Skip to main content
Top
Published in: Immunologic Research 2/2018

01-04-2018 | Original Article

Phagocytosis and oxycytosis: two arms of human innate immunity

Author: Hayk Minasyan

Published in: Immunologic Research | Issue 2/2018

Login to get access

Abstract

Human innate immunity operates in two compartments: extravascular (the tissues) and intravascular (the bloodstream). Physical conditions (fluid dynamics) in the compartments are different and, as a result, bactericidal mechanisms and involved cells are different as well. In relatively static media (the tissues, lymph nodes), bacteria are killed by phagocytes; in dynamic media (the bloodstream), bacteria are killed by erythrocytes. In the tissues and lymph nodes, resident macrophages and transmigrated from blood leukocytes (neutrophils and monocytes) recognize, engulf, kill, and digest bacteria; the clearance of the bloodstream from bacteria is performed by oxycytosis: erythrocytes catch bacteria by electric charge attraction and kill them by the oxygen released from oxyhemoglobin. Killed by erythrocytes, bacteria are decomposed and digested in the liver and the spleen. Phagocytosis by leukocytes in the tissues and oxycytosis by erythrocytes in the bloodstream are the main bactericidal mechanisms of human innate immunity.
Literature
1.
go back to reference Metchnikoff E. Sur la lutte des cellules de l’organisme contre l’invasion des microbes. Ann Inst Pasteur. 1887;1:321. Metchnikoff E. Sur la lutte des cellules de l’organisme contre l’invasion des microbes. Ann Inst Pasteur. 1887;1:321.
2.
3.
go back to reference Metchnikoff E. Über die phagocytäre Rolle der Tuberkelriesenzellen. (about the phagocytic role of the large tubercle cells). Virchows Archiv (Virchow’s Archive). 1888;113:63–94.CrossRef Metchnikoff E. Über die phagocytäre Rolle der Tuberkelriesenzellen. (about the phagocytic role of the large tubercle cells). Virchows Archiv (Virchow’s Archive). 1888;113:63–94.CrossRef
4.
go back to reference Lange B, Gutdeutsch H. Experimentelle Untersuchungen uber die Organdisposition und uber die Immunität nach Infektionen ohne nachweisbare Erkrankung. Z Hyg Infekt. 1928;109:253–65.CrossRef Lange B, Gutdeutsch H. Experimentelle Untersuchungen uber die Organdisposition und uber die Immunität nach Infektionen ohne nachweisbare Erkrankung. Z Hyg Infekt. 1928;109:253–65.CrossRef
5.
go back to reference Dutton AAC. The influence of the route of infection on lethal infections in mice. Brit J Exptl Pathol. 1955;36:128–36. Dutton AAC. The influence of the route of infection on lethal infections in mice. Brit J Exptl Pathol. 1955;36:128–36.
6.
go back to reference Rogers D. Host mechanisms which act to remove bacteria from the bloodstream. Microbiol Mol Biol Rev. 1960;24(1):50–66. Rogers D. Host mechanisms which act to remove bacteria from the bloodstream. Microbiol Mol Biol Rev. 1960;24(1):50–66.
7.
go back to reference Wright HD. Experimental pneumococcal septicaemia and anti-pneumococcal immunity. J Pathol Bacteriol. 1927;30:185–252.CrossRef Wright HD. Experimental pneumococcal septicaemia and anti-pneumococcal immunity. J Pathol Bacteriol. 1927;30:185–252.CrossRef
8.
go back to reference Smith JM, DuBos RJ. The effect of nutritional disturbances on the susceptibility of mice to staphylococcal infections. J Exptl Med. 1956;103:109–18.CrossRef Smith JM, DuBos RJ. The effect of nutritional disturbances on the susceptibility of mice to staphylococcal infections. J Exptl Med. 1956;103:109–18.CrossRef
9.
go back to reference Gordon LE, Cooper DB, Miller CP. Clearance of bacteria from the blood of irradiated rabbits. Proc Soc Exptl Biol Med. 1955;89:577–9.CrossRef Gordon LE, Cooper DB, Miller CP. Clearance of bacteria from the blood of irradiated rabbits. Proc Soc Exptl Biol Med. 1955;89:577–9.CrossRef
10.
go back to reference Callaway JL, Kerby G. Splanchnic removal of bacteria from the circulating blood of irradiated rabbits. Arch Dermatol Syphilol. 1951;63:200–6.CrossRef Callaway JL, Kerby G. Splanchnic removal of bacteria from the circulating blood of irradiated rabbits. Arch Dermatol Syphilol. 1951;63:200–6.CrossRef
11.
go back to reference Rogers DE. Studies on bacteriemia. I. Mechanisms relating to the persistence of bacteriemia in rabbits following the intravenous injection of staphylococci. J Exptl Med. 1956;103:713–42.CrossRef Rogers DE. Studies on bacteriemia. I. Mechanisms relating to the persistence of bacteriemia in rabbits following the intravenous injection of staphylococci. J Exptl Med. 1956;103:713–42.CrossRef
12.
go back to reference Rogers DE, Melly MA. Studies on bacteriemia. II. Further observations on the granulocytopenia induced by the intravenous injection of staphylococci. J Exptl Med. 1957;106:99–112.CrossRef Rogers DE, Melly MA. Studies on bacteriemia. II. Further observations on the granulocytopenia induced by the intravenous injection of staphylococci. J Exptl Med. 1957;106:99–112.CrossRef
13.
go back to reference Martin SP, Kerby GP. Effect of adrenal hormone overdosage on bacterial removal by the splanchnic viscera. Proc Soc Exptl Biol Med. 1952;81:73–5.CrossRef Martin SP, Kerby GP. Effect of adrenal hormone overdosage on bacterial removal by the splanchnic viscera. Proc Soc Exptl Biol Med. 1952;81:73–5.CrossRef
14.
go back to reference Fine J. Relation of bacteria to the failure of blood-volume therapy in traumatic shock. New Engl J Med. 1954;250:889–5.PubMedCrossRef Fine J. Relation of bacteria to the failure of blood-volume therapy in traumatic shock. New Engl J Med. 1954;250:889–5.PubMedCrossRef
16.
go back to reference Reichel HA. Removal of bacteria from the blood stream: experiments tending to determine the rate of removal of injected bacteria in the blood. Proc Staff Meet Mayo Clin. 1939;14:138–43. Reichel HA. Removal of bacteria from the blood stream: experiments tending to determine the rate of removal of injected bacteria in the blood. Proc Staff Meet Mayo Clin. 1939;14:138–43.
17.
go back to reference Martin SP, Kerby GP. The spanchnic removal in rabbits during fatal bacteriemias of circulating organisms and of superimposed non pathogenic bacteria. J Exptl Med. 1950;92:45–9.CrossRef Martin SP, Kerby GP. The spanchnic removal in rabbits during fatal bacteriemias of circulating organisms and of superimposed non pathogenic bacteria. J Exptl Med. 1950;92:45–9.CrossRef
18.
go back to reference Bull CG, McKee CM. The relation of blood platelets to the in vivo agglutination of bacteria and their disappearance from the blood stream. Am J Hyg. 1922;2:208–24. Bull CG, McKee CM. The relation of blood platelets to the in vivo agglutination of bacteria and their disappearance from the blood stream. Am J Hyg. 1922;2:208–24.
19.
go back to reference Govaerts P. Action du serum antiplaquettique sur l'6limination des microbes introduits dans la circulation. Compt Rend Soc Biol. 1921;85:667–78. Govaerts P. Action du serum antiplaquettique sur l'6limination des microbes introduits dans la circulation. Compt Rend Soc Biol. 1921;85:667–78.
20.
go back to reference Berlin JA, Abrutyn E, Strom BL, Kinman JL, Levison ME, Korzeniowski OM, et al. Incidence of infective endocarditis in the Delaware Valley, 1988-1990. Am J Cardiol. 1995;76:933–6.PubMedCrossRef Berlin JA, Abrutyn E, Strom BL, Kinman JL, Levison ME, Korzeniowski OM, et al. Incidence of infective endocarditis in the Delaware Valley, 1988-1990. Am J Cardiol. 1995;76:933–6.PubMedCrossRef
21.
go back to reference Sande MA, Lee BL, Mills J. Endocarditis in intravenous drug users. In: Kaye D, editor. Infective endocarditis. New York City: Raven Press; 1992. p. 345. Sande MA, Lee BL, Mills J. Endocarditis in intravenous drug users. In: Kaye D, editor. Infective endocarditis. New York City: Raven Press; 1992. p. 345.
22.
go back to reference Weinstein WL, Brusch JL. Infective endocarditis. New York City: Oxford University Press; 1996. Weinstein WL, Brusch JL. Infective endocarditis. New York City: Oxford University Press; 1996.
23.
go back to reference Spijkerman IJ, van Ameijden EJ, Mientjes GH, et al. Human immunodeficiency virus infection and other risk factors for skin abscesses and endocarditis among injection drug users. J Clin Epidemiol. 1996;49:1149–54.PubMedCrossRef Spijkerman IJ, van Ameijden EJ, Mientjes GH, et al. Human immunodeficiency virus infection and other risk factors for skin abscesses and endocarditis among injection drug users. J Clin Epidemiol. 1996;49:1149–54.PubMedCrossRef
24.
go back to reference Olsson CRA, Romansky MJ. Staphylococcal tricuspid endocarditis in heroin addicts. Ann Intern Med. 1962;57(5):755–62.PubMedCrossRef Olsson CRA, Romansky MJ. Staphylococcal tricuspid endocarditis in heroin addicts. Ann Intern Med. 1962;57(5):755–62.PubMedCrossRef
25.
go back to reference Levine DP, Crane LR, Zervos MJ. Bacteremia in narcotic addicts at the Detroit Medical Center. II. Infectious endocarditis: a prospective comparative study. Rev Infect Dis. 1986;8(3):374–96.PubMedCrossRef Levine DP, Crane LR, Zervos MJ. Bacteremia in narcotic addicts at the Detroit Medical Center. II. Infectious endocarditis: a prospective comparative study. Rev Infect Dis. 1986;8(3):374–96.PubMedCrossRef
26.
go back to reference Gardner EM, Kestler M, Bieler A, Belknap RW. Clostridium butyricum sepsis in an injection drug user with an indwelling central venous catheter. J Med Microbiol. 2008;57(2):236–9.PubMedCrossRef Gardner EM, Kestler M, Bieler A, Belknap RW. Clostridium butyricum sepsis in an injection drug user with an indwelling central venous catheter. J Med Microbiol. 2008;57(2):236–9.PubMedCrossRef
27.
go back to reference Rieg S, Bauer TM, Peyerl-Hoffmann G, Held H, Ritter W, Wagner D, et al. Paenibacillus larvae bacteremia in injection drug users. Emerg Infect Dis. 2010;16(3):487–9.PubMedPubMedCentralCrossRef Rieg S, Bauer TM, Peyerl-Hoffmann G, Held H, Ritter W, Wagner D, et al. Paenibacillus larvae bacteremia in injection drug users. Emerg Infect Dis. 2010;16(3):487–9.PubMedPubMedCentralCrossRef
28.
go back to reference Lockhart PB, Brennan MT, Sasser HC, Fox PC, Paster BJ, Bahrani-Mougeot FK. Bacteremia associated with toothbrushing and dental extraction. Circulation. 2008;117:3118–25.PubMedPubMedCentralCrossRef Lockhart PB, Brennan MT, Sasser HC, Fox PC, Paster BJ, Bahrani-Mougeot FK. Bacteremia associated with toothbrushing and dental extraction. Circulation. 2008;117:3118–25.PubMedPubMedCentralCrossRef
29.
go back to reference Forner L, Larsen T, Kilian M, Holmstrup P. Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation. J Clin Periodontol. 2006;33(6):401–7.PubMedCrossRef Forner L, Larsen T, Kilian M, Holmstrup P. Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation. J Clin Periodontol. 2006;33(6):401–7.PubMedCrossRef
30.
go back to reference MacFarlane TW, Samaranayake LP. Clinical oral microbiology. London: Wright; 1989. MacFarlane TW, Samaranayake LP. Clinical oral microbiology. London: Wright; 1989.
31.
go back to reference Hiffajee AD, Socransky SS, Dzink JL, et al. Clinical, microbiological and immunological features of subjects with destructive periodontal diseases. J Clin Periodontol. 1988;15:240–6.CrossRef Hiffajee AD, Socransky SS, Dzink JL, et al. Clinical, microbiological and immunological features of subjects with destructive periodontal diseases. J Clin Periodontol. 1988;15:240–6.CrossRef
32.
go back to reference Goodson JM, Tanner AC, Haffajec AD, et al. Patterns of progression and regression of advanced destructive periodontal disease. J Clin Periodontol. 1982;9:472–81.PubMedCrossRef Goodson JM, Tanner AC, Haffajec AD, et al. Patterns of progression and regression of advanced destructive periodontal disease. J Clin Periodontol. 1982;9:472–81.PubMedCrossRef
33.
go back to reference Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol. 2006;42:80–7.CrossRef Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol. 2006;42:80–7.CrossRef
34.
go back to reference Little JW, Falace DA, Miller CS, Rhodus NL. Infective endocarditis. In: Dental management of the medically compromised patient. 6th edition. Toronto: Mosby, Inc.; 2002. Pp. 21–51. Little JW, Falace DA, Miller CS, Rhodus NL. Infective endocarditis. In: Dental management of the medically compromised patient. 6th edition. Toronto: Mosby, Inc.; 2002. Pp. 21–51.
35.
go back to reference Tomas I, Alvarez M, Limeres J, Potel C, Medina J, Diz P. Prevalence, duration and aetiology of bacteraemia following dental extractions. Oral Dis. 2007;13(1):56–62.PubMedCrossRef Tomas I, Alvarez M, Limeres J, Potel C, Medina J, Diz P. Prevalence, duration and aetiology of bacteraemia following dental extractions. Oral Dis. 2007;13(1):56–62.PubMedCrossRef
36.
go back to reference Takai S, Kuriyama T, Yanagisawa M, Nakagawa K, Karasawa T. Incidence and bacteriology of bacteremia associated with various oral and maxillofacial surgical procedures. Oral Surg Oral Med Oral Pathol Oral Radiol Endond. 2005;99(3):292–8.CrossRef Takai S, Kuriyama T, Yanagisawa M, Nakagawa K, Karasawa T. Incidence and bacteriology of bacteremia associated with various oral and maxillofacial surgical procedures. Oral Surg Oral Med Oral Pathol Oral Radiol Endond. 2005;99(3):292–8.CrossRef
37.
go back to reference Roberts GJ, Holzel HS, Sury MR, Simmons NA, Gardner P, Longhurst P. Dental bacteremia in children. Pediatr Cardiol. 1997;18(1):24–7.PubMedCrossRef Roberts GJ, Holzel HS, Sury MR, Simmons NA, Gardner P, Longhurst P. Dental bacteremia in children. Pediatr Cardiol. 1997;18(1):24–7.PubMedCrossRef
38.
go back to reference Okabe K, Nakagawa K, Yamamoto E. Factors affecting the occurrence of bacteremia associated with tooth extraction. Int J Oral Maxillofac Surg. 1995;24(3):239–42.PubMedCrossRef Okabe K, Nakagawa K, Yamamoto E. Factors affecting the occurrence of bacteremia associated with tooth extraction. Int J Oral Maxillofac Surg. 1995;24(3):239–42.PubMedCrossRef
39.
go back to reference Hartzell JD, Torres D, Kim P, Wortmann G. Incidence of bacteremia after routine tooth brushing. Am J Med Sci. 2005;329:178–80.PubMedCrossRef Hartzell JD, Torres D, Kim P, Wortmann G. Incidence of bacteremia after routine tooth brushing. Am J Med Sci. 2005;329:178–80.PubMedCrossRef
40.
go back to reference Hall G, Hedstrom SA, Heimdahl A, Nord CE. Prophylactic administration of penicillins for endocarditis does not reduce the incidence of postextraction bacteremia. Clin Infect Dis. 1993;17:188–94.PubMedCrossRef Hall G, Hedstrom SA, Heimdahl A, Nord CE. Prophylactic administration of penicillins for endocarditis does not reduce the incidence of postextraction bacteremia. Clin Infect Dis. 1993;17:188–94.PubMedCrossRef
41.
go back to reference Heimdahl A, Hall G, Hedberg M, Sandberg H, Söder PO, Tunér K, et al. Detection and quantitation by lysis-filtration of bacteremia after different oral surgical procedures. J Clin Microbiol. 1990;28:2205–9.PubMedPubMedCentral Heimdahl A, Hall G, Hedberg M, Sandberg H, Söder PO, Tunér K, et al. Detection and quantitation by lysis-filtration of bacteremia after different oral surgical procedures. J Clin Microbiol. 1990;28:2205–9.PubMedPubMedCentral
42.
go back to reference Sconyers JR, Crawford JJ, Moriarty JD. Relationship of bacteremia to toothbrushing in patients with periodontitis. J Am Dent Assoc. 1973;87:616–22.PubMedCrossRef Sconyers JR, Crawford JJ, Moriarty JD. Relationship of bacteremia to toothbrushing in patients with periodontitis. J Am Dent Assoc. 1973;87:616–22.PubMedCrossRef
43.
go back to reference Hillman RS, Ault KA, Rinder HM. Hematology in clinical practice: a guide to diagnosis and management. 4th ed. New York: McGraw-Hill Professional; 2005. Hillman RS, Ault KA, Rinder HM. Hematology in clinical practice: a guide to diagnosis and management. 4th ed. New York: McGraw-Hill Professional; 2005.
44.
go back to reference Pierigè F, Serafini S, Rossi L, Magnani M. Cell-based drug delivery. Adv Drug Deliv Rev. 2008;60(2):286–95.PubMedCrossRef Pierigè F, Serafini S, Rossi L, Magnani M. Cell-based drug delivery. Adv Drug Deliv Rev. 2008;60(2):286–95.PubMedCrossRef
45.
go back to reference Marieb EN, Hoehn K. The cardiovascular system: blood vessels. Human anatomy & physiology. 9th ed. Pearson Education, Inc.; 2013. Marieb EN, Hoehn K. The cardiovascular system: blood vessels. Human anatomy & physiology. 9th ed. Pearson Education, Inc.; 2013.
46.
go back to reference Bicker H, Höflich C, Wolk K, Vogt K, Volk H-D, Sabat R. A simple assay to measure phagocytosis of live bacteria. Clin Chem. 2008;54(5):911–5.PubMedCrossRef Bicker H, Höflich C, Wolk K, Vogt K, Volk H-D, Sabat R. A simple assay to measure phagocytosis of live bacteria. Clin Chem. 2008;54(5):911–5.PubMedCrossRef
47.
go back to reference Lee C-Y, Herant M, Heinrich V. Target-specific mechanics of phagocytosis: protrusive neutrophil response to zymosan differs from the uptake of antibody-tagged pathogens. J Cell Sci. 2010;124:1106–14.CrossRef Lee C-Y, Herant M, Heinrich V. Target-specific mechanics of phagocytosis: protrusive neutrophil response to zymosan differs from the uptake of antibody-tagged pathogens. J Cell Sci. 2010;124:1106–14.CrossRef
48.
go back to reference Herant M, Heinrich V, Dembo M. Mechanics of neutrophil phagocytosis: experiments and quantitative models. J Cell Sci. 2006;119:1903–13.PubMedCrossRef Herant M, Heinrich V, Dembo M. Mechanics of neutrophil phagocytosis: experiments and quantitative models. J Cell Sci. 2006;119:1903–13.PubMedCrossRef
49.
go back to reference Dewitt S, Hallett M. Leukocyte membrane “expansion”: a central mechanism for leukocyte extravasation. J Leukoc Biol. 2007;81:1160–4.PubMedCrossRef Dewitt S, Hallett M. Leukocyte membrane “expansion”: a central mechanism for leukocyte extravasation. J Leukoc Biol. 2007;81:1160–4.PubMedCrossRef
50.
go back to reference Minasyan H. Erythrocyte and leukocyte: two partners in bacteria killing. Int Rev Immunol. 2014;33(6):490–7.PubMedCrossRef Minasyan H. Erythrocyte and leukocyte: two partners in bacteria killing. Int Rev Immunol. 2014;33(6):490–7.PubMedCrossRef
51.
go back to reference Minasyan H. Mechanisms and pathways for the clearance of bacteria from blood circulation in health and disease. Pathophysiology. 2016;23:61–6.PubMedCrossRef Minasyan H. Mechanisms and pathways for the clearance of bacteria from blood circulation in health and disease. Pathophysiology. 2016;23:61–6.PubMedCrossRef
52.
go back to reference Minasyan H. Erythrocyte bacteria killer and bacteria pray. Int J Immunol Spec Issue: Antibacterial Cell Humoral Immun. 2014;2(5–1):1–7. Minasyan H. Erythrocyte bacteria killer and bacteria pray. Int J Immunol Spec Issue: Antibacterial Cell Humoral Immun. 2014;2(5–1):1–7.
53.
go back to reference Minasyan H. Erythrocyte and blood antibacterial defense. Eur J Microbiol Immunol. 2014;4(2):138–43.CrossRef Minasyan H. Erythrocyte and blood antibacterial defense. Eur J Microbiol Immunol. 2014;4(2):138–43.CrossRef
54.
go back to reference Minasyan H. Erythrocyte is the first line of blood antibacterial defense. J Clin Cell Immunol. 2014;5(5):165. Minasyan H. Erythrocyte is the first line of blood antibacterial defense. J Clin Cell Immunol. 2014;5(5):165.
55.
56.
go back to reference Wheater PL, Stevens A. Wheater’s basic histopathology: a color atlas and text. Edinburgh: Churchill Livingstone; 2000. Wheater PL, Stevens A. Wheater’s basic histopathology: a color atlas and text. Edinburgh: Churchill Livingstone; 2000.
57.
go back to reference Gordon S. Macrophages and the immune response. In: Paul EW, editor. Fundamental immunology. Philadelphia: Lippincott-Raven; 1999. p. 533–45. Gordon S. Macrophages and the immune response. In: Paul EW, editor. Fundamental immunology. Philadelphia: Lippincott-Raven; 1999. p. 533–45.
58.
go back to reference Pillay J, den Brober I, Vrisecoop N, Kwast ML. In vivo labeling with H202 reveals a human neutrophil lifespan of 5.4 days. Blood. 2010;116(4):625–7.PubMedCrossRef Pillay J, den Brober I, Vrisecoop N, Kwast ML. In vivo labeling with H202 reveals a human neutrophil lifespan of 5.4 days. Blood. 2010;116(4):625–7.PubMedCrossRef
59.
go back to reference Harrison KL. Fetal erythrocyte lifespan. J Paediatr Child Health. 1979;15(2):96–7.CrossRef Harrison KL. Fetal erythrocyte lifespan. J Paediatr Child Health. 1979;15(2):96–7.CrossRef
60.
go back to reference Lahoz-Beneytez J, Elemans M, Zhang Y, Raya Ahmed R, Salam A, Block M, et al. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives. Blood. 2016;127:3431–8.PubMedPubMedCentralCrossRef Lahoz-Beneytez J, Elemans M, Zhang Y, Raya Ahmed R, Salam A, Block M, et al. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives. Blood. 2016;127:3431–8.PubMedPubMedCentralCrossRef
61.
go back to reference Maiden M CJ, Caugant D A. The population biology of Neisseria meningitidis: implications for meningococcal disease, epidemiology and control. In Frosch M, Maiden MCJ, editors. Handbook of meningococcal disease. Wiley-VCH; 2006. Pp.184–91. Maiden M CJ, Caugant D A. The population biology of Neisseria meningitidis: implications for meningococcal disease, epidemiology and control. In Frosch M, Maiden MCJ, editors. Handbook of meningococcal disease. Wiley-VCH; 2006. Pp.184–91.
62.
go back to reference Stohl EA, Seifert HS. Neisseria gonorrhoeae DNA recombination and repair enzymes protect against oxidative damage caused by hydrogen peroxide. J Bacteriol. 2006;188(21):7645–51.PubMedPubMedCentralCrossRef Stohl EA, Seifert HS. Neisseria gonorrhoeae DNA recombination and repair enzymes protect against oxidative damage caused by hydrogen peroxide. J Bacteriol. 2006;188(21):7645–51.PubMedPubMedCentralCrossRef
64.
go back to reference Manca C, Reed MB, Freeman S, Mathema B, Kreiswirth B, Barry CE, et al. Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis. Infect Immun. 2004;72(9):5511–4.PubMedPubMedCentralCrossRef Manca C, Reed MB, Freeman S, Mathema B, Kreiswirth B, Barry CE, et al. Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis. Infect Immun. 2004;72(9):5511–4.PubMedPubMedCentralCrossRef
65.
go back to reference Densen P, Mandell GL. Phagocyte strategy vs. microbial tactics. J Infect Dis. 1980;2:817. Densen P, Mandell GL. Phagocyte strategy vs. microbial tactics. J Infect Dis. 1980;2:817.
66.
go back to reference Tilney LG, Portnoy DA. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol. 1989;109:1597–605.PubMedCrossRef Tilney LG, Portnoy DA. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol. 1989;109:1597–605.PubMedCrossRef
67.
go back to reference Schutze GE, Buckingham SC, Marshall GS, et al. Human monocytic ehrlichiosis in children. Pediatr Infect Dis J. 2007;26(6):475–9.PubMedCrossRef Schutze GE, Buckingham SC, Marshall GS, et al. Human monocytic ehrlichiosis in children. Pediatr Infect Dis J. 2007;26(6):475–9.PubMedCrossRef
68.
go back to reference Ernst JD, Stendahl O, editors. Phagocytosis of bacteria and bacterial pathogenicity. New York: Cambridge University Press; 2006. Ernst JD, Stendahl O, editors. Phagocytosis of bacteria and bacterial pathogenicity. New York: Cambridge University Press; 2006.
69.
go back to reference Wilson WW, Wade MM, Holman SC, Champlin FR. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Methods. 2001;43(3):153–64.PubMedCrossRef Wilson WW, Wade MM, Holman SC, Champlin FR. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Methods. 2001;43(3):153–64.PubMedCrossRef
70.
go back to reference Dziubakiewicz E, Hrynkiewicz K, Walzyk M, Buszewski B. Study of charge distribution on the surface of biocolloids. Colloids Surf B: Biointerfaces. 2013;104:122–7.PubMedCrossRef Dziubakiewicz E, Hrynkiewicz K, Walzyk M, Buszewski B. Study of charge distribution on the surface of biocolloids. Colloids Surf B: Biointerfaces. 2013;104:122–7.PubMedCrossRef
71.
go back to reference Ayala-Torres, Hernández N, Galeano, Novoa-Aponte L, Soto C-Y. Zeta potential as a measure of the surface charge of mycobacterial cells. Ann Microbiol. 2014;64(3):1189–95.CrossRef Ayala-Torres, Hernández N, Galeano, Novoa-Aponte L, Soto C-Y. Zeta potential as a measure of the surface charge of mycobacterial cells. Ann Microbiol. 2014;64(3):1189–95.CrossRef
72.
go back to reference Kambara M, Nomura K, Miyake T, Uemura M, Noshi H, Konishi K. Zeta potential of oral bacteria (streptococci). J Osaka Dent Univ. 1989;23(1):39–43.PubMed Kambara M, Nomura K, Miyake T, Uemura M, Noshi H, Konishi K. Zeta potential of oral bacteria (streptococci). J Osaka Dent Univ. 1989;23(1):39–43.PubMed
73.
go back to reference Soni KA, Balasubramanian AK, Beskok A, Pillai SD. Zeta potential of selected bacteria in drinking water when dead, starved, or exposed to minimal and rich culture media. Curr Microbiol. 2008;56(1):93–7.PubMedCrossRef Soni KA, Balasubramanian AK, Beskok A, Pillai SD. Zeta potential of selected bacteria in drinking water when dead, starved, or exposed to minimal and rich culture media. Curr Microbiol. 2008;56(1):93–7.PubMedCrossRef
74.
go back to reference Alizadehrad D, Imai Y, Nakaaki K, Ishikawa T, Yamaguchi T. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels. J Biomech. 2012;45(15):2684–9.PubMedCrossRef Alizadehrad D, Imai Y, Nakaaki K, Ishikawa T, Yamaguchi T. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels. J Biomech. 2012;45(15):2684–9.PubMedCrossRef
75.
go back to reference Pfafferott C, Nash GB, Meiselman HJ. Red blood cell deformation in shear flow. Effects of internal and external phase viscosity and of in vivo aging. Biophys J. 1985;47(5):695–704.PubMedPubMedCentralCrossRef Pfafferott C, Nash GB, Meiselman HJ. Red blood cell deformation in shear flow. Effects of internal and external phase viscosity and of in vivo aging. Biophys J. 1985;47(5):695–704.PubMedPubMedCentralCrossRef
76.
go back to reference Vatansever F, de Melo WCMA, Avci P, Vecchio D, Sadasivam M, Gupta A, et al. Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy and beyond. FEMS Microbiol Rev. 2013;37(6):955–89.PubMedCrossRef Vatansever F, de Melo WCMA, Avci P, Vecchio D, Sadasivam M, Gupta A, et al. Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy and beyond. FEMS Microbiol Rev. 2013;37(6):955–89.PubMedCrossRef
77.
go back to reference Wan J, Forsyth AM, Stone HA. Red blood cell dynamics: from cell deformation to ATP release. Integr Biol (Camb). 2011;3(10):972–81.CrossRef Wan J, Forsyth AM, Stone HA. Red blood cell dynamics: from cell deformation to ATP release. Integr Biol (Camb). 2011;3(10):972–81.CrossRef
78.
go back to reference Ellsworth ML, Ellis CG, Goldman D, Stephenson AH, Dietrich HH, Sprague RS. Erythrocytes: Oxygen sensors and modulators of vascular tone in regions of low PO2. Physiology (Bethesda). 2009;24:107–16. Ellsworth ML, Ellis CG, Goldman D, Stephenson AH, Dietrich HH, Sprague RS. Erythrocytes: Oxygen sensors and modulators of vascular tone in regions of low PO2. Physiology (Bethesda). 2009;24:107–16.
79.
go back to reference Bogdan C. Oxidative burst without phagocytes: the role of respiratory proteins. Nat Immunol. 2007;8:1029–31.PubMedCrossRef Bogdan C. Oxidative burst without phagocytes: the role of respiratory proteins. Nat Immunol. 2007;8:1029–31.PubMedCrossRef
80.
go back to reference Jiang N, Tan NS, Ho B, Ding JL. Respiratory protein–generated reactive oxygen species as an antimicrobial strategy. Nat Immunol. 2007;8:1114–22.PubMedCrossRef Jiang N, Tan NS, Ho B, Ding JL. Respiratory protein–generated reactive oxygen species as an antimicrobial strategy. Nat Immunol. 2007;8:1114–22.PubMedCrossRef
81.
go back to reference Biozzi G, Benacerraf B, Halpern BN. Quantitative study of the granulopoetic activity of the reticuloendothelial system II. A study of the kinetics of the granulopoetic activity of the RES in relation to the dose of carbon injected. Relationship between the weight of the organs and their activity. Br J Exp Pathol. 1953;34:441–8.PubMedPubMedCentral Biozzi G, Benacerraf B, Halpern BN. Quantitative study of the granulopoetic activity of the reticuloendothelial system II. A study of the kinetics of the granulopoetic activity of the RES in relation to the dose of carbon injected. Relationship between the weight of the organs and their activity. Br J Exp Pathol. 1953;34:441–8.PubMedPubMedCentral
82.
go back to reference Wanless IR. Physioanatomic considerations. In: Schiff ER, Sorrell MF, Maddrey WC, editors. Schiff’s diseases of the liver. Philadelphia: Lippincott-Raven; 1999. p. 3–38. Wanless IR. Physioanatomic considerations. In: Schiff ER, Sorrell MF, Maddrey WC, editors. Schiff’s diseases of the liver. Philadelphia: Lippincott-Raven; 1999. p. 3–38.
83.
84.
go back to reference Bowdler A. The complete spleen: structure, function and clinical disorders. 2nd ed. New Jersey: Humana Press; 2002.CrossRef Bowdler A. The complete spleen: structure, function and clinical disorders. 2nd ed. New Jersey: Humana Press; 2002.CrossRef
85.
86.
go back to reference Muller WA. Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol: Mech Dis. 2011;6:323–44.CrossRef Muller WA. Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol: Mech Dis. 2011;6:323–44.CrossRef
87.
88.
go back to reference Muller WA. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 2003;24:326–33.CrossRef Muller WA. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 2003;24:326–33.CrossRef
89.
go back to reference Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7:678–89.PubMedCrossRef Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7:678–89.PubMedCrossRef
90.
go back to reference Muller WA. PECAM: regulating the start of diapedesis. In: Ley K, editor. Adhesion molecules: function and inhibition. Basel: Birkhauser Verlag AG; 2007. p. 201–20.CrossRef Muller WA. PECAM: regulating the start of diapedesis. In: Ley K, editor. Adhesion molecules: function and inhibition. Basel: Birkhauser Verlag AG; 2007. p. 201–20.CrossRef
92.
94.
go back to reference Gregory SH, Wing EJ. Neutrophil-Kupffer-cell interaction in host defenses to systemic infections. Immunol Today. 1998;19(11):507–10.PubMedCrossRef Gregory SH, Wing EJ. Neutrophil-Kupffer-cell interaction in host defenses to systemic infections. Immunol Today. 1998;19(11):507–10.PubMedCrossRef
95.
go back to reference Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int. 2006;26(10):1175–86.PubMedCrossRef Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int. 2006;26(10):1175–86.PubMedCrossRef
96.
go back to reference Liaskou E, Wilson DV, Oo YH. Innate immune cells in liver inflammation. Mediators of Inflammation,Volume 2012 (2012), Article ID 949157, 21 pages. Liaskou E, Wilson DV, Oo YH. Innate immune cells in liver inflammation. Mediators of Inflammation,Volume 2012 (2012), Article ID 949157, 21 pages.
97.
go back to reference Dhainaut JF, Marin N, Mignon A, Vinsonneau C. Hepatic response to sepsis: interaction between coagulation and inflammatory processes. Crit Care Med. 2001;29(7):42–7.CrossRef Dhainaut JF, Marin N, Mignon A, Vinsonneau C. Hepatic response to sepsis: interaction between coagulation and inflammatory processes. Crit Care Med. 2001;29(7):42–7.CrossRef
98.
go back to reference Gregory SH, Wing EJ. Neutrophil-Kupffer cell interaction: a critical component of host defenses to systemic bacterial infections. J Leukoc Biol. 2002;72(2):239–48.PubMed Gregory SH, Wing EJ. Neutrophil-Kupffer cell interaction: a critical component of host defenses to systemic bacterial infections. J Leukoc Biol. 2002;72(2):239–48.PubMed
99.
go back to reference Holub M, Cheng CW, Mott S, Wintermeyer P, van Rooijen N, Gregory SH. Neutrophils sequestered in the liver the proinflammatory response of Kupffer cells to systemic bacterial infection suppress. J Immunol. 2009;183(5):3309–16.PubMedCrossRef Holub M, Cheng CW, Mott S, Wintermeyer P, van Rooijen N, Gregory SH. Neutrophils sequestered in the liver the proinflammatory response of Kupffer cells to systemic bacterial infection suppress. J Immunol. 2009;183(5):3309–16.PubMedCrossRef
100.
go back to reference Kuo CH, Changchien CS, Yang CY, Sheen IS, Liaw YF. Bacteremia in patients with cirrhosis of the liver. Liver. 1991;11(6):334–9.PubMedCrossRef Kuo CH, Changchien CS, Yang CY, Sheen IS, Liaw YF. Bacteremia in patients with cirrhosis of the liver. Liver. 1991;11(6):334–9.PubMedCrossRef
101.
go back to reference Almdal T, Skinhøj P, Friis H. Bacteremia in patients suffering from cirrhosis. Infection. 1986;14(2):68–70.PubMedCrossRef Almdal T, Skinhøj P, Friis H. Bacteremia in patients suffering from cirrhosis. Infection. 1986;14(2):68–70.PubMedCrossRef
102.
go back to reference Shizuma T, Obata H, Hashimoto E, Shiratori K. Relationship between bacteremia and severity of liver dysfunction in patients with liver cirrhosis. Kanzo. 2003;44(12):641–8.CrossRef Shizuma T, Obata H, Hashimoto E, Shiratori K. Relationship between bacteremia and severity of liver dysfunction in patients with liver cirrhosis. Kanzo. 2003;44(12):641–8.CrossRef
103.
go back to reference Altamura M, Caradonna L, Amati L, Pellegrino NM, Urgesi G, Miniello S. Splenectomy and sepsis: the role of the spleen in the immune-mediated bacterial clearance. Immunopharmacol Immunotoxicol. 2001;23(2):153–61.PubMedCrossRef Altamura M, Caradonna L, Amati L, Pellegrino NM, Urgesi G, Miniello S. Splenectomy and sepsis: the role of the spleen in the immune-mediated bacterial clearance. Immunopharmacol Immunotoxicol. 2001;23(2):153–61.PubMedCrossRef
104.
go back to reference Lynch AM, Kapila R. Overwhelming postsplenectomy infection. Infect Dis Clin N Am. 1996;10:693–707.CrossRef Lynch AM, Kapila R. Overwhelming postsplenectomy infection. Infect Dis Clin N Am. 1996;10:693–707.CrossRef
105.
go back to reference Davidson RN, Wall RA. Prevention and management of infections in patients without a spleen. Clin Microbiol Infect. 2001;7:657–60.PubMedCrossRef Davidson RN, Wall RA. Prevention and management of infections in patients without a spleen. Clin Microbiol Infect. 2001;7:657–60.PubMedCrossRef
106.
go back to reference Ejstrud P, Kristensen B, Hansen JB, Madsen KM, Schønheyder HC, Sørensen HT. Risk and patterns of bacteraemia after splenectomy: a population-based study. Scand J Infect Dis. 2000;32(5):521–5.PubMedCrossRef Ejstrud P, Kristensen B, Hansen JB, Madsen KM, Schønheyder HC, Sørensen HT. Risk and patterns of bacteraemia after splenectomy: a population-based study. Scand J Infect Dis. 2000;32(5):521–5.PubMedCrossRef
107.
go back to reference Styrt B. Infection associated with asplenia: risks, mechanisms, and prevention. Am J Med. 1990;88:33–42.CrossRef Styrt B. Infection associated with asplenia: risks, mechanisms, and prevention. Am J Med. 1990;88:33–42.CrossRef
108.
go back to reference Bisharat N, Omari H, Lavi I, Raz R. Risk of infection and death among post-splenectomy patients. J Inf Secur. 2001;43:182–6. Bisharat N, Omari H, Lavi I, Raz R. Risk of infection and death among post-splenectomy patients. J Inf Secur. 2001;43:182–6.
110.
go back to reference Katz SC, Pachter HL. Indications for splenectomy. Am Surg. 2006;72:565–80.PubMed Katz SC, Pachter HL. Indications for splenectomy. Am Surg. 2006;72:565–80.PubMed
Metadata
Title
Phagocytosis and oxycytosis: two arms of human innate immunity
Author
Hayk Minasyan
Publication date
01-04-2018
Publisher
Springer US
Published in
Immunologic Research / Issue 2/2018
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-018-8988-5

Other articles of this Issue 2/2018

Immunologic Research 2/2018 Go to the issue