Skip to main content
Top
Published in: Drug Safety 9/2006

01-09-2006 | Review Article

Pharmacokinetic Drug Interaction Profiles of Proton Pump Inhibitors

Authors: Prof. Dr Henning Blume, Frank Donath, André Warnke, Barbara S. Schug

Published in: Drug Safety | Issue 9/2006

Login to get access

Abstract

Proton pump inhibitors are used extensively for the treatment of gastric acid-related disorders because they produce a greater degree and longer duration of gastric acid suppression and, thus, better healing rates, than histamine H2 receptor antagonists. The need for long-term treatment of these disorders raises the potential for clinically significant drug interactions in patients receiving proton pump inhibitors and other medications. Therefore, it is important to understand the mechanisms for drug interactions in this setting. Proton pump inhibitors can modify the intragastric release of other drugs from their dosage forms by elevating pH (e.g. reducing the antifungal activity of ketoconazole). Proton pump inhibitors also influence drug absorption and metabolism by interacting with adenosine triphosphate-dependent P-glycoprotein (e.g. inhibiting digoxin efflux) or with the cytochrome P450 (CYP) enzyme system (e.g. decreasing simvastatin metabolism), thereby affecting both intestinal first-pass metabolism and hepatic clearance.
Although interactions based on the change of gastric pH are a group-specific effect and thus may occur with all proton pump inhibitors, individual proton pump inhibitors differ in their propensities to interact with other drugs and the extent to which their interaction profiles have been defined. The interaction profiles of omeprazole and pantoprazole have been studied most extensively. A number of studies have shown that omeprazole carries a considerable potential for drug interactions, since it has a high affinity for CYP2C19 and a somewhat lower affinity for CYP3A4. In contrast, pantoprazole appears to have lower potential for interactions with other medications. Although the interaction profiles of esomeprazole, lansoprazole and rabeprazole have been less extensively investigated, evidence suggests that lansoprazole and rabeprazole seem to have a weaker potential for interactions than omeprazole.
Although only a few drug interactions involving proton pump inhibitors have been shown to be of clinical significance, the potential for drug interactions should be taken into account when choosing a therapy for gastric acid-related disorders, especially for elderly patients in whom polypharmacy is common, or in those receiving a concomitant medication with a narrow therapeutic index.
Literature
1.
2.
go back to reference Farup PG, Juul-Hansen PH, Rydning A. Does short-term treatment with proton pump inhibitors cause rebound aggravation of symptoms? J Clin Gastroenterol 2001; 33: 206–9PubMedCrossRef Farup PG, Juul-Hansen PH, Rydning A. Does short-term treatment with proton pump inhibitors cause rebound aggravation of symptoms? J Clin Gastroenterol 2001; 33: 206–9PubMedCrossRef
3.
go back to reference Gillen D, Wirz AA, McColl KE. Helicobacter pylori eradication releases prolonged increased acid secretion following omeprazole treatment. Gastroenterology 2004; 126: 980–8PubMedCrossRef Gillen D, Wirz AA, McColl KE. Helicobacter pylori eradication releases prolonged increased acid secretion following omeprazole treatment. Gastroenterology 2004; 126: 980–8PubMedCrossRef
4.
go back to reference Chiba N, De Gara CJ, Wilkinson JM, et al. Speed of healing and symptom relief in grade II to IV gastroesophageal reflux disease: a meta-analysis. Gastroenterology 1997; 112: 1798–810PubMedCrossRef Chiba N, De Gara CJ, Wilkinson JM, et al. Speed of healing and symptom relief in grade II to IV gastroesophageal reflux disease: a meta-analysis. Gastroenterology 1997; 112: 1798–810PubMedCrossRef
5.
go back to reference Dammann HG. Pantoprazole: a pharmacological and clinical profile. Today’s Ther Trends 1997; 15: 109–36 Dammann HG. Pantoprazole: a pharmacological and clinical profile. Today’s Ther Trends 1997; 15: 109–36
6.
go back to reference Cheer SM, Prakash A, Faulds D, et al. Pantoprazole: an update of its pharmacological properties and therapeutic use in the management of acid-related disorders. Drugs 2003; 63: 101–32PubMedCrossRef Cheer SM, Prakash A, Faulds D, et al. Pantoprazole: an update of its pharmacological properties and therapeutic use in the management of acid-related disorders. Drugs 2003; 63: 101–32PubMedCrossRef
7.
go back to reference Welage LS, Berardi RR. Evaluation of omeprazole, lansoprazole, pantoprazole, and rabeprazole in the treatment of acid-related diseases. J Am Pharm Assoc (Wash) 2000; 40: 52–62 Welage LS, Berardi RR. Evaluation of omeprazole, lansoprazole, pantoprazole, and rabeprazole in the treatment of acid-related diseases. J Am Pharm Assoc (Wash) 2000; 40: 52–62
8.
go back to reference Lanza FL. A guideline for the treatment and prevention of NSAID-induced ulcers. Members of the Ad Hoc Committee on Practice Parameters of the American College of Gastroenterology. Am J Gastroenterol 1998; 93: 2037–46PubMedCrossRef Lanza FL. A guideline for the treatment and prevention of NSAID-induced ulcers. Members of the Ad Hoc Committee on Practice Parameters of the American College of Gastroenterology. Am J Gastroenterol 1998; 93: 2037–46PubMedCrossRef
9.
go back to reference Singh G, Triadafilopoulos G. Appropriate choice of proton pump inhibitor therapy in the prevention and management of NSAID-related gastrointestinal damage. Int J Clin Pract 2005; 59: 1210–7PubMedCrossRef Singh G, Triadafilopoulos G. Appropriate choice of proton pump inhibitor therapy in the prevention and management of NSAID-related gastrointestinal damage. Int J Clin Pract 2005; 59: 1210–7PubMedCrossRef
10.
go back to reference Humphries TJ, Merritt GJ. Drug interactions with agents used to treat acid-related diseases. Aliment Pharmacol Ther 1999; 13Suppl. 3: 18–26PubMedCrossRef Humphries TJ, Merritt GJ. Drug interactions with agents used to treat acid-related diseases. Aliment Pharmacol Ther 1999; 13Suppl. 3: 18–26PubMedCrossRef
11.
go back to reference Johnson AG, Seidemann P, Day RO. NSAID-related adverse drug interactions with clinical relevance: an update. Int J Clin Pharmacol Ther 1994; 32: 509–32PubMed Johnson AG, Seidemann P, Day RO. NSAID-related adverse drug interactions with clinical relevance: an update. Int J Clin Pharmacol Ther 1994; 32: 509–32PubMed
12.
go back to reference Triadafilopoulos G, Sharma R. Features of symptomatic gastroesophageal reflux disease in elderly patients. Am J Gastroenterol 1997; 92: 2007–11PubMed Triadafilopoulos G, Sharma R. Features of symptomatic gastroesophageal reflux disease in elderly patients. Am J Gastroenterol 1997; 92: 2007–11PubMed
13.
go back to reference Chutka DS, Evans JM, Fleming KC, et al. Drug prescribing for elderly patients. Mayo Clin Proc 1995; 70: 685–93PubMedCrossRef Chutka DS, Evans JM, Fleming KC, et al. Drug prescribing for elderly patients. Mayo Clin Proc 1995; 70: 685–93PubMedCrossRef
14.
go back to reference Ramirez FC. Diagnosis and treatment of gastroesophageal reflux disease in the elderly. Cleve Clin J Med 2000; 67: 755–65PubMed Ramirez FC. Diagnosis and treatment of gastroesophageal reflux disease in the elderly. Cleve Clin J Med 2000; 67: 755–65PubMed
15.
go back to reference Gerson LB, Triadafilopoulos G. Proton pump inhibitors and their drug interactions: an evidence-based approach. Eur J Gastroenterol Hepatol 2001; 13: 611–6PubMedCrossRef Gerson LB, Triadafilopoulos G. Proton pump inhibitors and their drug interactions: an evidence-based approach. Eur J Gastroenterol Hepatol 2001; 13: 611–6PubMedCrossRef
16.
go back to reference Hanlon JT, Schmader KE, Koronkowski MJ, et al. Adverse drug events in high risk older outpatients. J Am Geriatr Soc 1997; 45: 945–8PubMed Hanlon JT, Schmader KE, Koronkowski MJ, et al. Adverse drug events in high risk older outpatients. J Am Geriatr Soc 1997; 45: 945–8PubMed
17.
go back to reference Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998; 279: 1200–5PubMedCrossRef Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998; 279: 1200–5PubMedCrossRef
18.
go back to reference Lamy PP. Pharmacotherapeutics in the elderly. Md Med J 1989; 38: 144–8PubMed Lamy PP. Pharmacotherapeutics in the elderly. Md Med J 1989; 38: 144–8PubMed
19.
go back to reference Stewart RB, Cooper JW. Polypharmacy in the aged: practical solutions. Drugs Aging 1994; 4: 449–61PubMedCrossRef Stewart RB, Cooper JW. Polypharmacy in the aged: practical solutions. Drugs Aging 1994; 4: 449–61PubMedCrossRef
20.
go back to reference Shapiro LE, Shear NH. Drug interactions: proteins, pumps, and P-450s. J Am Acad Dermatol 2002; 47: 467–84PubMedCrossRef Shapiro LE, Shear NH. Drug interactions: proteins, pumps, and P-450s. J Am Acad Dermatol 2002; 47: 467–84PubMedCrossRef
21.
go back to reference Reynolds JC. The clinical importance of drug interactions with antiulcer therapy. J Clin Gastroenterol 1990; 12Suppl. 2: 54S–63SCrossRef Reynolds JC. The clinical importance of drug interactions with antiulcer therapy. J Clin Gastroenterol 1990; 12Suppl. 2: 54S–63SCrossRef
22.
go back to reference Vanderhoff BT, Tahboub RM. Proton pump inhibitors: an update. Am Fam Physician 2002; 66: 273–80PubMed Vanderhoff BT, Tahboub RM. Proton pump inhibitors: an update. Am Fam Physician 2002; 66: 273–80PubMed
23.
go back to reference Chin TW, Loeb M, Fong IW. Effects of an acidic beverage (Coca-Cola) on absorption of ketoconazole. Antimicrob Agents Chemother 1995; 39: 1671–5PubMedCrossRef Chin TW, Loeb M, Fong IW. Effects of an acidic beverage (Coca-Cola) on absorption of ketoconazole. Antimicrob Agents Chemother 1995; 39: 1671–5PubMedCrossRef
24.
go back to reference Carlson JA, Mann HJ, Canafax DM. Effect of pH on disintegration and dissolution of ketoconazole tablets. Am J Hosp Pharm 1983; 40: 1334–6PubMed Carlson JA, Mann HJ, Canafax DM. Effect of pH on disintegration and dissolution of ketoconazole tablets. Am J Hosp Pharm 1983; 40: 1334–6PubMed
25.
go back to reference Jaruratanasirikul S, Sriwiriyajan S. Effect of omeprazole on the pharmacokinetics of itraconazole. Eur J Clin Pharmacol 1998; 54: 159–61PubMedCrossRef Jaruratanasirikul S, Sriwiriyajan S. Effect of omeprazole on the pharmacokinetics of itraconazole. Eur J Clin Pharmacol 1998; 54: 159–61PubMedCrossRef
26.
go back to reference Johnson MD, Hamilton CD, Drew RH, et al. A randomized comparative study to determine the effect of omeprazole on the peak serum concentration of itraconazole oral solution. J Antimicrob Chemother 2003; 51: 453–7PubMedCrossRef Johnson MD, Hamilton CD, Drew RH, et al. A randomized comparative study to determine the effect of omeprazole on the peak serum concentration of itraconazole oral solution. J Antimicrob Chemother 2003; 51: 453–7PubMedCrossRef
27.
go back to reference Burger DM, Hugen PWH, Kroon FP, et al. Pharmacokinetic interaction between the proton pump inhibitor omeprazole and the HIV protease inhibitor indinavir. AIDS 1998; 12: 2080–2PubMedCrossRef Burger DM, Hugen PWH, Kroon FP, et al. Pharmacokinetic interaction between the proton pump inhibitor omeprazole and the HIV protease inhibitor indinavir. AIDS 1998; 12: 2080–2PubMedCrossRef
28.
go back to reference Treiber G, Walker S, Klotz U. Omeprazole-induced increase in the absorption of bismuth from tripotassium dicitrato bismuthate. Clin Pharmacol Ther 1994; 55: 486–91PubMedCrossRef Treiber G, Walker S, Klotz U. Omeprazole-induced increase in the absorption of bismuth from tripotassium dicitrato bismuthate. Clin Pharmacol Ther 1994; 55: 486–91PubMedCrossRef
29.
go back to reference Pauli-Magnus C, Rekersbrink S, Klotz U, et al. Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schniedebergs Arch Pharmacol 2001; 364: 551–7CrossRef Pauli-Magnus C, Rekersbrink S, Klotz U, et al. Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schniedebergs Arch Pharmacol 2001; 364: 551–7CrossRef
30.
go back to reference Cummins CL, Jacobsen W, Benet LZ. Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 2002; 300: 1036–45PubMedCrossRef Cummins CL, Jacobsen W, Benet LZ. Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 2002; 300: 1036–45PubMedCrossRef
31.
go back to reference Meyer UA. Overview of enzymes of drug metabolism. J Pharmacokinet Biopharm 1996; 24: 449–59PubMed Meyer UA. Overview of enzymes of drug metabolism. J Pharmacokinet Biopharm 1996; 24: 449–59PubMed
32.
go back to reference Kolars JC, Awni WM, Merion RM, et al. First-pass metabolism of cyclosporin by the gut. Lancet 1991; 338: 1488–90PubMedCrossRef Kolars JC, Awni WM, Merion RM, et al. First-pass metabolism of cyclosporin by the gut. Lancet 1991; 338: 1488–90PubMedCrossRef
33.
go back to reference Paine MF, Shen DD, Kunze KL, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther 1996; 60: 14–24PubMedCrossRef Paine MF, Shen DD, Kunze KL, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther 1996; 60: 14–24PubMedCrossRef
34.
go back to reference Shen DD, Kunze KL, Thummel KE. Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. Adv Drug Deliv Rev 1997; 27: 99–127PubMedCrossRef Shen DD, Kunze KL, Thummel KE. Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. Adv Drug Deliv Rev 1997; 27: 99–127PubMedCrossRef
35.
go back to reference Lown K, Balley D, Fontana R, et al. Grapefruit juice increases felodipine oral bioavailability in humans by decreasing intestinal CYP3A protein expression. J Clin Invest 1997; 99: 2545–53PubMedCrossRef Lown K, Balley D, Fontana R, et al. Grapefruit juice increases felodipine oral bioavailability in humans by decreasing intestinal CYP3A protein expression. J Clin Invest 1997; 99: 2545–53PubMedCrossRef
36.
go back to reference Martin J, Krum H. Cytochrome P450 drug interactions within the HMG-CoA reductase inhibitor class: are they clinically relevant? Drug Saf 2003; 26: 13–21PubMedCrossRef Martin J, Krum H. Cytochrome P450 drug interactions within the HMG-CoA reductase inhibitor class: are they clinically relevant? Drug Saf 2003; 26: 13–21PubMedCrossRef
37.
go back to reference Li XQ, Andersson TB, Ahlstrom M, et al. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos 2004; 32: 821–7PubMedCrossRef Li XQ, Andersson TB, Ahlstrom M, et al. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos 2004; 32: 821–7PubMedCrossRef
38.
go back to reference Simon WA. Faster in vitro biotransformation of S-omeprazole by the cytochrome P450 isoenzyme system compared to pantoprazole [abstract]. Pharmacotherapy 2003; 23: 1338 Simon WA. Faster in vitro biotransformation of S-omeprazole by the cytochrome P450 isoenzyme system compared to pantoprazole [abstract]. Pharmacotherapy 2003; 23: 1338
39.
go back to reference Bliesath H, Huber R, Steinijans VW, et al. Lack of pharmacokinetic interaction between pantoprazole and diclofenac. Int J Clin Pharmacol Ther 1996; 34: 152–6PubMed Bliesath H, Huber R, Steinijans VW, et al. Lack of pharmacokinetic interaction between pantoprazole and diclofenac. Int J Clin Pharmacol Ther 1996; 34: 152–6PubMed
40.
go back to reference Karol MD, Locke CS, Cavanaugh JH. Lack of pharmacokinetic interaction between lansoprazole and intravenously administered phenytoin. J Clin Pharmacol 1999; 39: 1283–9PubMedCrossRef Karol MD, Locke CS, Cavanaugh JH. Lack of pharmacokinetic interaction between lansoprazole and intravenously administered phenytoin. J Clin Pharmacol 1999; 39: 1283–9PubMedCrossRef
41.
go back to reference Krusekopf S, Roots I, Hildebrandt AG, et al. Time-dependent transcriptional induction of CYP1A1, CYP1A2 and CYP1B1 mRNAs by H+/K+-ATPase inhibitors and other xenobiotics. Xenobiotica 2003; 33: 107–18PubMedCrossRef Krusekopf S, Roots I, Hildebrandt AG, et al. Time-dependent transcriptional induction of CYP1A1, CYP1A2 and CYP1B1 mRNAs by H+/K+-ATPase inhibitors and other xenobiotics. Xenobiotica 2003; 33: 107–18PubMedCrossRef
42.
go back to reference Gerloff J, Barth H, Mignot A, et al. Does the proton pump inhibitor lansoprazole interact with antacids [abstract]. Arch Pharmacol 1993; 347: A124 Gerloff J, Barth H, Mignot A, et al. Does the proton pump inhibitor lansoprazole interact with antacids [abstract]. Arch Pharmacol 1993; 347: A124
43.
go back to reference Gremse DA. Lansoprazole: pharmacokinetics, pharmacodynamics and clinical uses. Expert Opin Pharmacother 2001; 2: 1663–70PubMedCrossRef Gremse DA. Lansoprazole: pharmacokinetics, pharmacodynamics and clinical uses. Expert Opin Pharmacother 2001; 2: 1663–70PubMedCrossRef
44.
go back to reference Iwao K, Saitoh H, Takeda K, et al. Decreased plasma levels of omeprazole after coadministration with magnesium-aluminium hydroxide dry suspension granules. Yakugaku Zasshi 1999; 119: 221–8PubMed Iwao K, Saitoh H, Takeda K, et al. Decreased plasma levels of omeprazole after coadministration with magnesium-aluminium hydroxide dry suspension granules. Yakugaku Zasshi 1999; 119: 221–8PubMed
45.
go back to reference Hartmann M, Bliesath H, Huber R, et al. Simultaneous intake of antacids has no influence on the pharmacokinetics of the gastric H+/K+-ATPase inhibitor pantoprazole [abstract]. Gut 1994; 35Suppl. 4: A76 Hartmann M, Bliesath H, Huber R, et al. Simultaneous intake of antacids has no influence on the pharmacokinetics of the gastric H+/K+-ATPase inhibitor pantoprazole [abstract]. Gut 1994; 35Suppl. 4: A76
46.
go back to reference Yasuda S, Higashi S, Murakami M, et al. Antacids have no influence on the pharmacokinetics of rabeprazole, a new proton pump inhibitor, in healthy volunteers. Int J Clin Pharmacol Ther 1999; 37: 249–53PubMed Yasuda S, Higashi S, Murakami M, et al. Antacids have no influence on the pharmacokinetics of rabeprazole, a new proton pump inhibitor, in healthy volunteers. Int J Clin Pharmacol Ther 1999; 37: 249–53PubMed
47.
go back to reference St Peter JV, Awni WM, Granneman GR, et al. The effects of lansoprazole on the disposition of antipyrine and indocyanine green in normal human subjects. Am J Ther 1995; 2: 561–8PubMedCrossRef St Peter JV, Awni WM, Granneman GR, et al. The effects of lansoprazole on the disposition of antipyrine and indocyanine green in normal human subjects. Am J Ther 1995; 2: 561–8PubMedCrossRef
48.
go back to reference De Mey C, Meineke I, Steinijans VW, et al. Pantoprazole lacks interaction with antipyrine in man, either by inhibition or induction. Int J Clin Pharmacol Ther 1994; 32: 98–106PubMed De Mey C, Meineke I, Steinijans VW, et al. Pantoprazole lacks interaction with antipyrine in man, either by inhibition or induction. Int J Clin Pharmacol Ther 1994; 32: 98–106PubMed
49.
go back to reference Andersson T, Holmberg J, Rohss K, et al. Pharmacokinetics and effect on caffeine metabolism of the proton pump inhibitors, omeprazole, lansoprazole, and pantoprazole. Br J Clin Pharmacol 1998; 45: 369–75PubMedCrossRef Andersson T, Holmberg J, Rohss K, et al. Pharmacokinetics and effect on caffeine metabolism of the proton pump inhibitors, omeprazole, lansoprazole, and pantoprazole. Br J Clin Pharmacol 1998; 45: 369–75PubMedCrossRef
50.
go back to reference Rost KL, Roots I. Accelerated caffeine metabolism after omeprazole treatment indicated by urinary metabolic ratios: coincidence with plasma clearance and breath test. Clin Pharmacol Ther 1994; 55: 402–11PubMedCrossRef Rost KL, Roots I. Accelerated caffeine metabolism after omeprazole treatment indicated by urinary metabolic ratios: coincidence with plasma clearance and breath test. Clin Pharmacol Ther 1994; 55: 402–11PubMedCrossRef
51.
go back to reference Hartmann M, Zech K, Bliesath H, et al. Pantoprazole lacks induction of CYP1A2 activity in man. Int J Clin Pharmacol Ther 1999; 37: 159–64PubMed Hartmann M, Zech K, Bliesath H, et al. Pantoprazole lacks induction of CYP1A2 activity in man. Int J Clin Pharmacol Ther 1999; 37: 159–64PubMed
52.
go back to reference Naidu MUR, Shobha JC, Dixit VK, et al. Effect of multiple dose omeprazole on the pharmacokinetics of carbamazepine. Drug Invest 1994; 7: 8–12CrossRef Naidu MUR, Shobha JC, Dixit VK, et al. Effect of multiple dose omeprazole on the pharmacokinetics of carbamazepine. Drug Invest 1994; 7: 8–12CrossRef
53.
go back to reference Huber R, Bliesath H, Hartmann M, et al. Pantoprazole does not interact with the pharmacokinetics of carbamazepine. Int J Clin Pharmacol Ther 1998; 36: 521–4PubMed Huber R, Bliesath H, Hartmann M, et al. Pantoprazole does not interact with the pharmacokinetics of carbamazepine. Int J Clin Pharmacol Ther 1998; 36: 521–4PubMed
54.
go back to reference Colin-Jones DG. Safety of lansoprazole. Aliment Pharmacol Ther 1993; 7Suppl. 1: 56–60PubMed Colin-Jones DG. Safety of lansoprazole. Aliment Pharmacol Ther 1993; 7Suppl. 1: 56–60PubMed
55.
go back to reference Middle MV, Müller FO, Schall R, et al. Effect of pantoprazole on ovulation suppression by a low-dose hormonal contraceptive. Clin Drug Invest 1995; 9: 54–6 Middle MV, Müller FO, Schall R, et al. Effect of pantoprazole on ovulation suppression by a low-dose hormonal contraceptive. Clin Drug Invest 1995; 9: 54–6
56.
go back to reference Schouler L, Dumas F, Couzigou P, et al. Omeprazolecyclosporin interaction [abstract]. Am J Gastroenterol 1991; 86: 1097PubMed Schouler L, Dumas F, Couzigou P, et al. Omeprazolecyclosporin interaction [abstract]. Am J Gastroenterol 1991; 86: 1097PubMed
57.
go back to reference Reichenspurner H, Meiser BM, Muschiol F, et al. The influence of gastrointestinal agents on resorption and metabolism of cyclosporine after heart transplantation: experimental and clinical results. J Heart Lung Transplant 1993; 12(6 Pt 1): 987–92PubMed Reichenspurner H, Meiser BM, Muschiol F, et al. The influence of gastrointestinal agents on resorption and metabolism of cyclosporine after heart transplantation: experimental and clinical results. J Heart Lung Transplant 1993; 12(6 Pt 1): 987–92PubMed
58.
go back to reference Blohme I, Idstrom JP, Andersson T. A study of the interaction between omeprazole and cyclosporine in renal transplant patients. Br J Clin Pharmacol 1993; 35: 156–60PubMed Blohme I, Idstrom JP, Andersson T. A study of the interaction between omeprazole and cyclosporine in renal transplant patients. Br J Clin Pharmacol 1993; 35: 156–60PubMed
59.
go back to reference Lorf T, Ramadori G, Ringe B, et al. Pantoprazole does not affect ciclosporin A blood concentration in kidney-transplant patients. Eur J Clin Pharmacol 2000; 55: 733–5PubMedCrossRef Lorf T, Ramadori G, Ringe B, et al. Pantoprazole does not affect ciclosporin A blood concentration in kidney-transplant patients. Eur J Clin Pharmacol 2000; 55: 733–5PubMedCrossRef
60.
go back to reference Padhi D, Harris R, Salfi M, et al. Cinacalcet HCl absorption in study subjects is not affected by coadministration of medications commonly prescribed to chronic kidney disease (CKD) patients (pantoprazole, sevelamar HCl, and calcium carbonate) [abstract]. J Am Soc Nephrol 2003; 14: SA–PO744 Padhi D, Harris R, Salfi M, et al. Cinacalcet HCl absorption in study subjects is not affected by coadministration of medications commonly prescribed to chronic kidney disease (CKD) patients (pantoprazole, sevelamar HCl, and calcium carbonate) [abstract]. J Am Soc Nephrol 2003; 14: SA–PO744
61.
go back to reference Andersson T, Hassan-lin M, Hasselgren G, et al. Pharmacokinetic studies with esomeprazole, the (S)-somer of omeprazole. Clin Pharmacokinet 2001; 40: 411–26PubMedCrossRef Andersson T, Hassan-lin M, Hasselgren G, et al. Pharmacokinetic studies with esomeprazole, the (S)-somer of omeprazole. Clin Pharmacokinet 2001; 40: 411–26PubMedCrossRef
62.
go back to reference Andersson T, Hassan-lin M, Hasselgren G, et al. Drug interaction studies with esomeprazole, the (S)-somer of omeprazole. Clin Pharmacokinet 2001; 40: 523–37PubMedCrossRef Andersson T, Hassan-lin M, Hasselgren G, et al. Drug interaction studies with esomeprazole, the (S)-somer of omeprazole. Clin Pharmacokinet 2001; 40: 523–37PubMedCrossRef
63.
go back to reference Drewelow B, Schaffler K, Reitmeir P. Superior interaction profile of pantoprazole vs esomeprazole after single dose diazepam regarding pharmacodynamic (PD) and kinetic (PK) parameters. Can J Gastroenterol 2006; 20Suppl. A: 144 Drewelow B, Schaffler K, Reitmeir P. Superior interaction profile of pantoprazole vs esomeprazole after single dose diazepam regarding pharmacodynamic (PD) and kinetic (PK) parameters. Can J Gastroenterol 2006; 20Suppl. A: 144
64.
go back to reference Lefebvre RA, Flouvat B, Karolac-Tamisier S, et al. Influence of lansoprazole treatment on diazepam plasma concentrations. Clin Pharmacol Ther 1992; 52: 458–63PubMedCrossRef Lefebvre RA, Flouvat B, Karolac-Tamisier S, et al. Influence of lansoprazole treatment on diazepam plasma concentrations. Clin Pharmacol Ther 1992; 52: 458–63PubMedCrossRef
65.
go back to reference Andersson T, Cederberg C, Edvardsson G, et al. Effect of omeprazole treatment on diazepam plasma levels in slow versus normal rapid metabolizers of omeprazole. Clin Pharmacol Ther 1990; 47: 79–85PubMedCrossRef Andersson T, Cederberg C, Edvardsson G, et al. Effect of omeprazole treatment on diazepam plasma levels in slow versus normal rapid metabolizers of omeprazole. Clin Pharmacol Ther 1990; 47: 79–85PubMedCrossRef
66.
go back to reference Gugler R, Jensen JC. Omeprazole inhibits oxidative drug metabolism: studies with diazepam and phenytoin in vivo and 7-ethoxycoumarin in vitro. Gastroenterology 1985; 89: 1235–41PubMed Gugler R, Jensen JC. Omeprazole inhibits oxidative drug metabolism: studies with diazepam and phenytoin in vivo and 7-ethoxycoumarin in vitro. Gastroenterology 1985; 89: 1235–41PubMed
67.
go back to reference Gugler R, Hartmann M, Rudi J, et al. Lack of pharmacokinetic interaction of pantoprazole with diazepam in man. Br J Clin Pharmacol 1996; 42: 249–52PubMedCrossRef Gugler R, Hartmann M, Rudi J, et al. Lack of pharmacokinetic interaction of pantoprazole with diazepam in man. Br J Clin Pharmacol 1996; 42: 249–52PubMedCrossRef
68.
go back to reference Ishizaki T, Chiba K, Manabe K, et al. Comparison of the interaction potential of a new proton pump inhibitor, E3810, versus omeprazole with diazepam in extensive and poor metabolizers of S-mephenytoin 4′-hydroxylation. Clin Pharmacol Ther 1995; 58: 155–64PubMedCrossRef Ishizaki T, Chiba K, Manabe K, et al. Comparison of the interaction potential of a new proton pump inhibitor, E3810, versus omeprazole with diazepam in extensive and poor metabolizers of S-mephenytoin 4′-hydroxylation. Clin Pharmacol Ther 1995; 58: 155–64PubMedCrossRef
69.
go back to reference Andersson T, Bredberg E, Lagerstrom PO, et al. Lack of drug-drug interaction between three different non-steroidal anti-inflammatory drugs and omeprazole. Eur J Clin Pharmacol 1998; 54: 399–404PubMedCrossRef Andersson T, Bredberg E, Lagerstrom PO, et al. Lack of drug-drug interaction between three different non-steroidal anti-inflammatory drugs and omeprazole. Eur J Clin Pharmacol 1998; 54: 399–404PubMedCrossRef
70.
go back to reference Oosterhuis B, Jonkman JH, Andersson T, et al. Minor effect of multiple dose omeprazole on the pharmacokinetics of digoxin after a single oral dose. Br J Clin Pharmacol 1991; 32: 569–72PubMedCrossRef Oosterhuis B, Jonkman JH, Andersson T, et al. Minor effect of multiple dose omeprazole on the pharmacokinetics of digoxin after a single oral dose. Br J Clin Pharmacol 1991; 32: 569–72PubMedCrossRef
71.
go back to reference Hartmann M, Huber R, Bliesath H, et al. Lack of interaction between pantoprazole and digoxin at therapeutic doses in man. Int J Clin Pharmacol Ther 1996; 34(1 Suppl.): 67S–71S Hartmann M, Huber R, Bliesath H, et al. Lack of interaction between pantoprazole and digoxin at therapeutic doses in man. Int J Clin Pharmacol Ther 1996; 34(1 Suppl.): 67S–71S
72.
go back to reference Fuhr U, Jetter A. Rabeprazole: pharmacokinetic and pharmacokinetic drug interactions. Pharmazie 2002; 57: 595–601PubMed Fuhr U, Jetter A. Rabeprazole: pharmacokinetic and pharmacokinetic drug interactions. Pharmazie 2002; 57: 595–601PubMed
73.
go back to reference Battison L, Tulissi P, Moretti M, et al. Lansoprazole and ethanol metabolism: comparison with omeprazole and cimetidine. Pharmacol Toxicol 1997; 81: 247–52 Battison L, Tulissi P, Moretti M, et al. Lansoprazole and ethanol metabolism: comparison with omeprazole and cimetidine. Pharmacol Toxicol 1997; 81: 247–52
74.
go back to reference Heinze H, Fischer R, Pfutzer R, et al. Lack of interaction between pantoprazole and ethanol. Clin Drug Invest 2001; 21: 345–51CrossRef Heinze H, Fischer R, Pfutzer R, et al. Lack of interaction between pantoprazole and ethanol. Clin Drug Invest 2001; 21: 345–51CrossRef
75.
go back to reference Walter-Sack IE, Bliesath H, Stotzer F, et al. Lack of pharmacokinetic and pharmacodynamic interaction between pantoprazole and glibenclamide in humans. Clin Drug Invest 1998; 15: 253–60CrossRef Walter-Sack IE, Bliesath H, Stotzer F, et al. Lack of pharmacokinetic and pharmacodynamic interaction between pantoprazole and glibenclamide in humans. Clin Drug Invest 1998; 15: 253–60CrossRef
76.
go back to reference Dietrich JW, Gleselbrecht K, Holl RW, et al. Absorption kinetic of levothyroxine is not altered by proton-pump inhibitor therapy. Horm Metab Res 2006; 38: 57–9PubMedCrossRef Dietrich JW, Gleselbrecht K, Holl RW, et al. Absorption kinetic of levothyroxine is not altered by proton-pump inhibitor therapy. Horm Metab Res 2006; 38: 57–9PubMedCrossRef
77.
go back to reference Andersson T, Lundborg P, Regardh CG. Lack of effect of omeprazole treatment on steady-state plasma levels of metoprolol. Eur J Clin Pharmacol 1991; 40: 61–5PubMedCrossRef Andersson T, Lundborg P, Regardh CG. Lack of effect of omeprazole treatment on steady-state plasma levels of metoprolol. Eur J Clin Pharmacol 1991; 40: 61–5PubMedCrossRef
78.
go back to reference Koch HJ, Hartmann M, Bliesath H, et al. Pantoprazole has no influence on steady state pharmacokinetics and pharmacodynamics of metoprolol in healthy volunteers. Int J Clin Pharmacol Ther 1996; 34: 420–3PubMed Koch HJ, Hartmann M, Bliesath H, et al. Pantoprazole has no influence on steady state pharmacokinetics and pharmacodynamics of metoprolol in healthy volunteers. Int J Clin Pharmacol Ther 1996; 34: 420–3PubMed
79.
go back to reference Hartmann M, Schulz HU, Krupp S, et al. Pantoprazole lacks interaction with the NSAID naproxen in man [abstract]. Gut 2000; 47: A85 Hartmann M, Schulz HU, Krupp S, et al. Pantoprazole lacks interaction with the NSAID naproxen in man [abstract]. Gut 2000; 47: A85
80.
go back to reference Soons P, van der Berg G, Danhof M, et al. Influence of single- and multiple-dose omeprazole treatment on nifedipine pharmacokinetics and effects in healthy subjects. Eur J Clin Pharmacol 1992; 42: 319–24PubMedCrossRef Soons P, van der Berg G, Danhof M, et al. Influence of single- and multiple-dose omeprazole treatment on nifedipine pharmacokinetics and effects in healthy subjects. Eur J Clin Pharmacol 1992; 42: 319–24PubMedCrossRef
81.
go back to reference Bliesath H, Huber R, Steinijans VW, et al. Pantoprazole does not interact with nifedipine in man under steady-state conditions. Int J Clin Pharmacol Ther 1996; 34: 51–5PubMed Bliesath H, Huber R, Steinijans VW, et al. Pantoprazole does not interact with nifedipine in man under steady-state conditions. Int J Clin Pharmacol Ther 1996; 34: 51–5PubMed
82.
go back to reference Enderle C, Muller W, Grass U. Drug interaction: omeprazole and phenprocoumon [abstract]. BMC Gastroenterol 2001; 1: 2PubMedCrossRef Enderle C, Muller W, Grass U. Drug interaction: omeprazole and phenprocoumon [abstract]. BMC Gastroenterol 2001; 1: 2PubMedCrossRef
83.
go back to reference Ehrlich A, Fuder H, Hartmann M, et al. Lack of pharmacodynamic and pharmacokinetic interaction between pantoprazole and phenprocoumon in man. Eur J Clin Pharmacol 1996; 51: 277–81PubMedCrossRef Ehrlich A, Fuder H, Hartmann M, et al. Lack of pharmacodynamic and pharmacokinetic interaction between pantoprazole and phenprocoumon in man. Eur J Clin Pharmacol 1996; 51: 277–81PubMedCrossRef
84.
go back to reference Prichard PJ, Walt RP, Kitchingman GK, et al. Oral phenytoin pharmacokinetics during omeprazole therapy. Br J Clin Pharmacol 1987; 24: 543–5PubMedCrossRef Prichard PJ, Walt RP, Kitchingman GK, et al. Oral phenytoin pharmacokinetics during omeprazole therapy. Br J Clin Pharmacol 1987; 24: 543–5PubMedCrossRef
85.
go back to reference Andersson T, Lagerstrom PO, Unge P. A study of the interaction between omeprazole and phenytoin in epileptic patients. Ther Drug Monit 1990; 12: 329–33PubMedCrossRef Andersson T, Lagerstrom PO, Unge P. A study of the interaction between omeprazole and phenytoin in epileptic patients. Ther Drug Monit 1990; 12: 329–33PubMedCrossRef
86.
go back to reference Middle MV, Muller FO, Schall R, et al. No influence of pantoprazole on the pharmacokinetics of phenytoin. Int J Clin Pharmacol Ther 1995; 33: 304–7PubMed Middle MV, Muller FO, Schall R, et al. No influence of pantoprazole on the pharmacokinetics of phenytoin. Int J Clin Pharmacol Ther 1995; 33: 304–7PubMed
87.
go back to reference Humphries TJ. A review of the drug-drug interaction potential of rabeprazole sodium based on CYP-450 interference or absorption effects [abstract]. Digestion 1998; 59Suppl. 3: 76 Humphries TJ. A review of the drug-drug interaction potential of rabeprazole sodium based on CYP-450 interference or absorption effects [abstract]. Digestion 1998; 59Suppl. 3: 76
88.
go back to reference Bliesath H, Hartmann M, Maier J, et al. Lack of interaction between pantoprazole and piroxicam in man [abstract]. Gut 2000; 47: A85 Bliesath H, Hartmann M, Maier J, et al. Lack of interaction between pantoprazole and piroxicam in man [abstract]. Gut 2000; 47: A85
89.
go back to reference Itagaki F, Homma M, Yuzawa K, et al. Drug interaction of tacrolimus and proton pump inhibitors in renal transplant recipients with CYP2C19 gene mutation. Transplant Proc 2002; 34: 2777–8PubMedCrossRef Itagaki F, Homma M, Yuzawa K, et al. Drug interaction of tacrolimus and proton pump inhibitors in renal transplant recipients with CYP2C19 gene mutation. Transplant Proc 2002; 34: 2777–8PubMedCrossRef
90.
go back to reference Lorf T, Ramadori G, Ringe B, et al. The effect of pantoprazole on tacrolimus and cyclosporin A blood concentration in transplant recipients. Eur J Clin Pharmacol 2000; 56: 439–40PubMedCrossRef Lorf T, Ramadori G, Ringe B, et al. The effect of pantoprazole on tacrolimus and cyclosporin A blood concentration in transplant recipients. Eur J Clin Pharmacol 2000; 56: 439–40PubMedCrossRef
91.
go back to reference Dilger K, Zheng Z, Klotz U. Lack of drug interaction between omeprazole, lansoprazole, pantoprazole and theophylline. Br J Clin Pharmacol 1999; 48: 438–44PubMedCrossRef Dilger K, Zheng Z, Klotz U. Lack of drug interaction between omeprazole, lansoprazole, pantoprazole and theophylline. Br J Clin Pharmacol 1999; 48: 438–44PubMedCrossRef
92.
go back to reference Granneman GR, Karol MD, Locke CS, et al. Pharmacokinetic interaction between lansoprazole and theophylline. Ther Drug Monit 1995; 17: 460–4PubMedCrossRef Granneman GR, Karol MD, Locke CS, et al. Pharmacokinetic interaction between lansoprazole and theophylline. Ther Drug Monit 1995; 17: 460–4PubMedCrossRef
93.
go back to reference Taburet AM, Geneve J, Bocquentin M, et al. Theophylline steady state pharmacokinetics is not altered by omeprazole. Eur J Clin Pharmacol 1992; 42: 343–5PubMedCrossRef Taburet AM, Geneve J, Bocquentin M, et al. Theophylline steady state pharmacokinetics is not altered by omeprazole. Eur J Clin Pharmacol 1992; 42: 343–5PubMedCrossRef
94.
go back to reference Schulz HU, Hartmann M, Steinijans VW, et al. Lack of influence of pantoprazole on the disposition kinetics of theophylline in man. Int J Clin Pharmacol Ther Toxicol 1991; 29: 369–75PubMed Schulz HU, Hartmann M, Steinijans VW, et al. Lack of influence of pantoprazole on the disposition kinetics of theophylline in man. Int J Clin Pharmacol Ther Toxicol 1991; 29: 369–75PubMed
95.
go back to reference Humphries TJ, Nardi RV, Spera AC, et al. Coadministration of rabeprazole sodium (E3810) does not affect the pharmacokinetics of anhydrous theophylline or warfarin [abstract]. Gastroenterology 1996; 110: A138 Humphries TJ, Nardi RV, Spera AC, et al. Coadministration of rabeprazole sodium (E3810) does not affect the pharmacokinetics of anhydrous theophylline or warfarin [abstract]. Gastroenterology 1996; 110: A138
96.
go back to reference Sutfin T, Balmer K, Bostrom H, et al. Stereoselective interaction of omeprazole with warfarin in health men. Ther Drug Monit 1989; 11: 176–84PubMedCrossRef Sutfin T, Balmer K, Bostrom H, et al. Stereoselective interaction of omeprazole with warfarin in health men. Ther Drug Monit 1989; 11: 176–84PubMedCrossRef
97.
go back to reference Unge P, Svedberg LE, Nordgren A, et al. A study of the interaction of omeprazole and warfarin in anticoagulated patients. Br J Clin Pharmacol 1992; 34: 509–12PubMedCrossRef Unge P, Svedberg LE, Nordgren A, et al. A study of the interaction of omeprazole and warfarin in anticoagulated patients. Br J Clin Pharmacol 1992; 34: 509–12PubMedCrossRef
98.
go back to reference Duursema L, Muller FO, Schall R, et al. Lack of effect of pantoprazole on the pharmacodynamics and pharmacokinetics of warfarin. Br J Clin Pharmacol 1995; 39: 700–3PubMedCrossRef Duursema L, Muller FO, Schall R, et al. Lack of effect of pantoprazole on the pharmacodynamics and pharmacokinetics of warfarin. Br J Clin Pharmacol 1995; 39: 700–3PubMedCrossRef
100.
go back to reference Andersson T, Miners JO, Veronese ME, et al. Identification of human liver cytochrome P450 isoforms mediating omeprazole metabolism. Br J Clin Pharmacol 1993; 36: 521–30PubMedCrossRef Andersson T, Miners JO, Veronese ME, et al. Identification of human liver cytochrome P450 isoforms mediating omeprazole metabolism. Br J Clin Pharmacol 1993; 36: 521–30PubMedCrossRef
101.
go back to reference Funck-Brentano C, Becquemont L, Leneveu A, et al. Inhibition by omeprazole of proguanil metabolism: mechanism of the interaction in vitro and prediction of in vivo results from the in vitro experiments. J Pharm Exp Ther 1997; 280: 730–8 Funck-Brentano C, Becquemont L, Leneveu A, et al. Inhibition by omeprazole of proguanil metabolism: mechanism of the interaction in vitro and prediction of in vivo results from the in vitro experiments. J Pharm Exp Ther 1997; 280: 730–8
102.
go back to reference Yu KS, Yim DS, Cho JY, et al. Effect of omeprazole on the pharmacokinetics of moclobemide according to the genetic polymorphism of CYP2C19. Clin Pharmacol Ther 2001; 69: 266–73PubMedCrossRef Yu KS, Yim DS, Cho JY, et al. Effect of omeprazole on the pharmacokinetics of moclobemide according to the genetic polymorphism of CYP2C19. Clin Pharmacol Ther 2001; 69: 266–73PubMedCrossRef
103.
go back to reference Grass U. Drug interactions with proton pump inhibitors: cases reported internationally from medical practice [in German]. Der Kassenarzt 2000; 43: 32–9 Grass U. Drug interactions with proton pump inhibitors: cases reported internationally from medical practice [in German]. Der Kassenarzt 2000; 43: 32–9
104.
go back to reference Koop H, Bachem MG. Serum iron, ferritin, and vitamin B12 during prolonged omeprazole therapy. J Clin Gastroenterol 1992; 14: 288–92PubMedCrossRef Koop H, Bachem MG. Serum iron, ferritin, and vitamin B12 during prolonged omeprazole therapy. J Clin Gastroenterol 1992; 14: 288–92PubMedCrossRef
105.
go back to reference Reid T, Yuen A, Catolico M, et al. Impact of omeprazole on the plasma clearance of methotrexate. Cancer Chemother Pharmacol 1993; 33: 82–4PubMedCrossRef Reid T, Yuen A, Catolico M, et al. Impact of omeprazole on the plasma clearance of methotrexate. Cancer Chemother Pharmacol 1993; 33: 82–4PubMedCrossRef
106.
go back to reference Beorlegui B, Aldaz A, Ortega A, et al. Potential interaction between methotrexate and omeprazole. Ann Pharmacother 2000; 34: 1024–7PubMedCrossRef Beorlegui B, Aldaz A, Ortega A, et al. Potential interaction between methotrexate and omeprazole. Ann Pharmacother 2000; 34: 1024–7PubMedCrossRef
107.
go back to reference Bottiger Y, Tybring G, Gotharson E, et al. Inhibition of the sulfoxidation of omeprazole by ketoconazole in poor and extensive metabolizers of S-mephenytoin. Clin Pharmacol Ther 1997; 62: 384–91PubMedCrossRef Bottiger Y, Tybring G, Gotharson E, et al. Inhibition of the sulfoxidation of omeprazole by ketoconazole in poor and extensive metabolizers of S-mephenytoin. Clin Pharmacol Ther 1997; 62: 384–91PubMedCrossRef
108.
go back to reference Furuta T, Ohashi K, Kobayashi K, et al. Effects of clarithromycin on the metabolism of omeprazole in relation to CYP2C19 genotype status in humans. Clin Pharmacol Ther 1999; 66: 265–74PubMedCrossRef Furuta T, Ohashi K, Kobayashi K, et al. Effects of clarithromycin on the metabolism of omeprazole in relation to CYP2C19 genotype status in humans. Clin Pharmacol Ther 1999; 66: 265–74PubMedCrossRef
109.
go back to reference Cho JY, Yu KS, Jang IJ, et al. Omeprazole hydroxylation is inhibited by a single dose of moclobemide in homozygotic EM genotype for CYP2C19. Br J Clin Pharmacol 2002; 53: 393–7PubMedCrossRef Cho JY, Yu KS, Jang IJ, et al. Omeprazole hydroxylation is inhibited by a single dose of moclobemide in homozygotic EM genotype for CYP2C19. Br J Clin Pharmacol 2002; 53: 393–7PubMedCrossRef
110.
go back to reference Yin OQ, Tomlinson B, Waye MM, et al. Pharmacogenetics and herb-drug interactions: experience with Ginkgo biloba and omeprazole. Pharmacogenetics 2004; 14: 841–50PubMedCrossRef Yin OQ, Tomlinson B, Waye MM, et al. Pharmacogenetics and herb-drug interactions: experience with Ginkgo biloba and omeprazole. Pharmacogenetics 2004; 14: 841–50PubMedCrossRef
111.
go back to reference Wang LS, Zhou G, Zhu B, et al. St. John’s wort induces both cytochrome P450 3A4-ctalyzed sulfoxidaiton and 2C19-dependent hydroxylation of omeprazole. Clin Pharmacol Ther 2004; 75: 191–7PubMedCrossRef Wang LS, Zhou G, Zhu B, et al. St. John’s wort induces both cytochrome P450 3A4-ctalyzed sulfoxidaiton and 2C19-dependent hydroxylation of omeprazole. Clin Pharmacol Ther 2004; 75: 191–7PubMedCrossRef
112.
go back to reference Yasui-Furukori N, Takahata T, Nakagami T, et al. Different inhibitor effect of fluvoxamine on omeprazole metabolism between CYP 2C19 genotypes. Br J Clin Pharmacol 2004; 57: 487–94PubMedCrossRef Yasui-Furukori N, Takahata T, Nakagami T, et al. Different inhibitor effect of fluvoxamine on omeprazole metabolism between CYP 2C19 genotypes. Br J Clin Pharmacol 2004; 57: 487–94PubMedCrossRef
113.
go back to reference Palovaara S, Tybring G, Laine K. The effect of ethinyloestradiol and levonorgestrel on the CYP2C19-mediated metabolisn of omeprazole in healthy female subjects. Br J Clin Pharmacol 2003; 56: 232–7PubMedCrossRef Palovaara S, Tybring G, Laine K. The effect of ethinyloestradiol and levonorgestrel on the CYP2C19-mediated metabolisn of omeprazole in healthy female subjects. Br J Clin Pharmacol 2003; 56: 232–7PubMedCrossRef
114.
go back to reference Abelo A, Andersson TB, Antonsson M, et al. Steroselective metabolism of omeprazole by human cytochrome P450 enzymes. Drug Metab Dispos 2000, 972 Abelo A, Andersson TB, Antonsson M, et al. Steroselective metabolism of omeprazole by human cytochrome P450 enzymes. Drug Metab Dispos 2000, 972
115.
go back to reference Hassan-lin M, Andersson T, Niazi M, et al. A pharmacokinetic study comparing single and repeated oral doses of 20mg and 40mg omeprazole and its two optical isomers, S-meprazole (esomeprazole) and R-meprazole, in healthy subjects. Eur J Clin Pharmacol 2005; 60: 779–84CrossRef Hassan-lin M, Andersson T, Niazi M, et al. A pharmacokinetic study comparing single and repeated oral doses of 20mg and 40mg omeprazole and its two optical isomers, S-meprazole (esomeprazole) and R-meprazole, in healthy subjects. Eur J Clin Pharmacol 2005; 60: 779–84CrossRef
116.
go back to reference Andersson T, Andren K, Cederberg C, et al. Pharmacokinetics and bioavailability of omeprazole after single and repeated oral administration in healthy subjects. Br J Clin Pharmacol 1990; 29: 557–63PubMedCrossRef Andersson T, Andren K, Cederberg C, et al. Pharmacokinetics and bioavailability of omeprazole after single and repeated oral administration in healthy subjects. Br J Clin Pharmacol 1990; 29: 557–63PubMedCrossRef
117.
go back to reference Hassan-lin M, Andersson T, Bredberg E, et al. Pharmacokinetics of esomeprazole after oral and intravenous administration of single and repeated doses to healthy subjects. Eur J Clin Pharmacol 2000; 56: 665–70CrossRef Hassan-lin M, Andersson T, Bredberg E, et al. Pharmacokinetics of esomeprazole after oral and intravenous administration of single and repeated doses to healthy subjects. Eur J Clin Pharmacol 2000; 56: 665–70CrossRef
118.
go back to reference Simon WA. Pantoprazole: which cytochrome P450 isoenzymes are involved in its biotransformation? [abstract] Gut 1995; 37: A1177 Simon WA. Pantoprazole: which cytochrome P450 isoenzymes are involved in its biotransformation? [abstract] Gut 1995; 37: A1177
119.
go back to reference Meyer UA. Metabolic interactions of the proton-pump inhibitors lansoprazole, omeprazole and pantoprazole with other drugs. Eur J Gastroenterol Hepatol 1996; 8Suppl. 1: 21S–5SCrossRef Meyer UA. Metabolic interactions of the proton-pump inhibitors lansoprazole, omeprazole and pantoprazole with other drugs. Eur J Gastroenterol Hepatol 1996; 8Suppl. 1: 21S–5SCrossRef
120.
go back to reference Radhofer-Welte S. Pharmacokinetics and metabolism of the proton pump inhibitor pantoprazole in man. Drugs Today 1999; 35: 765–72PubMed Radhofer-Welte S. Pharmacokinetics and metabolism of the proton pump inhibitor pantoprazole in man. Drugs Today 1999; 35: 765–72PubMed
121.
go back to reference Calabresi L, Pazzucconi F, Ferrara S, et al. Pharmacokinetic interactions between omeprazole/pantoprazole and clarithromycin in health volunteers. Pharmacol Res 2004; 49: 493–9PubMedCrossRef Calabresi L, Pazzucconi F, Ferrara S, et al. Pharmacokinetic interactions between omeprazole/pantoprazole and clarithromycin in health volunteers. Pharmacol Res 2004; 49: 493–9PubMedCrossRef
122.
go back to reference Ferron GM, Paul JC, Fruncillo RJ, et al. Lack of pharmacokinetic interaction between oral pantoprazole and cisapride in healthy adults. J Clin Pharmacol 1999; 39: 945–50PubMedCrossRef Ferron GM, Paul JC, Fruncillo RJ, et al. Lack of pharmacokinetic interaction between oral pantoprazole and cisapride in healthy adults. J Clin Pharmacol 1999; 39: 945–50PubMedCrossRef
123.
go back to reference Troger U, Stotzel B, Martens-Lobenhoffer J, et al. Severe myalgia from an interaction between treatments with pantoprazole and methotrexate. BMJ 2002; 324: 1497PubMedCrossRef Troger U, Stotzel B, Martens-Lobenhoffer J, et al. Severe myalgia from an interaction between treatments with pantoprazole and methotrexate. BMJ 2002; 324: 1497PubMedCrossRef
124.
go back to reference Pearce RE, Rodrigues AD, Goldstein JA, et al. Identification of the human P450 enzymes involved in lansoprazole metabolism. J Pharmacol Exp Ther 1996; 277: 805–16PubMed Pearce RE, Rodrigues AD, Goldstein JA, et al. Identification of the human P450 enzymes involved in lansoprazole metabolism. J Pharmacol Exp Ther 1996; 277: 805–16PubMed
125.
go back to reference Landes BD, Petite JP, Flouvat B. Clinical pharmacokinetics of lansoprazole. Clin Pharmacokinet 1995; 28: 458–70PubMedCrossRef Landes BD, Petite JP, Flouvat B. Clinical pharmacokinetics of lansoprazole. Clin Pharmacokinet 1995; 28: 458–70PubMedCrossRef
126.
go back to reference Fuchs W, Sennewald R, Klotz U. Lansoprazole does not affect the bioavailability of oral contraceptives. Br J Clin Pharmacol 1994; 38: 376–80PubMedCrossRef Fuchs W, Sennewald R, Klotz U. Lansoprazole does not affect the bioavailability of oral contraceptives. Br J Clin Pharmacol 1994; 38: 376–80PubMedCrossRef
127.
go back to reference Kokufu T, Ihara N, Sugioka N, et al. Effects of lansoprazole on pharmacokinetics and metabolism of theophylline. Eur J Clin Pharmacol 1995; 48: 391–5PubMedCrossRef Kokufu T, Ihara N, Sugioka N, et al. Effects of lansoprazole on pharmacokinetics and metabolism of theophylline. Eur J Clin Pharmacol 1995; 48: 391–5PubMedCrossRef
128.
go back to reference Takahashi K, Motohashi H, Yonezawa A, et al. Lansoprazoletacrolimus interaction in Japanese transplant recipient with CYP2C19 polymorphism. Ann Pharmacother 2004; 38: 791–4PubMedCrossRef Takahashi K, Motohashi H, Yonezawa A, et al. Lansoprazoletacrolimus interaction in Japanese transplant recipient with CYP2C19 polymorphism. Ann Pharmacother 2004; 38: 791–4PubMedCrossRef
129.
go back to reference Itagaki F, Homma M, Yuzawa K, et al. Effect of lansoprazole and rabeprazole on tacrolimus pharmacokinetics in healthy volunteers with CYP2C19 mutations. J Pharm Pharmacol 2004; 56: 1055–9PubMedCrossRef Itagaki F, Homma M, Yuzawa K, et al. Effect of lansoprazole and rabeprazole on tacrolimus pharmacokinetics in healthy volunteers with CYP2C19 mutations. J Pharm Pharmacol 2004; 56: 1055–9PubMedCrossRef
130.
go back to reference Yasui-Furukori N, Saito M, Uno T, et al. Effects of fluvoxamine on lansoprazole pharmacokinetics in relation to CYP2C19 genotypes. J Clin Pharmacol 2004b; 44: 1223–9PubMedCrossRef Yasui-Furukori N, Saito M, Uno T, et al. Effects of fluvoxamine on lansoprazole pharmacokinetics in relation to CYP2C19 genotypes. J Clin Pharmacol 2004b; 44: 1223–9PubMedCrossRef
131.
go back to reference Humphries TJ, Nardi RV, Spera AC, et al. Coadministration of rabeprazole sodium (E3810) and ketoconazole results in a predictable interaction with ketoconazole [abstract]. Gastroenterology 1996; 110: A138 Humphries TJ, Nardi RV, Spera AC, et al. Coadministration of rabeprazole sodium (E3810) and ketoconazole results in a predictable interaction with ketoconazole [abstract]. Gastroenterology 1996; 110: A138
132.
go back to reference Horai Y, Kimura M, Furuie H, et al. Pharmacodynamic effects and kinetic disposition of rabeprazole in relation to CYP 2C19 genotypes. Aliment Pharmcol Ther 2001; 15: 793–803CrossRef Horai Y, Kimura M, Furuie H, et al. Pharmacodynamic effects and kinetic disposition of rabeprazole in relation to CYP 2C19 genotypes. Aliment Pharmcol Ther 2001; 15: 793–803CrossRef
Metadata
Title
Pharmacokinetic Drug Interaction Profiles of Proton Pump Inhibitors
Authors
Prof. Dr Henning Blume
Frank Donath
André Warnke
Barbara S. Schug
Publication date
01-09-2006
Publisher
Springer International Publishing
Published in
Drug Safety / Issue 9/2006
Print ISSN: 0114-5916
Electronic ISSN: 1179-1942
DOI
https://doi.org/10.2165/00002018-200629090-00002

Other articles of this Issue 9/2006

Drug Safety 9/2006 Go to the issue