Skip to main content
Top
Published in: Clinical Pharmacokinetics 9/2014

01-09-2014 | Original Research Article

Pharmacokinetic Evaluations of the Co-Administrations of Vandetanib and Metformin, Digoxin, Midazolam, Omeprazole or Ranitidine

Authors: Susanne Johansson, Jessica Read, Stuart Oliver, Mark Steinberg, Yan Li, Eleanor Lisbon, David Mathews, Philip T. Leese, Paul Martin

Published in: Clinical Pharmacokinetics | Issue 9/2014

Login to get access

Abstract

Background and Objective

Vandetanib is a selective inhibitor of vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR) and rearranged during transfection (RET) signalling, indicated for the treatment of medullary thyroid cancer. We investigated potential drug–drug interactions between vandetanib and metformin [organic cation transporter 2 (OCT2) substrate; NCT01551615]; digoxin [P-glycoprotein (P-gp) substrate; NCT01561781]; midazolam [cytochrome P450 (CYP) 3A4 substrate; NCT01544140]; omeprazole (proton pump inhibitor) or ranitidine (histamine H2-receptor antagonist; both NCT01539655).

Methods

Four open-label, phase I studies were conducted in healthy volunteers: n = 14 (metformin), n = 14 (digoxin), n = 17 (midazolam), n = 16 (omeprazole), n = 18 (ranitidine). Three of these comprised the following regimens: metformin 1000 mg ± vandetanib 800 mg, midazolam 7.5 mg ± vandetanib 800 mg, or digoxin 0.25 mg ± vandetanib 300 mg. The randomized study comprised vandetanib 300 mg alone and then either (i) omeprazole 40 mg (days 1–4), and omeprazole + vandetanib (day 5); or (ii) ranitidine 150 mg (day 1), and ranitidine + vandetanib (day 2). The primary objective assessed metformin, digoxin, midazolam and vandetanib pharmacokinetics.

Results

Vandetanib + metformin increased metformin area under the plasma concentration–time curve from zero to infinity (AUC0–∞) and maximum observed plasma concentration (Cmax) by 74 and 50 %, respectively, and decreased the geometric mean metformin renal clearance (CLR) by 52 % versus metformin alone. Vandetanib + digoxin increased digoxin area under the concentration-time curve from zero to the last quantifiable concentration (AUC0–last) and Cmax by 23 and 29 %, respectively, versus digoxin alone, with only a 9 % decrease in CLR. Vandetanib had no effect on midazolam exposure. Vandetanib exposure was unchanged during co-administration with omeprazole/ranitidine. Treatment combinations were generally well tolerated.

Conclusion

Patients receiving vandetanib with metformin/digoxin may require additional monitoring of metformin/digoxin, with dose adjustments where necessary. Vandetanib with CYP3A4 substrates or omeprazole/ranitidine is unlikely to result in clinically relevant drug–drug interactions.
Literature
1.
go back to reference Wedge SR, Ogilvie DJ, Dukes M, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 2002;62:4645–55.PubMed Wedge SR, Ogilvie DJ, Dukes M, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 2002;62:4645–55.PubMed
2.
go back to reference Carlomagno F, Vitagliano D, Guida T, et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 2002;62:7284–90.PubMed Carlomagno F, Vitagliano D, Guida T, et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 2002;62:7284–90.PubMed
3.
go back to reference Ciardiello F, Caputo R, Damiano V, et al. Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin Cancer Res. 2003;9:1546–56.PubMed Ciardiello F, Caputo R, Damiano V, et al. Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin Cancer Res. 2003;9:1546–56.PubMed
4.
go back to reference Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.PubMedCrossRef Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.PubMedCrossRef
5.
go back to reference Kowanetz M, Ferrara N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res. 2006;12:5018–22.PubMedCrossRef Kowanetz M, Ferrara N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res. 2006;12:5018–22.PubMedCrossRef
7.
go back to reference Thornton K, Kim G, Maher VE, et al. Vandetanib for the treatment of symptomatic or progressive medullary thyroid cancer in patients with unresectable locally advanced or metastatic disease: U.S. Food and Drug Administration drug approval summary. Clin Cancer Res. 2012;18:3722–30.PubMedCrossRef Thornton K, Kim G, Maher VE, et al. Vandetanib for the treatment of symptomatic or progressive medullary thyroid cancer in patients with unresectable locally advanced or metastatic disease: U.S. Food and Drug Administration drug approval summary. Clin Cancer Res. 2012;18:3722–30.PubMedCrossRef
8.
go back to reference Martin P, Oliver S, Kennedy SJ, et al. Pharmacokinetics of vandetanib: three phase I studies in healthy subjects. Clin Ther. 2012;34:221–37.PubMedCrossRef Martin P, Oliver S, Kennedy SJ, et al. Pharmacokinetics of vandetanib: three phase I studies in healthy subjects. Clin Ther. 2012;34:221–37.PubMedCrossRef
9.
go back to reference Martin P, Oliver S, Robertson J, et al. Pharmacokinetic drug interactions with vandetanib during coadministration with rifampicin or itraconazole. Drugs R D. 2011;11:37–51.PubMedCrossRefPubMedCentral Martin P, Oliver S, Robertson J, et al. Pharmacokinetic drug interactions with vandetanib during coadministration with rifampicin or itraconazole. Drugs R D. 2011;11:37–51.PubMedCrossRefPubMedCentral
10.
go back to reference Weil A, Martin P, Smith R, et al. Pharmacokinetics of vandetanib in subjects with renal or hepatic impairment. Clin Pharmacokinet. 2010;49:607–18.PubMedCrossRef Weil A, Martin P, Smith R, et al. Pharmacokinetics of vandetanib in subjects with renal or hepatic impairment. Clin Pharmacokinet. 2010;49:607–18.PubMedCrossRef
11.
go back to reference Estudante M, Morais JG, Soveral G, et al. Intestinal drug transporters: an overview. Adv Drug Deliv Rev. 2013;65:1340–56.PubMedCrossRef Estudante M, Morais JG, Soveral G, et al. Intestinal drug transporters: an overview. Adv Drug Deliv Rev. 2013;65:1340–56.PubMedCrossRef
12.
go back to reference Wang ZJ, Yin OQ, Tomlinson B, et al. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet Genomics. 2008;18:637–45.PubMedCrossRef Wang ZJ, Yin OQ, Tomlinson B, et al. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet Genomics. 2008;18:637–45.PubMedCrossRef
14.
go back to reference Hedenstrom H, Alm C, Kraft M, et al. Intragastric pH after oral administration of single doses of ranitidine effervescent tablets, omeprazole capsules and famotidine fast-dissolving tablets to fasting healthy volunteers. Aliment Pharmacol Ther. 1997;11:1137–41.PubMedCrossRef Hedenstrom H, Alm C, Kraft M, et al. Intragastric pH after oral administration of single doses of ranitidine effervescent tablets, omeprazole capsules and famotidine fast-dissolving tablets to fasting healthy volunteers. Aliment Pharmacol Ther. 1997;11:1137–41.PubMedCrossRef
15.
16.
go back to reference Pentikainen PJ, Neuvonen PJ, Penttila A. Pharmacokinetics of metformin after intravenous and oral administration to man. Eur J Clin Pharmacol. 1979;16:195–202.PubMedCrossRef Pentikainen PJ, Neuvonen PJ, Penttila A. Pharmacokinetics of metformin after intravenous and oral administration to man. Eur J Clin Pharmacol. 1979;16:195–202.PubMedCrossRef
17.
go back to reference Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50:81–98.PubMedCrossRef Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50:81–98.PubMedCrossRef
19.
go back to reference Kusuhara H, Ito S, Kumagai Y, et al. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther. 2011;89:837–44.PubMedCrossRef Kusuhara H, Ito S, Kumagai Y, et al. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther. 2011;89:837–44.PubMedCrossRef
20.
go back to reference Holden SN, Eckhardt SG, Basser R, et al. Clinical evaluation of ZD6474, an orally active inhibitor of VEGF and EGF receptor signaling, in patients with solid, malignant tumors. Ann Oncol. 2005;16:1391–7.PubMedCrossRef Holden SN, Eckhardt SG, Basser R, et al. Clinical evaluation of ZD6474, an orally active inhibitor of VEGF and EGF receptor signaling, in patients with solid, malignant tumors. Ann Oncol. 2005;16:1391–7.PubMedCrossRef
21.
go back to reference Tamura T, Minami H, Yamada Y, et al. A phase I dose-escalation study of ZD6474 in Japanese patients with solid, malignant tumors. J Thorac Oncol. 2006;1:1002–9.PubMedCrossRef Tamura T, Minami H, Yamada Y, et al. A phase I dose-escalation study of ZD6474 in Japanese patients with solid, malignant tumors. J Thorac Oncol. 2006;1:1002–9.PubMedCrossRef
22.
go back to reference Shen H, Yang Z, Zhao W, et al. Assessment of vandetanib as an inhibitor of various human renal transporters: inhibition of multidrug and toxin extrusion (MATE1 and MATE2K) as a possible mechanism leading to decreased cisplatin and creatinine clearance. Drug Metab Dispos. 2013;41:2095–103.PubMedCrossRef Shen H, Yang Z, Zhao W, et al. Assessment of vandetanib as an inhibitor of various human renal transporters: inhibition of multidrug and toxin extrusion (MATE1 and MATE2K) as a possible mechanism leading to decreased cisplatin and creatinine clearance. Drug Metab Dispos. 2013;41:2095–103.PubMedCrossRef
23.
go back to reference Morris SA, Hatcher HF, Reddy DK. Digoxin therapy for heart failure: an update. Am Fam Physician. 2006;74:613–8.PubMed Morris SA, Hatcher HF, Reddy DK. Digoxin therapy for heart failure: an update. Am Fam Physician. 2006;74:613–8.PubMed
24.
Metadata
Title
Pharmacokinetic Evaluations of the Co-Administrations of Vandetanib and Metformin, Digoxin, Midazolam, Omeprazole or Ranitidine
Authors
Susanne Johansson
Jessica Read
Stuart Oliver
Mark Steinberg
Yan Li
Eleanor Lisbon
David Mathews
Philip T. Leese
Paul Martin
Publication date
01-09-2014
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 9/2014
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-014-0161-2

Other articles of this Issue 9/2014

Clinical Pharmacokinetics 9/2014 Go to the issue