Skip to main content
Top
Published in: Clinical Pharmacokinetics 9/2013

01-09-2013 | Original Research Article

Pharmacokinetics and Pharmacodynamics of Recombinant Human Angiotensin-Converting Enzyme 2 in Healthy Human Subjects

Authors: Manuel Haschke, Manfred Schuster, Marko Poglitsch, Hans Loibner, Marc Salzberg, Marcel Bruggisser, Joseph Penninger, Stephan Krähenbühl

Published in: Clinical Pharmacokinetics | Issue 9/2013

Login to get access

Abstract

Background and Objectives

Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory, antiproliferative, antiangiogenic, and anti-inflammatory properties. In conditions with an unbalanced renin–angiotensin–aldosterone system with elevated Ang1-8, administration of ACE2 has shown promising effects in a variety of animal models. Enhancing ACE2 activity by exogenous administration of ACE2 might also be beneficial in human diseases with pathologically elevated Ang1-8. As a first step we performed a first-in-man study to determine pharmacokinetics, pharmacodynamics, safety, and tolerability of recombinant ACE2 in healthy volunteers.

Methods

Recombinant human ACE2 (rhACE2) was administered intravenously to healthy human subjects in a randomized, double-blind, placebo-controlled, single-dose, dose-escalation study followed by an open-label multiple-dose study. ACE2 concentrations were determined by quantifying ACE2 activity and ACE2 content in plasma samples. Concentrations of the angiotensin system effector peptides Ang1-8, Ang1-7, and Ang1-5 were determined using a liquid chromatography–tandem mass spectrometry method.

Results

Single rhACE2 doses of 100–1,200 μg/kg caused a dose-dependent increase of systemic exposure with biphasic elimination and a dose-independent terminal half-life of 10 h. In all single-dose cohorts, Ang1-8 decreased within 30 min postinfusion, angiotensin 1-7 (Ang1-7) either increased (100 and 200 μg/kg doses), decreased, or remained unchanged (400–1,200 μg/kg doses), whereas angiotensin 1-5 (Ang1-5) transiently increased for all doses investigated. With the exception of the lowest rhACE2 dose, the decrease in Ang1-8 levels lasted for at least 24 h. Repeated dosing (400 μg/kg for 3 or 6 days) caused only minimal accumulation of ACE2, and Ang1-8 levels were suppressed over the whole application period.

Conclusions

Administration of rhACE2 was well tolerated by healthy human subjects. Exposure was dose dependent with a dose-independent terminal elimination half-life in the range of 10 h. Despite marked changes in angiotensin system peptide concentrations, cardiovascular effects were absent, suggesting the presence of effective compensatory mechanisms in healthy volunteers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dostal DE, Baker KM. The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function? Circ Res. 1999;85(7):643–50.PubMedCrossRef Dostal DE, Baker KM. The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function? Circ Res. 1999;85(7):643–50.PubMedCrossRef
2.
go back to reference Ito M, Oliverio MI, Mannon PJ, Best CF, Maeda N, Smithies O, et al. Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci USA. 1995;92(8):3521–5.PubMedCrossRef Ito M, Oliverio MI, Mannon PJ, Best CF, Maeda N, Smithies O, et al. Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci USA. 1995;92(8):3521–5.PubMedCrossRef
3.
go back to reference Krege JH, John SW, Langenbach LL, Hodgin JB, Hagaman JR, Bachman ES, et al. Male–female differences in fertility and blood pressure in ACE-deficient mice. Nature. 1995;375(6527):146–8.PubMedCrossRef Krege JH, John SW, Langenbach LL, Hodgin JB, Hagaman JR, Bachman ES, et al. Male–female differences in fertility and blood pressure in ACE-deficient mice. Nature. 1995;375(6527):146–8.PubMedCrossRef
4.
go back to reference Hackenthal E, Paul M, Ganten D, Taugner R. Morphology, physiology, and molecular biology of renin secretion. Physiol Rev. 1990;70(4):1067–116.PubMed Hackenthal E, Paul M, Ganten D, Taugner R. Morphology, physiology, and molecular biology of renin secretion. Physiol Rev. 1990;70(4):1067–116.PubMed
5.
go back to reference Tanimoto K, Sugiyama F, Goto Y, Ishida J, Takimoto E, Yagami K, et al. Angiotensinogen-deficient mice with hypotension. J Biol Chem. 1994;269(50):31334–7.PubMed Tanimoto K, Sugiyama F, Goto Y, Ishida J, Takimoto E, Yagami K, et al. Angiotensinogen-deficient mice with hypotension. J Biol Chem. 1994;269(50):31334–7.PubMed
6.
go back to reference Bernstein KE, Berk BC. The biology of angiotensin II receptors. Am J Kidney Dis. 1993;22(5):745–54.PubMed Bernstein KE, Berk BC. The biology of angiotensin II receptors. Am J Kidney Dis. 1993;22(5):745–54.PubMed
7.
go back to reference Turner AJ, Hooper NM. The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol Sci. 2002;23(4):177–83.PubMedCrossRef Turner AJ, Hooper NM. The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol Sci. 2002;23(4):177–83.PubMedCrossRef
8.
go back to reference Mezzano SA, Ruiz-Ortega M, Egido J. Angiotensin II and renal fibrosis. Hypertension. 2001;38(3 Pt 2):635–8.PubMedCrossRef Mezzano SA, Ruiz-Ortega M, Egido J. Angiotensin II and renal fibrosis. Hypertension. 2001;38(3 Pt 2):635–8.PubMedCrossRef
9.
go back to reference Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Mezzano S, Egido J. Renin-angiotensin system and renal damage: emerging data on angiotensin II as a proinflammatory mediator. Contrib Nephrol. 2001;135:123–37.PubMedCrossRef Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Mezzano S, Egido J. Renin-angiotensin system and renal damage: emerging data on angiotensin II as a proinflammatory mediator. Contrib Nephrol. 2001;135:123–37.PubMedCrossRef
10.
go back to reference Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Suzuki Y, Mezzano S, et al. Role of the renin-angiotensin system in vascular diseases: expanding the field. Hypertension. 2001;38(6):1382–7.PubMedCrossRef Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Suzuki Y, Mezzano S, et al. Role of the renin-angiotensin system in vascular diseases: expanding the field. Hypertension. 2001;38(6):1382–7.PubMedCrossRef
11.
go back to reference Herr D, Rodewald M, Fraser HM, Hack G, Konrad R, Kreienberg R, et al. Potential role of Renin-Angiotensin-system for tumor angiogenesis in receptor negative breast cancer. Gynecol Oncol. 2008;109(3):418–25.PubMedCrossRef Herr D, Rodewald M, Fraser HM, Hack G, Konrad R, Kreienberg R, et al. Potential role of Renin-Angiotensin-system for tumor angiogenesis in receptor negative breast cancer. Gynecol Oncol. 2008;109(3):418–25.PubMedCrossRef
12.
go back to reference Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417(6891):822–8.PubMedCrossRef Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417(6891):822–8.PubMedCrossRef
13.
go back to reference Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87(5):E1–9.PubMedCrossRef Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87(5):E1–9.PubMedCrossRef
14.
go back to reference Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275(43):33238–43.PubMedCrossRef Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275(43):33238–43.PubMedCrossRef
15.
go back to reference Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277(17):14838–43.PubMedCrossRef Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277(17):14838–43.PubMedCrossRef
16.
go back to reference Chappell MC. Emerging evidence for a functional angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS receptor axis: more than regulation of blood pressure? Hypertension. 2007;50(4):596–9.PubMedCrossRef Chappell MC. Emerging evidence for a functional angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS receptor axis: more than regulation of blood pressure? Hypertension. 2007;50(4):596–9.PubMedCrossRef
17.
go back to reference Trask AJ, Averill DB, Ganten D, Chappell MC, Ferrario CM. Primary role of angiotensin-converting enzyme-2 in cardiac production of angiotensin-(1-7) in transgenic Ren-2 hypertensive rats. Am J Physiol Heart Circ Physiol. 2007;292(6):H3019–24.PubMedCrossRef Trask AJ, Averill DB, Ganten D, Chappell MC, Ferrario CM. Primary role of angiotensin-converting enzyme-2 in cardiac production of angiotensin-(1-7) in transgenic Ren-2 hypertensive rats. Am J Physiol Heart Circ Physiol. 2007;292(6):H3019–24.PubMedCrossRef
18.
go back to reference Lovren F, Pan Y, Quan A, Teoh H, Wang G, Shukla PC, et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol. 2008;295(4):H1377–84.PubMedCrossRef Lovren F, Pan Y, Quan A, Teoh H, Wang G, Shukla PC, et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol. 2008;295(4):H1377–84.PubMedCrossRef
19.
go back to reference Chappell MC, Allred AJ, Ferrario CM. Pathways of angiotensin-(1-7) metabolism in the kidney. Nephrol Dial Transpl. 2001;16(Suppl 1):22–6.CrossRef Chappell MC, Allred AJ, Ferrario CM. Pathways of angiotensin-(1-7) metabolism in the kidney. Nephrol Dial Transpl. 2001;16(Suppl 1):22–6.CrossRef
20.
go back to reference Yamada K, Iyer SN, Chappell MC, Ganten D, Ferrario CM. Converting enzyme determines plasma clearance of angiotensin-(1-7). Hypertension. 1998;32(3):496–502.PubMedCrossRef Yamada K, Iyer SN, Chappell MC, Ganten D, Ferrario CM. Converting enzyme determines plasma clearance of angiotensin-(1-7). Hypertension. 1998;32(3):496–502.PubMedCrossRef
21.
go back to reference Ferrario CM, Trask AJ, Jessup JA. Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1-7) in regulation of cardiovascular function. Am J Physiol Heart Circ Physiol. 2005;289(6):H2281–90.PubMedCrossRef Ferrario CM, Trask AJ, Jessup JA. Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1-7) in regulation of cardiovascular function. Am J Physiol Heart Circ Physiol. 2005;289(6):H2281–90.PubMedCrossRef
22.
go back to reference de Lang A, Osterhaus AD, Haagmans BL. Interferon-gamma and interleukin-4 downregulate expression of the SARS coronavirus receptor ACE2 in Vero E6 cells. Virology. 2006;353(2):474–81.PubMedCrossRef de Lang A, Osterhaus AD, Haagmans BL. Interferon-gamma and interleukin-4 downregulate expression of the SARS coronavirus receptor ACE2 in Vero E6 cells. Virology. 2006;353(2):474–81.PubMedCrossRef
23.
go back to reference Hamming I, Cooper ME, Haagmans BL, Hooper NM, Korstanje R, Osterhaus AD, et al. The emerging role of ACE2 in physiology and disease. J Pathol. 2007;212(1):1–11.PubMedCrossRef Hamming I, Cooper ME, Haagmans BL, Hooper NM, Korstanje R, Osterhaus AD, et al. The emerging role of ACE2 in physiology and disease. J Pathol. 2007;212(1):1–11.PubMedCrossRef
24.
go back to reference Oudit GY, Kassiri Z, Patel MP, Chappell M, Butany J, Backx PH, et al. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc Res. 2007;75(1):29–39.PubMedCrossRef Oudit GY, Kassiri Z, Patel MP, Chappell M, Butany J, Backx PH, et al. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc Res. 2007;75(1):29–39.PubMedCrossRef
25.
go back to reference Zhong J, Guo D, Chen CB, Wang W, Schuster M, Loibner H, et al. Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension. 2011;57(2):314–22.PubMedCrossRef Zhong J, Guo D, Chen CB, Wang W, Schuster M, Loibner H, et al. Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension. 2011;57(2):314–22.PubMedCrossRef
26.
go back to reference Zhong J, Basu R, Guo D, Chow FL, Byrns S, Schuster M, et al. Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation. 2010;122(7):717–28, 18 p following 28. Zhong J, Basu R, Guo D, Chow FL, Byrns S, Schuster M, et al. Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation. 2010;122(7):717–28, 18 p following 28.
27.
go back to reference Oudit GY, Liu GC, Zhong J, Basu R, Chow FL, Zhou J, et al. Human recombinant ACE2 reduces the progression of diabetic nephropathy. Diabetes. 2010;59(2):529–38.PubMedCrossRef Oudit GY, Liu GC, Zhong J, Basu R, Chow FL, Zhou J, et al. Human recombinant ACE2 reduces the progression of diabetic nephropathy. Diabetes. 2010;59(2):529–38.PubMedCrossRef
28.
go back to reference Osterreicher CH, Taura K, De Minicis S, Seki E, Penz-Osterreicher M, Kodama Y, et al. Angiotensin-converting-enzyme 2 inhibits liver fibrosis in mice. Hepatology. 2009;50(3):929–38.PubMedCrossRef Osterreicher CH, Taura K, De Minicis S, Seki E, Penz-Osterreicher M, Kodama Y, et al. Angiotensin-converting-enzyme 2 inhibits liver fibrosis in mice. Hepatology. 2009;50(3):929–38.PubMedCrossRef
29.
go back to reference Treml B, Neu N, Kleinsasser A, Gritsch C, Finsterwalder T, Geiger R, et al. Recombinant angiotensin-converting enzyme 2 improves pulmonary blood flow and oxygenation in lipopolysaccharide-induced lung injury in piglets. Crit Care Med. 2010;38(2):596–601.PubMedCrossRef Treml B, Neu N, Kleinsasser A, Gritsch C, Finsterwalder T, Geiger R, et al. Recombinant angiotensin-converting enzyme 2 improves pulmonary blood flow and oxygenation in lipopolysaccharide-induced lung injury in piglets. Crit Care Med. 2010;38(2):596–601.PubMedCrossRef
30.
go back to reference Wysocki J, Ye M, Rodriguez E, Gonzalez-Pacheco FR, Barrios C, Evora K, et al. Targeting the degradation of angiotensin II with recombinant angiotensin-converting enzyme 2: prevention of angiotensin II-dependent hypertension. Hypertension. 2010;55(1):90–8.PubMedCrossRef Wysocki J, Ye M, Rodriguez E, Gonzalez-Pacheco FR, Barrios C, Evora K, et al. Targeting the degradation of angiotensin II with recombinant angiotensin-converting enzyme 2: prevention of angiotensin II-dependent hypertension. Hypertension. 2010;55(1):90–8.PubMedCrossRef
31.
go back to reference Mahmood I, Green MD. Pharmacokinetic and pharmacodynamic considerations in the development of therapeutic proteins. Clin Pharmacokinet. 2005;44(4):331–47.PubMedCrossRef Mahmood I, Green MD. Pharmacokinetic and pharmacodynamic considerations in the development of therapeutic proteins. Clin Pharmacokinet. 2005;44(4):331–47.PubMedCrossRef
32.
go back to reference Iusuf D, Henning RH, van Gilst WH, Roks AJ. Angiotensin-(1-7): pharmacological properties and pharmacotherapeutic perspectives. Eur J Pharmacol. 2008;585(2–3):303–12.PubMedCrossRef Iusuf D, Henning RH, van Gilst WH, Roks AJ. Angiotensin-(1-7): pharmacological properties and pharmacotherapeutic perspectives. Eur J Pharmacol. 2008;585(2–3):303–12.PubMedCrossRef
33.
go back to reference Ahmad S, Simmons T, Varagic J, Moniwa N, Chappell MC, Ferrario CM. Chymase-dependent generation of angiotensin II from angiotensin-(1-12) in human atrial tissue. PloS one. 2011;6(12):e28501.PubMedCrossRef Ahmad S, Simmons T, Varagic J, Moniwa N, Chappell MC, Ferrario CM. Chymase-dependent generation of angiotensin II from angiotensin-(1-12) in human atrial tissue. PloS one. 2011;6(12):e28501.PubMedCrossRef
34.
go back to reference Park S, Bivona BJ, Kobori H, Seth DM, Chappell MC, Lazartigues E, et al. Major role for ACE-independent intrarenal ANG II formation in type II diabetes. Am J Physiol Ren Physiol. 2010;298(1):F37–48.CrossRef Park S, Bivona BJ, Kobori H, Seth DM, Chappell MC, Lazartigues E, et al. Major role for ACE-independent intrarenal ANG II formation in type II diabetes. Am J Physiol Ren Physiol. 2010;298(1):F37–48.CrossRef
35.
go back to reference Baan J Jr, Chang PC, Vermeij P, Pfaffendorf M, van Zwieten PA. Effects of losartan on vasoconstrictor responses to angiotensin II in the forearm vascular bed of healthy volunteers. Cardiovasc Res. 1996;32(5):973–9.PubMed Baan J Jr, Chang PC, Vermeij P, Pfaffendorf M, van Zwieten PA. Effects of losartan on vasoconstrictor responses to angiotensin II in the forearm vascular bed of healthy volunteers. Cardiovasc Res. 1996;32(5):973–9.PubMed
36.
go back to reference Newby DE, Masumori S, Johnston NR, Boon NA, Webb DJ. Endogenous angiotensin II contributes to basal peripheral vascular tone in sodium deplete but not sodium replete man. Cardiovasc Res. 1997;36(2):268–75.PubMedCrossRef Newby DE, Masumori S, Johnston NR, Boon NA, Webb DJ. Endogenous angiotensin II contributes to basal peripheral vascular tone in sodium deplete but not sodium replete man. Cardiovasc Res. 1997;36(2):268–75.PubMedCrossRef
Metadata
Title
Pharmacokinetics and Pharmacodynamics of Recombinant Human Angiotensin-Converting Enzyme 2 in Healthy Human Subjects
Authors
Manuel Haschke
Manfred Schuster
Marko Poglitsch
Hans Loibner
Marc Salzberg
Marcel Bruggisser
Joseph Penninger
Stephan Krähenbühl
Publication date
01-09-2013
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 9/2013
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-013-0072-7

Other articles of this Issue 9/2013

Clinical Pharmacokinetics 9/2013 Go to the issue