Skip to main content
Top
Published in: Targeted Oncology 1/2017

01-02-2017 | Original Research Article

Phase I/II Study of Refametinib (BAY 86-9766) in Combination with Gemcitabine in Advanced Pancreatic cancer

Authors: Jean-Luc Van Laethem, Hanno Riess, Jacek Jassem, Michael Haas, Uwe M. Martens, Colin Weekes, Marc Peeters, Paul Ross, John Bridgewater, Bohuslav Melichar, Stefano Cascinu, Piotr Saramak, Patrick Michl, David Van Brummelen, Alberto Zaniboni, Wollf Schmiegel, Svein Dueland, Marius Giurescu, Vittorio L. Garosi, Katrin Roth, Anke Schulz, Henrik Seidel, Prabhu Rajagopalan, Michael Teufel, Barrett H. Childs

Published in: Targeted Oncology | Issue 1/2017

Login to get access

Abstract

Background

Activating KRAS mutations are reported in up to 90% of pancreatic cancers. Refametinib potently inhibits MEK1/2, part of the MAPK signaling pathway. This phase I/II study evaluated the safety and efficacy of refametinib plus gemcitabine in patients with advanced pancreatic cancer.

Methods

Phase I comprised dose escalation, followed by phase II expansion. Refametinib and gemcitabine plasma levels were analyzed for pharmacokinetics. KRAS mutational status was determined from circulating tumor DNA.

Results

Ninety patients overall received treatment. The maximum tolerated dose was refametinib 50 mg twice daily plus standard gemcitabine (1000 mg/m2 weekly). The combination was well tolerated, with no pharmacokinetic interaction. Treatment-emergent toxicities included thrombocytopenia, fatigue, anemia, and edema. The objective response rate was 23% and the disease control rate was 73%. Overall response rate, disease control rate, progression-free survival, and overall survival were higher in patients without detectable KRAS mutations (48% vs. 28%, 81% vs. 69%, 8.8 vs. 5.3 months, and 18.2 vs. 6.6 months, respectively).

Conclusion

Refametinib plus gemcitabine was well tolerated, with a promising objective response rate, and had an acceptable safety profile and no pharmacokinetic interaction. There was a trend towards improved outcomes in patients without detectable KRAS mutations that deserves future investigation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 http://globocan.iarc.fr (2013). Accessed 5 Sept 2016. Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 http://​globocan.​iarc.​fr (2013). Accessed 5 Sept 2016.
2.
go back to reference Morris JP, Wang SC, Hebrok M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer. 2010;10:683–95.CrossRefPubMedPubMedCentral Morris JP, Wang SC, Hebrok M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer. 2010;10:683–95.CrossRefPubMedPubMedCentral
3.
go back to reference Kanda M, Matthaei H, Wu J, et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology. 2012;142:730–3.CrossRefPubMedPubMedCentral Kanda M, Matthaei H, Wu J, et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology. 2012;142:730–3.CrossRefPubMedPubMedCentral
5.
go back to reference Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26:3291–310.CrossRefPubMed Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26:3291–310.CrossRefPubMed
7.
go back to reference Friday BB, Adjei AA. Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clin Cancer Res. 2008;14:342–6.CrossRefPubMed Friday BB, Adjei AA. Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clin Cancer Res. 2008;14:342–6.CrossRefPubMed
9.
go back to reference Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.CrossRefPubMed Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.CrossRefPubMed
10.
go back to reference Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.CrossRef Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.CrossRef
11.
go back to reference Burris HA, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.PubMed Burris HA, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.PubMed
12.
go back to reference Cunningham D, Chau I, Stocken DD, et al. Phase III randomized comparison of gemcitabine versus gemcitabine plus capecitabine in patients with advanced pancreatic cancer. J Clin Oncol. 2009;27:5513–8.CrossRefPubMed Cunningham D, Chau I, Stocken DD, et al. Phase III randomized comparison of gemcitabine versus gemcitabine plus capecitabine in patients with advanced pancreatic cancer. J Clin Oncol. 2009;27:5513–8.CrossRefPubMed
13.
go back to reference Nakai Y, Isayama H, Sasaki T, et al. A multicentre randomised phase II trial of gemcitabine alone vs gemcitabine and S-1 combination therapy in advanced pancreatic cancer: GEMSAP study. Br J Cancer. 2012;106:1934–9.CrossRefPubMedPubMedCentral Nakai Y, Isayama H, Sasaki T, et al. A multicentre randomised phase II trial of gemcitabine alone vs gemcitabine and S-1 combination therapy in advanced pancreatic cancer: GEMSAP study. Br J Cancer. 2012;106:1934–9.CrossRefPubMedPubMedCentral
14.
go back to reference Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25:1960–6.CrossRefPubMed Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25:1960–6.CrossRefPubMed
15.
go back to reference Goncalves A, Gilabert M, François E, et al. BAYPAN study: a double-blind phase III randomized trial comparing gemcitabine plus sorafenib and gemcitabine plus placebo in patients with advanced pancreatic cancer. Ann Oncol. 2012;23:2799–805.CrossRefPubMed Goncalves A, Gilabert M, François E, et al. BAYPAN study: a double-blind phase III randomized trial comparing gemcitabine plus sorafenib and gemcitabine plus placebo in patients with advanced pancreatic cancer. Ann Oncol. 2012;23:2799–805.CrossRefPubMed
16.
go back to reference Herrmann R, Bodoky G, Ruhstaller T, et al. Gemcitabine plus capecitabine compared with gemcitabine alone in advanced pancreatic cancer: a randomized, multicenter, phase III trial of the Swiss Group for Clinical Cancer Research and the Central European Cooperative Oncology Group. J Clin Oncol. 2007;25:2212–7.CrossRefPubMed Herrmann R, Bodoky G, Ruhstaller T, et al. Gemcitabine plus capecitabine compared with gemcitabine alone in advanced pancreatic cancer: a randomized, multicenter, phase III trial of the Swiss Group for Clinical Cancer Research and the Central European Cooperative Oncology Group. J Clin Oncol. 2007;25:2212–7.CrossRefPubMed
17.
go back to reference Iverson C, Larson G, Lai C, et al. RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer. Cancer Res. 2009;69:6839–47.CrossRefPubMed Iverson C, Larson G, Lai C, et al. RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer. Cancer Res. 2009;69:6839–47.CrossRefPubMed
18.
go back to reference Puehler F, Scholz A, Kissel M, et al. Allosteric MEK inhibitor BAY 86-9766 (RDEA119) shows anti-tumor efficacy in monotherapy and combination therapy in preclinical models of hepatocellular carcinoma and pancreatic cancer. Poster 151 presented at 22nd EORTC-NCI-AACR Symposium, Berlin, Germany, 16–19 November 2010. Puehler F, Scholz A, Kissel M, et al. Allosteric MEK inhibitor BAY 86-9766 (RDEA119) shows anti-tumor efficacy in monotherapy and combination therapy in preclinical models of hepatocellular carcinoma and pancreatic cancer. Poster 151 presented at 22nd EORTC-NCI-AACR Symposium, Berlin, Germany, 16–19 November 2010.
19.
go back to reference Schmieder R, Puehler F, Neuhaus R, et al. The MEK inhibitor BAY 869766 inhibits tumor growth and metastatic spread, prolongs the survival and acts synergistically with standard of care drugs in models of hepatocellular carcinoma and pancreatic cancer. Mol Cancer Ther. 2011;10 (Suppl 1): (Abstract B247). Schmieder R, Puehler F, Neuhaus R, et al. The MEK inhibitor BAY 869766 inhibits tumor growth and metastatic spread, prolongs the survival and acts synergistically with standard of care drugs in models of hepatocellular carcinoma and pancreatic cancer. Mol Cancer Ther. 2011;10 (Suppl 1): (Abstract B247).
20.
go back to reference Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.CrossRefPubMedPubMedCentral Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.CrossRefPubMedPubMedCentral
22.
go back to reference Loboda A, Nebozhyn M, Klinghoffer R, et al. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors. BMC Med Genomics. 2010;3:26.CrossRefPubMedPubMedCentral Loboda A, Nebozhyn M, Klinghoffer R, et al. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors. BMC Med Genomics. 2010;3:26.CrossRefPubMedPubMedCentral
23.
go back to reference Weekes CD, Von Hoff DD, Adjei AA, et al. Multicenter phase I trial of the mitogen-activated protein kinase 1/2 inhibitor BAY 86-9766 in patients with advanced cancer. Clin Cancer Res. 2013;19:1232–43.CrossRefPubMed Weekes CD, Von Hoff DD, Adjei AA, et al. Multicenter phase I trial of the mitogen-activated protein kinase 1/2 inhibitor BAY 86-9766 in patients with advanced cancer. Clin Cancer Res. 2013;19:1232–43.CrossRefPubMed
24.
go back to reference Barlési F, Villani P, Doddoli C, et al. Gemcitabine-induced severe pulmonary toxicity. Fundam Clin Pharmacol. 2004;18:85–91.CrossRefPubMed Barlési F, Villani P, Doddoli C, et al. Gemcitabine-induced severe pulmonary toxicity. Fundam Clin Pharmacol. 2004;18:85–91.CrossRefPubMed
25.
go back to reference Infante JR, Somer BG, Park JO, et al. A randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas. Eur J Cancer. 2014;50:2072–81.CrossRefPubMed Infante JR, Somer BG, Park JO, et al. A randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas. Eur J Cancer. 2014;50:2072–81.CrossRefPubMed
26.
go back to reference Rothenberg ML, Moore MJ, Cripps MC, et al. A phase II trial of gemcitabine in patients with 5-FU-refractory pancreas cancer. Ann Oncol. 1996;7:347–53.CrossRefPubMed Rothenberg ML, Moore MJ, Cripps MC, et al. A phase II trial of gemcitabine in patients with 5-FU-refractory pancreas cancer. Ann Oncol. 1996;7:347–53.CrossRefPubMed
27.
go back to reference Borad MJ, Reddy SG, Bahary N, et al. Randomized phase II trial of gemcitabine plus TH-302 versus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol. 2015;33:1475–81.CrossRefPubMed Borad MJ, Reddy SG, Bahary N, et al. Randomized phase II trial of gemcitabine plus TH-302 versus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol. 2015;33:1475–81.CrossRefPubMed
28.
go back to reference Stein SM, James ES, Deng Y, et al. Final analysis of a phase II study of modified FOLFIRINOX in locally advanced and metastatic pancreatic cancer. Br J Cancer. 2016;114:737–43.CrossRefPubMed Stein SM, James ES, Deng Y, et al. Final analysis of a phase II study of modified FOLFIRINOX in locally advanced and metastatic pancreatic cancer. Br J Cancer. 2016;114:737–43.CrossRefPubMed
29.
go back to reference van Zweeden AA, van der Vliet HJ, Wilmink JW, et al. Phase I clinical trial to determine the feasibility and maximum tolerated dose of panitumumab to standard gemcitabine-based chemoradiation in locally advanced pancreatic cancer. Clin Cancer Res. 2015;21:4569–75.CrossRefPubMed van Zweeden AA, van der Vliet HJ, Wilmink JW, et al. Phase I clinical trial to determine the feasibility and maximum tolerated dose of panitumumab to standard gemcitabine-based chemoradiation in locally advanced pancreatic cancer. Clin Cancer Res. 2015;21:4569–75.CrossRefPubMed
30.
go back to reference Kinugasa H, Nouso K, Miyahara K, et al. Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic cancer. Cancer. 2015;121:2271–80.CrossRefPubMed Kinugasa H, Nouso K, Miyahara K, et al. Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic cancer. Cancer. 2015;121:2271–80.CrossRefPubMed
31.
go back to reference Kim ST, Lim DH, Jang KT, et al. Impact of KRAS mutations on clinical outcomes in pancreatic cancer patients treated with first-line gemcitabine-based chemotherapy. Mol Cancer Ther. 2011;10:1993–9.CrossRefPubMed Kim ST, Lim DH, Jang KT, et al. Impact of KRAS mutations on clinical outcomes in pancreatic cancer patients treated with first-line gemcitabine-based chemotherapy. Mol Cancer Ther. 2011;10:1993–9.CrossRefPubMed
32.
go back to reference da Cunha Santos G, Dhani N, Tu D, et al. Molecular predictors of outcome in a phase 3 study of gemcitabine and erlotinib therapy in patients with advanced pancreatic cancer. National Cancer Institute of Canada Clinical Trials Group Study PA.3. Cancer. 2010;116:5599–607.CrossRefPubMed da Cunha Santos G, Dhani N, Tu D, et al. Molecular predictors of outcome in a phase 3 study of gemcitabine and erlotinib therapy in patients with advanced pancreatic cancer. National Cancer Institute of Canada Clinical Trials Group Study PA.3. Cancer. 2010;116:5599–607.CrossRefPubMed
33.
go back to reference Ogura T, Yamao K, Hara K, et al. Prognostic value of K-ras mutation status and subtypes in endoscopic ultrasound-guided fine-needle aspiration specimens from patients with unresectable pancreatic cancer. J Gastroenterol. 2013;48:640–6.CrossRefPubMed Ogura T, Yamao K, Hara K, et al. Prognostic value of K-ras mutation status and subtypes in endoscopic ultrasound-guided fine-needle aspiration specimens from patients with unresectable pancreatic cancer. J Gastroenterol. 2013;48:640–6.CrossRefPubMed
34.
go back to reference Birnbaum DJ, Adélaïde J, Mamessier E, et al. Genome profiling of pancreatic adenocarcinoma. Genes Chromosomes Cancer. 2011;50:456–65.CrossRefPubMed Birnbaum DJ, Adélaïde J, Mamessier E, et al. Genome profiling of pancreatic adenocarcinoma. Genes Chromosomes Cancer. 2011;50:456–65.CrossRefPubMed
35.
go back to reference Lin Q, Aihara A, Chung W, et al. LRH1 promotes pancreatic cancer metastasis. Cancer Lett. 2014;350:15–24.CrossRefPubMed Lin Q, Aihara A, Chung W, et al. LRH1 promotes pancreatic cancer metastasis. Cancer Lett. 2014;350:15–24.CrossRefPubMed
36.
go back to reference Yu S, Lu Z, Liu C, et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 2010;70:6015–25.CrossRefPubMed Yu S, Lu Z, Liu C, et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 2010;70:6015–25.CrossRefPubMed
37.
go back to reference Xia H, Ooi LL, Hui KM. MiR-214 targets β-catenin pathway to suppress invasion, stem-like traits and recurrence of human hepatocellular carcinoma. PLoS One. 2012;7:e44206.CrossRefPubMedPubMedCentral Xia H, Ooi LL, Hui KM. MiR-214 targets β-catenin pathway to suppress invasion, stem-like traits and recurrence of human hepatocellular carcinoma. PLoS One. 2012;7:e44206.CrossRefPubMedPubMedCentral
38.
go back to reference Higgins MJ, Jelovac D, Barnathan E, et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin Cancer Res. 2012;18:3462–9.CrossRefPubMedPubMedCentral Higgins MJ, Jelovac D, Barnathan E, et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin Cancer Res. 2012;18:3462–9.CrossRefPubMedPubMedCentral
39.
go back to reference Ignatiadis M, Lee M, Jeffrey SS. Circulating tumor cells and circulating tumor DNA: challenges and opportunities on the path to clinical utility. Clin Cancer Res. 2015;21:4786–800.CrossRefPubMed Ignatiadis M, Lee M, Jeffrey SS. Circulating tumor cells and circulating tumor DNA: challenges and opportunities on the path to clinical utility. Clin Cancer Res. 2015;21:4786–800.CrossRefPubMed
40.
go back to reference Li M, Diehl F, Dressman D, et al. BEAMing up for detection and quantification of rare sequence variants. Nat Methods. 2006;3:95–7.CrossRefPubMed Li M, Diehl F, Dressman D, et al. BEAMing up for detection and quantification of rare sequence variants. Nat Methods. 2006;3:95–7.CrossRefPubMed
Metadata
Title
Phase I/II Study of Refametinib (BAY 86-9766) in Combination with Gemcitabine in Advanced Pancreatic cancer
Authors
Jean-Luc Van Laethem
Hanno Riess
Jacek Jassem
Michael Haas
Uwe M. Martens
Colin Weekes
Marc Peeters
Paul Ross
John Bridgewater
Bohuslav Melichar
Stefano Cascinu
Piotr Saramak
Patrick Michl
David Van Brummelen
Alberto Zaniboni
Wollf Schmiegel
Svein Dueland
Marius Giurescu
Vittorio L. Garosi
Katrin Roth
Anke Schulz
Henrik Seidel
Prabhu Rajagopalan
Michael Teufel
Barrett H. Childs
Publication date
01-02-2017
Publisher
Springer International Publishing
Published in
Targeted Oncology / Issue 1/2017
Print ISSN: 1776-2596
Electronic ISSN: 1776-260X
DOI
https://doi.org/10.1007/s11523-016-0469-y

Other articles of this Issue 1/2017

Targeted Oncology 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine