Skip to main content
Top
Published in: Brain Structure and Function 6/2021

01-07-2021 | Original Article

Phase fMRI defines brain resting-state functional hubs within central and posterior regions

Authors: Zikuan Chen, Ebenezer Daniel, Bihong T. Chen

Published in: Brain Structure and Function | Issue 6/2021

Login to get access

Abstract

From a brain functional connectivity (FC) matrix, we can identify the hub nodes by a new method of eigencentrality mapping, which not only counts for one node’s centrality but also all other nodes’ centrality values through correlation connections in an eigenvector of the FC matrix. For the resting-state functional MRI (fMRI) data (complex-valued EPI images in nature), both magnitude and phase images are useful for brain FC analysis. We herein report on brain functional hubness analysis by constructing the FC matrix from phase fMRI data and identifying the hub nodes by eigencentrality mapping. In our study, we collected a cohort of 160 complex-valued fMRI dataset (consisting of magnitude and phase in pairs), and performed independent component analysis (ICA), FC matrix calculation (in size of 50 × 50) and FC matrix eigen decomposition; thereby obtained the 50-node eigencentrality values in the eigenvector associated with the largest eigenvalue. We also compared the hub structures inferred from FC matrices under different thresholding. Alternatively, we obtained the geometric hubs among p value the 50 nodes involved in the FC matrix through the use of harmonic centrality metric. Our results showed that phase fMRI data analysis defines the resting-state brain functional hubs primarily in the central region (subcortex) and the posterior region (parieto-occipital lobes and cerebella). The brain central hubness was supported by the geometric central hubness, which, however, is distinct from the magnitude-inferred hubness in brain superior region (frontal and parietal lobes). Our findings pose a new understanding of (or a debate over) brain functional connectivity architecture.

Graphic abstract

Literature
go back to reference Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676PubMedCrossRef Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676PubMedCrossRef
go back to reference Arja SK, Feng Z, Chen Z, Caprihan A, Kiehl KA, Adali T, Calhoun VD (2009) Changes in fMRI magnitude data and phase data observed in block-design and event-related tasks. Neuroimage 59:3748–3761 Arja SK, Feng Z, Chen Z, Caprihan A, Kiehl KA, Adali T, Calhoun VD (2009) Changes in fMRI magnitude data and phase data observed in block-design and event-related tasks. Neuroimage 59:3748–3761
go back to reference Balla DZ, Sanchez-Panchuelo RM, Wharton SJ, Hagberg GE, Scheffler K, Francis ST, Bowtell R (2014) Functional quantitative susceptibility mapping (fQSM). Neuroimage 100:112–124PubMedCrossRef Balla DZ, Sanchez-Panchuelo RM, Wharton SJ, Hagberg GE, Scheffler K, Francis ST, Bowtell R (2014) Functional quantitative susceptibility mapping (fQSM). Neuroimage 100:112–124PubMedCrossRef
go back to reference Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013PubMedPubMedCentralCrossRef Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013PubMedPubMedCentralCrossRef
go back to reference Bell PT, Shine JM (2016) Subcortical contributions to large-scale network communication. Neurosci Biobehav Rev 71:313–322PubMedCrossRef Bell PT, Shine JM (2016) Subcortical contributions to large-scale network communication. Neurosci Biobehav Rev 71:313–322PubMedCrossRef
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (methodol) 57:269–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (methodol) 57:269–300
go back to reference Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188CrossRef Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188CrossRef
go back to reference Benjamini Y, Yekutieli D (2005) False discovery rate–adjusted multiple confidence intervals for selected parameters. J Am Stat Assoc 100:71–81CrossRef Benjamini Y, Yekutieli D (2005) False discovery rate–adjusted multiple confidence intervals for selected parameters. J Am Stat Assoc 100:71–81CrossRef
go back to reference Bianciardi M, van Gelderen P, Duyn JH (2014) Investigation of BOLD fMRI resonance frequency shifts and quantitative susceptibility changes at 7 T. Hum Brain Mapp 35:2191–2205PubMedCrossRef Bianciardi M, van Gelderen P, Duyn JH (2014) Investigation of BOLD fMRI resonance frequency shifts and quantitative susceptibility changes at 7 T. Hum Brain Mapp 35:2191–2205PubMedCrossRef
go back to reference Calhoun VD, Adali T (2012) Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Rev Biomed Eng 5:60–73PubMedPubMedCentralCrossRef Calhoun VD, Adali T (2012) Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Rev Biomed Eng 5:60–73PubMedPubMedCentralCrossRef
go back to reference Calhoun VD, de Lacy N (2017) Ten key observations on the analysis of resting-state functional mr imaging data using independent component analysis. Neuroimaging Clin N Am 27:561–579PubMedPubMedCentralCrossRef Calhoun VD, de Lacy N (2017) Ten key observations on the analysis of resting-state functional mr imaging data using independent component analysis. Neuroimaging Clin N Am 27:561–579PubMedPubMedCentralCrossRef
go back to reference Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum Brain Mapp 13:43–53PubMedPubMedCentralCrossRef Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum Brain Mapp 13:43–53PubMedPubMedCentralCrossRef
go back to reference Chen Z, Calhoun VD (2011) Two pitfalls of BOLD fMRI magnitude-based neuroimage analysis: non-negativity and edge effect. J Neurosci Methods 199:363–369PubMedPubMedCentralCrossRef Chen Z, Calhoun VD (2011) Two pitfalls of BOLD fMRI magnitude-based neuroimage analysis: non-negativity and edge effect. J Neurosci Methods 199:363–369PubMedPubMedCentralCrossRef
go back to reference Chen Z, Calhoun V (2013) Understanding the morphological mismatch between magnetic susceptibility source and T2* image. Magn Reson Insights 6:65–81PubMedPubMedCentral Chen Z, Calhoun V (2013) Understanding the morphological mismatch between magnetic susceptibility source and T2* image. Magn Reson Insights 6:65–81PubMedPubMedCentral
go back to reference Chen Z, Calhoun V (2015) Nonlinear magnitude and linear phase behaviors of T2* imaging: theoretical approximation and Monte Carlo simulation. Magn Reson Imaging 33:390–400PubMedCrossRef Chen Z, Calhoun V (2015) Nonlinear magnitude and linear phase behaviors of T2* imaging: theoretical approximation and Monte Carlo simulation. Magn Reson Imaging 33:390–400PubMedCrossRef
go back to reference Chen Z, Calhoun V (2016) T2* phase imaging and processing for magnetic susceptibility mapping. Biomed Phys Eng Express 2:025015CrossRef Chen Z, Calhoun V (2016) T2* phase imaging and processing for magnetic susceptibility mapping. Biomed Phys Eng Express 2:025015CrossRef
go back to reference Chen Z, Caprihan A, Damaraju E, Rachakonda S, Calhoun V (2018a) Functional brain connectivity in resting-state fMRI using phase and magnitude data. J Neurosci Methods 293:299–309PubMedCrossRef Chen Z, Caprihan A, Damaraju E, Rachakonda S, Calhoun V (2018a) Functional brain connectivity in resting-state fMRI using phase and magnitude data. J Neurosci Methods 293:299–309PubMedCrossRef
go back to reference Chen Z, Fu Z, Calhoun V (2019) Phase fMRI reveals more sparseness and balance of rest brain functional connectivity than magnitude fMRI. Front Neurosci 13:204PubMedPubMedCentralCrossRef Chen Z, Fu Z, Calhoun V (2019) Phase fMRI reveals more sparseness and balance of rest brain functional connectivity than magnitude fMRI. Front Neurosci 13:204PubMedPubMedCentralCrossRef
go back to reference Chen Z, Shi Q, Daniel E, Chen BT (2020) Inferring brain functional hubs by eigencentrality mapping of phase fMRI connectivity. Proc SPIE 11317:1131705 Chen Z, Shi Q, Daniel E, Chen BT (2020) Inferring brain functional hubs by eigencentrality mapping of phase fMRI connectivity. Proc SPIE 11317:1131705
go back to reference Cimino G (1999) Reticular theory versus neuron theory in the work of Camillo Golgi. Physis Riv Int Stor Sci 36:431–472PubMed Cimino G (1999) Reticular theory versus neuron theory in the work of Camillo Golgi. Physis Riv Int Stor Sci 36:431–472PubMed
go back to reference Cole MW, Pathak S, Schneider W (2010) Identifying the brain’s most globally connected regions. Neuroimage 49:3132–3148PubMedCrossRef Cole MW, Pathak S, Schneider W (2010) Identifying the brain’s most globally connected regions. Neuroimage 49:3132–3148PubMedCrossRef
go back to reference Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire P, Bullmore ET (2014) The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain J Neurol 137:2382–2395CrossRef Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire P, Bullmore ET (2014) The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain J Neurol 137:2382–2395CrossRef
go back to reference de Pasquale F, Corbetta M, Betti V, Della Penna S (2018) Cortical cores in network dynamics. Neuroimage 180:370–382PubMedCrossRef de Pasquale F, Corbetta M, Betti V, Della Penna S (2018) Cortical cores in network dynamics. Neuroimage 180:370–382PubMedCrossRef
go back to reference Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD (2011) Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp 32:2075–2095PubMedCrossRef Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD (2011) Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp 32:2075–2095PubMedCrossRef
go back to reference Feng Z, Caprihan A, Blagoev KB, Calhoun VD (2009) Biophysical modeling of phase changes in BOLD fMRI. Neuroimage 47:540–548PubMedCrossRef Feng Z, Caprihan A, Blagoev KB, Calhoun VD (2009) Biophysical modeling of phase changes in BOLD fMRI. Neuroimage 47:540–548PubMedCrossRef
go back to reference Gili T, Saxena N, Diukova A, Murphy K, Hall JE, Wise RG (2013) The thalamus and brainstem act as key hubs in alterations of human brain network connectivity induced by mild propofol sedation. J Neurosci 33:4024–4031PubMedPubMedCentralCrossRef Gili T, Saxena N, Diukova A, Murphy K, Hall JE, Wise RG (2013) The thalamus and brainstem act as key hubs in alterations of human brain network connectivity induced by mild propofol sedation. J Neurosci 33:4024–4031PubMedPubMedCentralCrossRef
go back to reference Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258PubMedCrossRef Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258PubMedCrossRef
go back to reference Hahn AD, Nencka AS, Rowe DB (2012) Enhancing the utility of complex-valued functional magnetic resonance imaging detection of neurobiological processes through postacquisition estimation and correction of dynamic B(0) errors and motion. Hum Brain Mapp 33:288–306PubMedCrossRef Hahn AD, Nencka AS, Rowe DB (2012) Enhancing the utility of complex-valued functional magnetic resonance imaging detection of neurobiological processes through postacquisition estimation and correction of dynamic B(0) errors and motion. Hum Brain Mapp 33:288–306PubMedCrossRef
go back to reference Himberg J, Hyvarinen A, Esposito F (2004) Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22:1214–1222PubMedCrossRef Himberg J, Hyvarinen A, Esposito F (2004) Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22:1214–1222PubMedCrossRef
go back to reference Liu P, Calhoun V, Chen Z (2017) Functional overestimation due to spatial smoothing of fMRI data. J Neurosci Methods 291:1–12PubMedCrossRef Liu P, Calhoun V, Chen Z (2017) Functional overestimation due to spatial smoothing of fMRI data. J Neurosci Methods 291:1–12PubMedCrossRef
go back to reference Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Schloegl H, Stumvoll M, Villringer A, Turner R (2010) Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS ONE 5:e10232PubMedPubMedCentralCrossRef Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Schloegl H, Stumvoll M, Villringer A, Turner R (2010) Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS ONE 5:e10232PubMedPubMedCentralCrossRef
go back to reference Ma S, Correa NM, Li XL, Eichele T, Calhoun VD, Adali T (2011) Automatic identification of functional clusters in FMRI data using spatial dependence. IEEE Trans Biomed Eng 58:3406–3417PubMedPubMedCentralCrossRef Ma S, Correa NM, Li XL, Eichele T, Calhoun VD, Adali T (2011) Automatic identification of functional clusters in FMRI data using spatial dependence. IEEE Trans Biomed Eng 58:3406–3417PubMedPubMedCentralCrossRef
go back to reference Mazzarello P (2018) From images to physiology: a strange paradox at the origin of modern neuroscience. Prog Brain Res 243:233–256PubMedCrossRef Mazzarello P (2018) From images to physiology: a strange paradox at the origin of modern neuroscience. Prog Brain Res 243:233–256PubMedCrossRef
go back to reference Newman ME (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E Stat Nonlin Soft Matter Phys 74:036104PubMedCrossRef Newman ME (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E Stat Nonlin Soft Matter Phys 74:036104PubMedCrossRef
go back to reference Ott E, Pomerance A (2009) Approximating the largest eigenvalue of the modified adjacency matrix of networks with heterogeneous node biases. Phys Rev E Stat Nonlin Soft Matter Phys 79:056111PubMedCrossRef Ott E, Pomerance A (2009) Approximating the largest eigenvalue of the modified adjacency matrix of networks with heterogeneous node biases. Phys Rev E Stat Nonlin Soft Matter Phys 79:056111PubMedCrossRef
go back to reference Ozbay PS, Warnock G, Rossi C, Kuhn F, Akin B, Pruessmann KP, Nanz D (2016) Probing neuronal activation by functional quantitative susceptibility mapping under a visual paradigm: a group level comparison with BOLD fMRI and PET. Neuroimage 137:52–60PubMedCrossRef Ozbay PS, Warnock G, Rossi C, Kuhn F, Akin B, Pruessmann KP, Nanz D (2016) Probing neuronal activation by functional quantitative susceptibility mapping under a visual paradigm: a group level comparison with BOLD fMRI and PET. Neuroimage 137:52–60PubMedCrossRef
go back to reference Parvizi J (2009) Corticocentric myopia: old bias in new cognitive sciences. Trends Cogn Sci 13:354–359PubMedCrossRef Parvizi J (2009) Corticocentric myopia: old bias in new cognitive sciences. Trends Cogn Sci 13:354–359PubMedCrossRef
go back to reference Pillai SU, Suel T, Cha S (2005) The Perron-Frobenius theorem: some of its applications. IEEE Signal Process Mag 22:62–75CrossRef Pillai SU, Suel T, Cha S (2005) The Perron-Frobenius theorem: some of its applications. IEEE Signal Process Mag 22:62–75CrossRef
go back to reference Power JD, Schlaggar BL, Lessov-Schlaggar CN, Petersen SE (2013) Evidence for hubs in human functional brain networks. Neuron 79:798–813PubMedCrossRef Power JD, Schlaggar BL, Lessov-Schlaggar CN, Petersen SE (2013) Evidence for hubs in human functional brain networks. Neuron 79:798–813PubMedCrossRef
go back to reference Qiu Y, Lin QH, Kuang LD, Gong XF, Cong FY, Wang YP, Calhoun VD (2019) Spatial source phase: a new feature for identifying spatial differences based on complex-valued resting-state fMRI data. Hum Brain Mapp 40:2662–2676PubMedPubMedCentralCrossRef Qiu Y, Lin QH, Kuang LD, Gong XF, Cong FY, Wang YP, Calhoun VD (2019) Spatial source phase: a new feature for identifying spatial differences based on complex-valued resting-state fMRI data. Hum Brain Mapp 40:2662–2676PubMedPubMedCentralCrossRef
go back to reference Restrepo JG, Ott E, Hunt BR (2007) Approximating the largest eigenvalue of network adjacency matrices. Phys Rev E Stat Nonlin Soft Matter Phys 76:056119PubMedCrossRef Restrepo JG, Ott E, Hunt BR (2007) Approximating the largest eigenvalue of network adjacency matrices. Phys Rev E Stat Nonlin Soft Matter Phys 76:056119PubMedCrossRef
go back to reference Rowe DB (2005) Modeling both the magnitude and phase of complex-valued fMRI data. Neuroimage 25:1310–1324PubMedCrossRef Rowe DB (2005) Modeling both the magnitude and phase of complex-valued fMRI data. Neuroimage 25:1310–1324PubMedCrossRef
go back to reference Sherman SM (2016) Thalamus plays a central role in ongoing cortical functioning. Nat Neurosci 19:533–541PubMedCrossRef Sherman SM (2016) Thalamus plays a central role in ongoing cortical functioning. Nat Neurosci 19:533–541PubMedCrossRef
go back to reference Shimono M, Beggs JM (2015) Functional clusters, hubs, and communities in the cortical microconnectome. Cereb Cortex 25:3743–3757PubMedCrossRef Shimono M, Beggs JM (2015) Functional clusters, hubs, and communities in the cortical microconnectome. Cereb Cortex 25:3743–3757PubMedCrossRef
go back to reference Wink AM, de Munck JC, van der Werf YD, van den Heuvel OA, Barkhof F (2012) Fast eigenvector centrality mapping of voxel-wise connectivity in functional magnetic resonance imaging: implementation, validation, and interpretation. Brain Connectivity 2:265–274PubMedCrossRef Wink AM, de Munck JC, van der Werf YD, van den Heuvel OA, Barkhof F (2012) Fast eigenvector centrality mapping of voxel-wise connectivity in functional magnetic resonance imaging: implementation, validation, and interpretation. Brain Connectivity 2:265–274PubMedCrossRef
go back to reference Xu J, Calhoun VD, Worhunsky PD, Xiang H, Li J, Wall JT, Pearlson GD, Potenza MN (2015) Functional network overlap as revealed by fMRI using sICA and its potential relationships with functional heterogeneity, balanced excitation and inhibition, and sparseness of neuron activity. PLoS ONE 10:e0117029PubMedPubMedCentralCrossRef Xu J, Calhoun VD, Worhunsky PD, Xiang H, Li J, Wall JT, Pearlson GD, Potenza MN (2015) Functional network overlap as revealed by fMRI using sICA and its potential relationships with functional heterogeneity, balanced excitation and inhibition, and sparseness of neuron activity. PLoS ONE 10:e0117029PubMedPubMedCentralCrossRef
go back to reference Zhang B, Bao Z (1995) Dynamical system for computing the eigenvectors associated with the largest eigenvalue of a positive definite matrix. IEEE Trans Neural Netw 6:790–791PubMedCrossRef Zhang B, Bao Z (1995) Dynamical system for computing the eigenvectors associated with the largest eigenvalue of a positive definite matrix. IEEE Trans Neural Netw 6:790–791PubMedCrossRef
Metadata
Title
Phase fMRI defines brain resting-state functional hubs within central and posterior regions
Authors
Zikuan Chen
Ebenezer Daniel
Bihong T. Chen
Publication date
01-07-2021
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 6/2021
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02301-z

Other articles of this Issue 6/2021

Brain Structure and Function 6/2021 Go to the issue