Skip to main content
Top
Published in: Clinical Pharmacokinetics 3/2015

Open Access 01-03-2015 | Original Research Article

Pharmacokinetics, Pharmacodynamics, Safety, and Tolerability of Nebulized Sodium Nitrite (AIR001) Following Repeat-Dose Inhalation in Healthy Subjects

Authors: Peter J. Rix, Andrew Vick, Neil J. Attkins, Geoffrey E. Barker, Adrian W. Bott, Harry Alcorn Jr., Mark T. Gladwin, Sruti Shiva, Stephen Bradley, Azra Hussaini, William L. Hoye, Ed L. Parsley, Hiroko Masamune

Published in: Clinical Pharmacokinetics | Issue 3/2015

Login to get access

Abstract

Introduction

The efficacy of nebulized sodium nitrite (AIR001) has been demonstrated in animal models of pulmonary arterial hypertension (PAH), but it was not known if inhaled nitrite would be well tolerated in human subjects at exposure levels associated with efficacy in these models.

Methods

Inhaled nebulized sodium nitrite was assessed in three independent studies in a total of 82 healthy male and female subjects. Study objectives included determination of the maximum tolerated dose (MTD) and dose-limiting toxicity (DLT) under normal and mildly hypoxic conditions, and following co-administration with steady-state sildenafil, assessment of nitrite pharmacokinetics, and evaluation of the fraction exhaled nitric oxide (FENO) and concentrations of iron-nitrosyl hemoglobin (Hb(Fe)-NO) and S-nitrosothiols (R-SNO) as biomarkers of local and systemic NO exposure, respectively.

Results

Nebulized sodium nitrite was well tolerated following 6 days of every 8 h administration up to 90 mg, producing significant increases in circulating Hb(Fe)-NO, R-SNO, and FENO. Pulmonary absorption of nitrite was rapid and complete, and plasma exposure dose was proportional through the MTD dosage level of 90 mg, without accumulation following repeated inhalation. At higher dosage levels, DLTs were orthostasis (observed at 120 mg) and hypotension with tachycardia (at 176 mg), but venous methemoglobin did not exceed 3.0 % at any time in any subject. Neither the tolerability nor pharmacokinetics of nitrite was impacted by conditions of mild hypoxia, or co-administration with sildenafil, supporting the safe use of inhaled nitrite in the clinical setting of PAH.

Conclusion

On the basis of these results, nebulized sodium nitrite (AIR001) has been advanced into randomized trials in PAH patients.
Appendix
Available only for authorised users
Literature
2.
go back to reference Arnold WP, Mittal CK, Katsuki S, Murad F. Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci. 1977;74:3203–7.CrossRefPubMedCentralPubMed Arnold WP, Mittal CK, Katsuki S, Murad F. Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci. 1977;74:3203–7.CrossRefPubMedCentralPubMed
3.
go back to reference Moncada S, Palmer RM, Higgs EA. The discovery of nitric oxide as the endogenous nitrovasodilator. Hypertension. 1988;12:365–72.CrossRefPubMed Moncada S, Palmer RM, Higgs EA. The discovery of nitric oxide as the endogenous nitrovasodilator. Hypertension. 1988;12:365–72.CrossRefPubMed
4.
go back to reference Gladwin MT, Shelhamer JH, Schechter AN, Pease-Fye ME, Waclawiw MA, Panza JA, et al. Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc Natl Acad Sci. 2000;97:11482–7.CrossRefPubMedCentralPubMed Gladwin MT, Shelhamer JH, Schechter AN, Pease-Fye ME, Waclawiw MA, Panza JA, et al. Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc Natl Acad Sci. 2000;97:11482–7.CrossRefPubMedCentralPubMed
5.
go back to reference Doyle MP, Pickering RA, DeWeert TM, Hoekstra JW, Pater D. Kinetics and mechanism of the oxidation of human deoxyhemoglobin by nitrites. J Biol Chem. 1981;256:12393–8.PubMed Doyle MP, Pickering RA, DeWeert TM, Hoekstra JW, Pater D. Kinetics and mechanism of the oxidation of human deoxyhemoglobin by nitrites. J Biol Chem. 1981;256:12393–8.PubMed
6.
go back to reference Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–505.CrossRefPubMed Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–505.CrossRefPubMed
7.
go back to reference Shiva S, Huang Z, Grubina R, Sun J, Ringwood LA, MacArthur PH, et al. Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ Res. 2007;100:654–61.CrossRefPubMed Shiva S, Huang Z, Grubina R, Sun J, Ringwood LA, MacArthur PH, et al. Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ Res. 2007;100:654–61.CrossRefPubMed
8.
go back to reference Rassaf T, Flögel U, Drexhage C, Hendgen-Cotta U, Kelm M, Schrader J. Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ Res. 2007;100:1749–54.CrossRefPubMed Rassaf T, Flögel U, Drexhage C, Hendgen-Cotta U, Kelm M, Schrader J. Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ Res. 2007;100:1749–54.CrossRefPubMed
9.
go back to reference Hendgen-Cotta UB, Merx MW, Shiva S, Schmitz J, Becher S, Klare JP, et al. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci. 2008;105:10256–61.CrossRefPubMedCentralPubMed Hendgen-Cotta UB, Merx MW, Shiva S, Schmitz J, Becher S, Klare JP, et al. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci. 2008;105:10256–61.CrossRefPubMedCentralPubMed
10.
go back to reference Godber BL, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, et al. Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J Biol Chem. 2000;275:7757–63.CrossRefPubMed Godber BL, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, et al. Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J Biol Chem. 2000;275:7757–63.CrossRefPubMed
11.
go back to reference Li H, Samouilov A, Liu X, Zweier JL. Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrite reduction: evaluation of its role in nitric oxide generation in anoxic tissues. J Biol Chem. 2001;276:24482–9.CrossRefPubMed Li H, Samouilov A, Liu X, Zweier JL. Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrite reduction: evaluation of its role in nitric oxide generation in anoxic tissues. J Biol Chem. 2001;276:24482–9.CrossRefPubMed
12.
go back to reference Zuckerbraun BS, Shiva S, Ifedigbo E, Mathier MA, Mollen KP, Rao J, et al. Nitrite potently inhibits hypoxic and inflammatory pulmonary arterial hypertension and smooth muscle proliferation via xanthine oxidoreductase-dependent nitric oxide generation. Circulation. 2010;121:98–109.CrossRefPubMed Zuckerbraun BS, Shiva S, Ifedigbo E, Mathier MA, Mollen KP, Rao J, et al. Nitrite potently inhibits hypoxic and inflammatory pulmonary arterial hypertension and smooth muscle proliferation via xanthine oxidoreductase-dependent nitric oxide generation. Circulation. 2010;121:98–109.CrossRefPubMed
13.
go back to reference Li H, Kundu TK, Zweier JL. Characterization of the magnitude and mechanism of aldehyde oxidase-mediated nitric oxide production from nitrite. J Biol Chem. 2009;284:33850–8.CrossRefPubMedCentralPubMed Li H, Kundu TK, Zweier JL. Characterization of the magnitude and mechanism of aldehyde oxidase-mediated nitric oxide production from nitrite. J Biol Chem. 2009;284:33850–8.CrossRefPubMedCentralPubMed
14.
go back to reference Pinder AG, Pittaway E, Morri K, James PE. Nitrite directly vasodilates hypoxic vasculature via nitric oxide-dependent and -independent pathways. Br J Pharmacol. 2009;157:1523–30.CrossRefPubMedCentralPubMed Pinder AG, Pittaway E, Morri K, James PE. Nitrite directly vasodilates hypoxic vasculature via nitric oxide-dependent and -independent pathways. Br J Pharmacol. 2009;157:1523–30.CrossRefPubMedCentralPubMed
15.
go back to reference Castello PR, David PS, McClure T, Crook Z, Poyton RO. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab. 2006;3:277–87.CrossRefPubMed Castello PR, David PS, McClure T, Crook Z, Poyton RO. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab. 2006;3:277–87.CrossRefPubMed
16.
go back to reference Gautier C, van Faassen E, Mikula I, Martasek P, Slama-Schwok A. Endothelial nitric oxide synthase reduces nitrite anions to NO under anoxia. Biochem Biophys Res Commun. 2006;341:816–21.CrossRefPubMed Gautier C, van Faassen E, Mikula I, Martasek P, Slama-Schwok A. Endothelial nitric oxide synthase reduces nitrite anions to NO under anoxia. Biochem Biophys Res Commun. 2006;341:816–21.CrossRefPubMed
17.
go back to reference Vanin AF, Bevers LM, Slama-Schwok A, van Faassen EE. Nitric oxide synthase reduces nitrite to NO under anoxia. Cell Mol Life Sci. 2007;64:96–103.CrossRefPubMed Vanin AF, Bevers LM, Slama-Schwok A, van Faassen EE. Nitric oxide synthase reduces nitrite to NO under anoxia. Cell Mol Life Sci. 2007;64:96–103.CrossRefPubMed
18.
go back to reference Qiu Y, Sutton L, Riggs AF. Identification of myoglobin in human smooth muscle. J Biol Chem. 1998;273:23426–32.CrossRefPubMed Qiu Y, Sutton L, Riggs AF. Identification of myoglobin in human smooth muscle. J Biol Chem. 1998;273:23426–32.CrossRefPubMed
19.
go back to reference Pryde DC, Dalvie D, Hu Q, Jones P, Obach RS, Tran TD. Aldehyde oxidase: an enzyme of emerging importance in drug discovery. J Med Chem. 2010;53:8441–60.CrossRefPubMed Pryde DC, Dalvie D, Hu Q, Jones P, Obach RS, Tran TD. Aldehyde oxidase: an enzyme of emerging importance in drug discovery. J Med Chem. 2010;53:8441–60.CrossRefPubMed
20.
go back to reference Bueno M, Wang J, Mora AL, Gladwin MT. Nitrite signaling in pulmonary hypertension: mechanisms of bioactivation, signaling, and therapeutics. Antioxid Redox Signal. 2013;18:1797–809.CrossRefPubMedCentralPubMed Bueno M, Wang J, Mora AL, Gladwin MT. Nitrite signaling in pulmonary hypertension: mechanisms of bioactivation, signaling, and therapeutics. Antioxid Redox Signal. 2013;18:1797–809.CrossRefPubMedCentralPubMed
21.
go back to reference Hendgen-Cotta UB, Kelm M, Rassaf T. Myoglobin’s novel role in nitrite-induced hypoxic vasodilation. Trends Cardiovasc Med. 2014;24:69–74.CrossRefPubMed Hendgen-Cotta UB, Kelm M, Rassaf T. Myoglobin’s novel role in nitrite-induced hypoxic vasodilation. Trends Cardiovasc Med. 2014;24:69–74.CrossRefPubMed
22.
go back to reference Cannon RO 3rd, Schechter AN, Panza JA, Ognibene FP, Pease-Fye ME, Waclawiw MA, et al. Effects of inhaled nitric oxide on regional blood flow are consistent with intravascular nitric oxide delivery. J Clin Invest. 2001;108:279–87.CrossRefPubMedCentralPubMed Cannon RO 3rd, Schechter AN, Panza JA, Ognibene FP, Pease-Fye ME, Waclawiw MA, et al. Effects of inhaled nitric oxide on regional blood flow are consistent with intravascular nitric oxide delivery. J Clin Invest. 2001;108:279–87.CrossRefPubMedCentralPubMed
24.
go back to reference Dejam A, Hunter CJ, Tremonti C, Pluta RM, Hon YY, Grimes G, et al. Nitrite infusion in humans and nonhuman primates: endocrine effects, pharmacokinetics, and tolerance formation. Circulation. 2007;116:1821–31.CrossRefPubMed Dejam A, Hunter CJ, Tremonti C, Pluta RM, Hon YY, Grimes G, et al. Nitrite infusion in humans and nonhuman primates: endocrine effects, pharmacokinetics, and tolerance formation. Circulation. 2007;116:1821–31.CrossRefPubMed
25.
go back to reference Pluta RM, Oldfield EH, Bakhtian KD, Fathi AR, Smith RK, Devroom HL, et al. Safety and feasibility of long-term intravenous sodium nitrite infusion in healthy volunteers. PLoS One. 2011;6(1):e14504.CrossRefPubMedCentralPubMed Pluta RM, Oldfield EH, Bakhtian KD, Fathi AR, Smith RK, Devroom HL, et al. Safety and feasibility of long-term intravenous sodium nitrite infusion in healthy volunteers. PLoS One. 2011;6(1):e14504.CrossRefPubMedCentralPubMed
26.
go back to reference Maher AR, Arif S, Madhani M, Abozguia K, Ahmed I, Fernandez BO, et al. Impact of chronic congestive heart failure on pharmacokinetics and vasomotor effects of infused nitrite. Br J Pharmacol. 2013;169:659–70.CrossRefPubMedCentralPubMed Maher AR, Arif S, Madhani M, Abozguia K, Ahmed I, Fernandez BO, et al. Impact of chronic congestive heart failure on pharmacokinetics and vasomotor effects of infused nitrite. Br J Pharmacol. 2013;169:659–70.CrossRefPubMedCentralPubMed
27.
go back to reference Hunter CJ, Dejam A, Blood AB, Shields H, Kim-Shapiro DB, Machado RF, et al. Inhaled nebulized nitrite is a hypoxia-sensitive NO-dependent selective pulmonary vasodilator. Nat Med. 2004;10:1122–7.CrossRefPubMed Hunter CJ, Dejam A, Blood AB, Shields H, Kim-Shapiro DB, Machado RF, et al. Inhaled nebulized nitrite is a hypoxia-sensitive NO-dependent selective pulmonary vasodilator. Nat Med. 2004;10:1122–7.CrossRefPubMed
28.
go back to reference Ingram TE, Pinder AG, Bailey DM, Fraser AG, James PE. Low-dose sodium nitrite vasodilates hypoxic human pulmonary vasculature by a means that is not dependent on a simultaneous elevation in plasma nitrite. Am J Physiol Heart Circ Physiol. 2010;298:H331–9.CrossRefPubMedCentralPubMed Ingram TE, Pinder AG, Bailey DM, Fraser AG, James PE. Low-dose sodium nitrite vasodilates hypoxic human pulmonary vasculature by a means that is not dependent on a simultaneous elevation in plasma nitrite. Am J Physiol Heart Circ Physiol. 2010;298:H331–9.CrossRefPubMedCentralPubMed
29.
go back to reference Hunault CC, van Velzen AG, Sips AJ, Schothorst RC, Meulenbelt J. Bioavailability of sodium nitrite from an aqueous solution in healthy adults. Toxicol Lett. 2009;190:48–53.CrossRefPubMed Hunault CC, van Velzen AG, Sips AJ, Schothorst RC, Meulenbelt J. Bioavailability of sodium nitrite from an aqueous solution in healthy adults. Toxicol Lett. 2009;190:48–53.CrossRefPubMed
30.
go back to reference Oldfield EH, Loomba JJ, Monteith SJ, Crowley RW, Medel R, Gress DR, et al. Safety and pharmacokinetics of sodium nitrite in patients with subarachnoid hemorrhage: a phase IIa study. J Neurosurg. 2013;119:634–41.CrossRefPubMed Oldfield EH, Loomba JJ, Monteith SJ, Crowley RW, Medel R, Gress DR, et al. Safety and pharmacokinetics of sodium nitrite in patients with subarachnoid hemorrhage: a phase IIa study. J Neurosurg. 2013;119:634–41.CrossRefPubMed
31.
go back to reference Mack AK, McGowan Ii VR, Tremonti CK, Ackah D, Barnett C, Machado RF, et al. Sodium nitrite promotes regional blood flow in patients with sickle cell disease: a phase I/II study. Br J Haematol. 2008;142:971–8.CrossRefPubMedCentralPubMed Mack AK, McGowan Ii VR, Tremonti CK, Ackah D, Barnett C, Machado RF, et al. Sodium nitrite promotes regional blood flow in patients with sickle cell disease: a phase I/II study. Br J Haematol. 2008;142:971–8.CrossRefPubMedCentralPubMed
32.
go back to reference Maher AR, Milsom AB, Gunaruwan P, Abozguia K, Ahmed I, Weaver RA, et al. Hypoxic modulation of exogenous nitrite-induced vasodilation in humans. Circulation. 2008;117:670–7.CrossRefPubMed Maher AR, Milsom AB, Gunaruwan P, Abozguia K, Ahmed I, Weaver RA, et al. Hypoxic modulation of exogenous nitrite-induced vasodilation in humans. Circulation. 2008;117:670–7.CrossRefPubMed
34.
go back to reference FDA/CDER/CVM Guidance for industry. Bioanalytical method validation. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM). 2001. FDA/CDER/CVM Guidance for industry. Bioanalytical method validation. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM). 2001.
35.
go back to reference MacArthur PH, Shiva S, Gladwin MT. Measurement of circulating nitrite and S-nitrosothiols by reductive chemiluminescence. J Chromatogr B. 2007;851:93–105.CrossRef MacArthur PH, Shiva S, Gladwin MT. Measurement of circulating nitrite and S-nitrosothiols by reductive chemiluminescence. J Chromatogr B. 2007;851:93–105.CrossRef
36.
go back to reference Yang BK, Vivas EX, Reiter CD, Gladwin MT. Methodologies for the sensitive and specific measurement of S-nitrosothiols, iron-nitrosyls, and nitrite in biological samples. Free Radic Res. 2003;37:1–10.CrossRefPubMed Yang BK, Vivas EX, Reiter CD, Gladwin MT. Methodologies for the sensitive and specific measurement of S-nitrosothiols, iron-nitrosyls, and nitrite in biological samples. Free Radic Res. 2003;37:1–10.CrossRefPubMed
37.
go back to reference Boxenbaum H, Battle M. Effective half-life in clinical pharmacology. J Clin Pharmacol. 1995;35:763–6.CrossRefPubMed Boxenbaum H, Battle M. Effective half-life in clinical pharmacology. J Clin Pharmacol. 1995;35:763–6.CrossRefPubMed
38.
go back to reference Wright RO, Lewander WJ, Woolf AD. Methemoglobinemia: etiology, pharmacology, and clinical management. Ann Emerg Med. 1999;34:646–56.CrossRefPubMed Wright RO, Lewander WJ, Woolf AD. Methemoglobinemia: etiology, pharmacology, and clinical management. Ann Emerg Med. 1999;34:646–56.CrossRefPubMed
39.
go back to reference Dejam A, Hunter CJ, Pelletier MM, Hsu LL, Machado RF, Shiva S, et al. Erythrocytes are the major intravascular storage sites of nitrite in human blood. Blood. 2005;106:734–9.CrossRefPubMedCentralPubMed Dejam A, Hunter CJ, Pelletier MM, Hsu LL, Machado RF, Shiva S, et al. Erythrocytes are the major intravascular storage sites of nitrite in human blood. Blood. 2005;106:734–9.CrossRefPubMedCentralPubMed
40.
go back to reference Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10:1093–5.CrossRefPubMed Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10:1093–5.CrossRefPubMed
41.
go back to reference Wagner DA, Schultz DS, Deen WM, Young VR, Tannenbaum SR. Metabolic fate of an oral dose of 15N-labeled nitrate in humans: effect of diet supplementation with ascorbic acid. Cancer Res. 1983;43:1921–5.PubMed Wagner DA, Schultz DS, Deen WM, Young VR, Tannenbaum SR. Metabolic fate of an oral dose of 15N-labeled nitrate in humans: effect of diet supplementation with ascorbic acid. Cancer Res. 1983;43:1921–5.PubMed
Metadata
Title
Pharmacokinetics, Pharmacodynamics, Safety, and Tolerability of Nebulized Sodium Nitrite (AIR001) Following Repeat-Dose Inhalation in Healthy Subjects
Authors
Peter J. Rix
Andrew Vick
Neil J. Attkins
Geoffrey E. Barker
Adrian W. Bott
Harry Alcorn Jr.
Mark T. Gladwin
Sruti Shiva
Stephen Bradley
Azra Hussaini
William L. Hoye
Ed L. Parsley
Hiroko Masamune
Publication date
01-03-2015
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 3/2015
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-014-0201-y

Other articles of this Issue 3/2015

Clinical Pharmacokinetics 3/2015 Go to the issue