000;16:315–7.CrossRef Saito T, Miyata G. The nutraceutical benefit. Part I: green tea. Nutr. 2000;16:315–7.CrossRef
30.
go back to reference Sharma D, Kaur T, Chadha BS, Manhas RK. Antimicrobial activity of actinomycetes against multidrug resistant Staphylococcus aureus, E. coli and various other pathogens. Trop J Pharm Res. 2011;10:801–8.CrossRef Sharma D, Kaur T, Chadha BS, Manhas RK. Antimicrobial activity of actinomycetes against multidrug resistant Staphylococcus aureus, E. coli and various other pathogens. Trop J Pharm Res. 2011;10:801–8.CrossRef
31.
go back to reference Sharma D, Mayilraj S, Manhas RK. Streptomyces amritsarensis sp. nov., exhibiting broad-spectrum antimicrobial activity. Antonie Van Leeuwenhoek. 2014;105:943–9.CrossRefPubMed Sharma D, Mayilraj S, Manhas RK. Streptomyces amritsarensis sp. nov., exhibiting broad-spectrum antimicrobial activity. Antonie Van Leeuwenhoek. 2014;105:943–9.CrossRefPubMed
32.
go back to reference Shirling EB, Gotllieb D. Methods for characterization of streptomycetes sp. Int J Syst Bacteriol. 1966;16:313–40.CrossRef Shirling EB, Gotllieb D. Methods for characterization of streptomycetes sp. Int J Syst Bacteriol. 1966;16:313–40.CrossRef
33.
go back to reference Cowan ST, Steel KJ. Manual for the identification of medical bacteria. London: Cambridge University Press; 1965. Cowan ST, Steel KJ. Manual for the identification of medical bacteria. London: Cambridge University Press; 1965.
34.
go back to reference Holding AJ, Collee JG. Routine biochemical tests. Methods Microbiol. 1971;6A:1–31. Holding AJ, Collee JG. Routine biochemical tests. Methods Microbiol. 1971;6A:1–31.
35.
go back to reference Lanyi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol. 1987;19:1–67. Lanyi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol. 1987;19:1–67.
36.
go back to reference Marmur JA. Procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol. 1961;3:208–18.CrossRef Marmur JA. Procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol. 1961;3:208–18.CrossRef
37.
go back to reference Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, et al. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol. 2007;57:2259–61.CrossRefPubMed Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, et al. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol. 2007;57:2259–61.CrossRefPubMed
38.
go back to reference Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.CrossRefPubMed Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.CrossRefPubMed
39.
go back to reference Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;28:2731–9.CrossRef Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;28:2731–9.CrossRef
40.
go back to reference Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231–7.CrossRefPubMed Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231–7.CrossRefPubMed
41.
go back to reference Nishikimi M, Rao NA, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Comm. 1972;46:849–54.CrossRefPubMed Nishikimi M, Rao NA, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Comm. 1972;46:849–54.CrossRefPubMed
42.
go back to reference Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269:337–41.CrossRefPubMed Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269:337–41.CrossRefPubMed
43.
go back to reference Oktay M, Gülçin İ, Küfrevioğlu Öİ. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Lebebsm Wiss Technol. 2003;36:263–71.CrossRef Oktay M, Gülçin İ, Küfrevioğlu Öİ. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Lebebsm Wiss Technol. 2003;36:263–71.CrossRef
44.
go back to reference Dasgupta N, De B. Antioxidant activity of Piper betle L. leaf extract in vitro. Food Chem. 2004;88:219–24.CrossRef Dasgupta N, De B. Antioxidant activity of Piper betle L. leaf extract in vitro. Food Chem. 2004;88:219–24.CrossRef
45.
go back to reference Yu L, Haley S, Perret J, Harris M, Wilson J, Qian M. Free radical scavenging properties of wheat extracts. J Agric Food Chem. 2002;50:1619–24.CrossRefPubMed Yu L, Haley S, Perret J, Harris M, Wilson J, Qian M. Free radical scavenging properties of wheat extracts. J Agric Food Chem. 2002;50:1619–24.CrossRefPubMed
46.
go back to reference Lee JC, Kim HR, Kim J, Jang YS. Antioxidant property of an ethanol extract of the stem of Opuntia ficus-indica var. saboten. J Agric Food Chem. 2002;50:6490–6.CrossRefPubMed Lee JC, Kim HR, Kim J, Jang YS. Antioxidant property of an ethanol extract of the stem of Opuntia ficus-indica var. saboten. J Agric Food Chem. 2002;50:6490–6.CrossRefPubMed
47.
go back to reference Mossman T. Rapid calorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays. J Immunol Methods. 1983;65:55–63.CrossRef Mossman T. Rapid calorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays. J Immunol Methods. 1983;65:55–63.CrossRef
48.
go back to reference Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol. 2009;68:1–13.CrossRefPubMed Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol. 2009;68:1–13.CrossRefPubMed
49.
go back to reference Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. 2006;57:233–66.CrossRefPubMed Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. 2006;57:233–66.CrossRefPubMed
50.
go back to reference Singh BK, Millard P, Whiteley AS, Murrell JC. Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol. 2004;12:386–93.CrossRefPubMed Singh BK, Millard P, Whiteley AS, Murrell JC. Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol. 2004;12:386–93.CrossRefPubMed
51.
go back to reference Bonaldi M, Chen X, Kunova A, Pizzatti C, Saracchi M, Cortesi P. Colonization of lettuce rhizosphere and roots by tagged Streptomyces. Front Microbiol. 2015;6:25.CrossRefPubMedPubMedCentral Bonaldi M, Chen X, Kunova A, Pizzatti C, Saracchi M, Cortesi P. Colonization of lettuce rhizosphere and roots by tagged Streptomyces. Front Microbiol. 2015;6:25.CrossRefPubMedPubMedCentral
52.
go back to reference Ser H-L, Law JW-F, Chaiyakunapruk N, Jacob SA, Palanisamy UD, Chan K-G, et al. Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: a systematic review. Front Microbiol. 2016;7:522.PubMedPubMedCentral Ser H-L, Law JW-F, Chaiyakunapruk N, Jacob SA, Palanisamy UD, Chan K-G, et al. Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: a systematic review. Front Microbiol. 2016;7:522.PubMedPubMedCentral
53.
go back to reference Shirling EB, Gottlieb D. Cooperative description of type cultures of Streptomyces. IV. Species descriptions from the second, third and fourth studies. Int J Syst Bacteriol. 1969;19:391–512.CrossRef Shirling EB, Gottlieb D. Cooperative description of type cultures of Streptomyces. IV. Species descriptions from the second, third and fourth studies. Int J Syst Bacteriol. 1969;19:391–512.CrossRef
54.
go back to reference Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. New York: Oxford University Press; 2007. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. New York: Oxford University Press; 2007.
55.
go back to reference Carocho M, Ferreira IC. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol. 2013;51:15–25.CrossRefPubMed Carocho M, Ferreira IC. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol. 2013;51:15–25.CrossRefPubMed
57.
go back to reference Deora SL, Khadabadi SS, Baviskar BA, Khangenbam RA, Koli US, Daga NP, et al. In vitro antioxidant activity and phenolic content of Croton caudatum. Int J ChemTech Res. 2009;1:174–6. Deora SL, Khadabadi SS, Baviskar BA, Khangenbam RA, Koli US, Daga NP, et al. In vitro antioxidant activity and phenolic content of Croton caudatum. Int J ChemTech Res. 2009;1:174–6.
58.
go back to reference Meyer AS, Isaksen A. Application of enzymes as food antioxidants. Trends Food Sci Technol. 1995;6:300–4.CrossRef Meyer AS, Isaksen A. Application of enzymes as food antioxidants. Trends Food Sci Technol. 1995;6:300–4.CrossRef
59.
go back to reference Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;1:26. Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;1:26.
60.
go back to reference Dorman HJD, Kosar M, Kahlos K, Holm Y, Hiltunen R. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties and cultivars. J Agric Food Chem. 2003;51:4563–9.CrossRefPubMed Dorman HJD, Kosar M, Kahlos K, Holm Y, Hiltunen R. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties and cultivars. J Agric Food Chem. 2003;51:4563–9.CrossRefPubMed
61.
go back to reference Lu J, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mod Med. 2010;14:840–60.CrossRef Lu J, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mod Med. 2010;14:840–60.CrossRef
62.
go back to reference Nagulendran KR, Velavan S, Mahesh R, Begum VH. In vitro antioxidant activity and total poly phenolic content of Cypreus rotundus rhizomes. J Chem. 2007;4:440–9. Nagulendran KR, Velavan S, Mahesh R, Begum VH. In vitro antioxidant activity and total poly phenolic content of Cypreus rotundus rhizomes. J Chem. 2007;4:440–9.
63.
go back to reference Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med. 2002;32:1102–15.CrossRefPubMed Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med. 2002;32:1102–15.CrossRefPubMed
64.
go back to reference Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266:37–56.CrossRefPubMed Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266:37–56.CrossRefPubMed
65.
go back to reference Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49:1603–16.CrossRefPubMedPubMedCentral Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49:1603–16.CrossRefPubMedPubMedCentral
66.
go back to reference Fernandez A. Synergizing immunotherapy with molecular- targeted anticancer treatment. Drug Dis Today. 2014;19:1427–32.CrossRef Fernandez A. Synergizing immunotherapy with molecular- targeted anticancer treatment. Drug Dis Today. 2014;19:1427–32.CrossRef
67.
go back to reference Ser H-L, Ab Mutalib N-S, Yin W-F, Chan K-G, Goh B-H, Lee L-H. Evaluation of Antioxidative and cytotoxic activities of Streptomyces pluripotens MUSC137 isolated from mangrove soil in Malaysia. Front Microbiol. 2015;6:1398.PubMedPubMedCentral Ser H-L, Ab Mutalib N-S, Yin W-F, Chan K-G, Goh B-H, Lee L-H. Evaluation of Antioxidative and cytotoxic activities of Streptomyces pluripotens MUSC137 isolated from mangrove soil in Malaysia. Front Microbiol. 2015;6:1398.PubMedPubMedCentral
68.
go back to reference Ying X, Wang R, Xu J, Zhang W, Li H, Zhang C, et al. HPLC determination of eight polyphenols in the leaves of Crataegus pinnatifida Bge. Var. major. J Chromatogr Sci. 2009;47:201–5.CrossRefPubMed Ying X, Wang R, Xu J, Zhang W, Li H, Zhang C, et al. HPLC determination of eight polyphenols in the leaves of Crataegus pinnatifida Bge. Var. major. J Chromatogr Sci. 2009;47:201–5.CrossRefPubMed
69.
go back to reference Terpinc P, Polak T, Šegatin N, Hanzlowsky A, Ulrih NP, Abramovicˇ H. Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acids. Food Chem 2011;128:62–68. Terpinc P, Polak T, Šegatin N, Hanzlowsky A, Ulrih NP, Abramovicˇ H. Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acids. Food Chem 2011;128:62–68.
70.
go back to reference Brewer MS. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf. 2011;10:221–47.CrossRef Brewer MS. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf. 2011;10:221–47.CrossRef
71.
go back to reference Camargo AEI, Daguer DAE, Barbosa DS. Green tea exerts antioxidant action in vitro and its consumption increases total serum antioxidant potential in normal and dyslipidemic subjects. Nutr Res. 2006;26:626–31.CrossRef Camargo AEI, Daguer DAE, Barbosa DS. Green tea exerts antioxidant action in vitro and its consumption increases total serum antioxidant potential in normal and dyslipidemic subjects. Nutr Res. 2006;26:626–31.CrossRef
Metadata
Title
Phenolic compounds as antioxidants and chemopreventive drugs from Streptomyces cellulosae strain TES17 isolated from rhizosphere of Camellia sinensis
Authors
Riveka Rani
Saroj Arora
Jeevanjot Kaur
Rajesh Kumari Manhas
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2018
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2154-4

Other articles of this Issue 1/2018

BMC Complementary Medicine and Therapies 1/2018 Go to the issue