Skip to main content
Top
Published in: Current Osteoporosis Reports 6/2018

01-12-2018 | Imaging (T Lang and F Wehrli, Section Editors)

PET-MRI for the Study of Metabolic Bone Disease

Authors: James S. Yoder, Feliks Kogan, Garry E. Gold

Published in: Current Osteoporosis Reports | Issue 6/2018

Login to get access

Abstract

Purpose of Review

This review article attempts to summarize the current state and applications of the hybrid imaging modality of PET-MRI to metabolic bone diseases. The advances of PET and MRI are also discussed for metabolic bone diseases as potentially applied via PET-MRI.

Recent Findings

Etiologies and mechanisms of metabolic bone disease can be complex where molecular changes precede structural changes. Although PET-MRI has yet to be applied directly to metabolic bone disease, possible applications exist since PET, specifically 18F-NaF PET, can quantitatively track changes in bone metabolism and is useful for assessing treatment, while MRI can give detailed information on bone water concentration, porosity, and architecture through novel techniques such as UTE and ZTE MRI.

Summary

Earlier detection and further understanding of metabolic bone disease via PET and MRI could lead to better treatment and prevention. More research using this modality is needed to further understand how it can be implemented in this realm.
Literature
1.
go back to reference Chen K, Blebea J, Laredo JD, Chen W, Alavi A, Torigian DA. Evaluation of musculoskeletal disorders with PET, PET/CT, and PET/MRI. PET Clin. 2008;3(3):451–65.CrossRef Chen K, Blebea J, Laredo JD, Chen W, Alavi A, Torigian DA. Evaluation of musculoskeletal disorders with PET, PET/CT, and PET/MRI. PET Clin. 2008;3(3):451–65.CrossRef
2.
go back to reference Kogan F, Fan AP, Gold GE. Potential of PET-MRI for imaging of non-oncologic musculoskeletal disease. Quant Imaging Med Surg. 2016;6(6):756–71.CrossRef Kogan F, Fan AP, Gold GE. Potential of PET-MRI for imaging of non-oncologic musculoskeletal disease. Quant Imaging Med Surg. 2016;6(6):756–71.CrossRef
3.
go back to reference Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, et al. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 2005;90:2787–93.CrossRef Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, et al. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 2005;90:2787–93.CrossRef
4.
go back to reference Griffeth LK. Use of PET/CT scanning in cancer patients: technical and practical considerations. Proc (Baylor Univ Med Cent). 2005;18:321–30.CrossRef Griffeth LK. Use of PET/CT scanning in cancer patients: technical and practical considerations. Proc (Baylor Univ Med Cent). 2005;18:321–30.CrossRef
5.
go back to reference Hirsch FW, Sattler B, Sorge I, Kurch L, Viehweger A, Ritter L, et al. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol. 2013;43:860–75.CrossRef Hirsch FW, Sattler B, Sorge I, Kurch L, Viehweger A, Ritter L, et al. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol. 2013;43:860–75.CrossRef
6.
go back to reference Huang B, Law MWM, Khong PL. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251:166–74.CrossRef Huang B, Law MWM, Khong PL. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251:166–74.CrossRef
7.
go back to reference Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. 2008;14:459–65.CrossRef Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. 2008;14:459–65.CrossRef
8.
go back to reference Chaudhry AA, Gul M, Gould E, Teng M, Baker K, Matthews R. Utility of positron emission tomography-magnetic resonance imaging in musculoskeletal imaging. World J Radiol. 2016;8:268–74.CrossRef Chaudhry AA, Gul M, Gould E, Teng M, Baker K, Matthews R. Utility of positron emission tomography-magnetic resonance imaging in musculoskeletal imaging. World J Radiol. 2016;8:268–74.CrossRef
9.
go back to reference Jadvar H, Desai B, Conti PS. Sodium 18F-fluoride PET/CT of bone, joint, and other disorders. Semin Nucl Med. 2015;45(1):58–65.CrossRef Jadvar H, Desai B, Conti PS. Sodium 18F-fluoride PET/CT of bone, joint, and other disorders. Semin Nucl Med. 2015;45(1):58–65.CrossRef
10.
go back to reference Czernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med. 2010;51(12):1826–9.CrossRef Czernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med. 2010;51(12):1826–9.CrossRef
11.
go back to reference Etchebehere EC, Hobbs BP, Milton DR, Malawi O, Patel S, Benjamin RS, et al. Assessing the role of (1)(8)F-FDG PET and (1)(8)F-FDG PET/CT in the diagnosis of soft tissue musculoskeletal malignancies: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2016;43:860–70.CrossRef Etchebehere EC, Hobbs BP, Milton DR, Malawi O, Patel S, Benjamin RS, et al. Assessing the role of (1)(8)F-FDG PET and (1)(8)F-FDG PET/CT in the diagnosis of soft tissue musculoskeletal malignancies: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2016;43:860–70.CrossRef
12.
go back to reference Schelbert HR, Hoh CK, Royal HD, et al. Procedure guideline for tumor imaging using fluorine-18-FDG. Society of Nuclear Medicine. J Nucl Med. 1998;39:1302–5.PubMed Schelbert HR, Hoh CK, Royal HD, et al. Procedure guideline for tumor imaging using fluorine-18-FDG. Society of Nuclear Medicine. J Nucl Med. 1998;39:1302–5.PubMed
13.
go back to reference Crymes WB Jr, Demos H, Gordon L. Detection of musculoskeletal infection with 18F-FDG PET: review of the current literature. J Nucl Med Technol. 2004;32:12–5.PubMed Crymes WB Jr, Demos H, Gordon L. Detection of musculoskeletal infection with 18F-FDG PET: review of the current literature. J Nucl Med Technol. 2004;32:12–5.PubMed
14.
go back to reference Raynor W, Houshmand S, Alavi A, et al. Evolving role of molecular imaging with (18)F-sodium fluoride PET as a biomarker for calcium metabolism. Curr Osteoporos Rep. 2016;14:115–25.CrossRef Raynor W, Houshmand S, Alavi A, et al. Evolving role of molecular imaging with (18)F-sodium fluoride PET as a biomarker for calcium metabolism. Curr Osteoporos Rep. 2016;14:115–25.CrossRef
15.
go back to reference Blake GM, Siddique M, Frost ML, Moore AEB, Fogelman I. Imaging of site specific bone turnover in osteoporosis using positron emission tomography. Curr Osteoporos Rep. 2014;12(4):475–85.CrossRef Blake GM, Siddique M, Frost ML, Moore AEB, Fogelman I. Imaging of site specific bone turnover in osteoporosis using positron emission tomography. Curr Osteoporos Rep. 2014;12(4):475–85.CrossRef
16.
go back to reference Schiepers C, Nuyts J, Bormans G, et al. Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J Nucl Med. 1997;38:1970–6.PubMed Schiepers C, Nuyts J, Bormans G, et al. Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J Nucl Med. 1997;38:1970–6.PubMed
17.
go back to reference Kobayashi N, Inaba Y, Tateishi U, Yukizawa Y, Ike H, Inoue T, et al. New application of 18F-fluoride PET for the detection of bone remodeling in early-stage osteoarthritis of the hip. Clin Nucl Med. 2013;38:e379–83.CrossRef Kobayashi N, Inaba Y, Tateishi U, Yukizawa Y, Ike H, Inoue T, et al. New application of 18F-fluoride PET for the detection of bone remodeling in early-stage osteoarthritis of the hip. Clin Nucl Med. 2013;38:e379–83.CrossRef
18.
go back to reference Blau M, Ganatra R, Bender MA. 18 F-fluoride for bone imaging. Semin Nucl Med. 1972;2:31–7.CrossRef Blau M, Ganatra R, Bender MA. 18 F-fluoride for bone imaging. Semin Nucl Med. 1972;2:31–7.CrossRef
19.
go back to reference Uchida K, Nakajima H, Miyazaki T, et al. Effects of alendronate on bone metabolism in glucocorticoid-induced osteoporosis measured by 18F-fluoride PET: a prospective study. J Nucl Med Off Publ Soc Nucl Med. 2009;50(11):1808–14. Uchida K, Nakajima H, Miyazaki T, et al. Effects of alendronate on bone metabolism in glucocorticoid-induced osteoporosis measured by 18F-fluoride PET: a prospective study. J Nucl Med Off Publ Soc Nucl Med. 2009;50(11):1808–14.
20.
go back to reference Bentourkia M, Zaidi H. Tracer kinetic modeling in PET. PET Clin. 2007;2(2):267–77.CrossRef Bentourkia M, Zaidi H. Tracer kinetic modeling in PET. PET Clin. 2007;2(2):267–77.CrossRef
21.
go back to reference Hawkins RA, Choi Y, Huang SC, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med. 1992;33:633–42.PubMed Hawkins RA, Choi Y, Huang SC, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med. 1992;33:633–42.PubMed
22.
go back to reference Frost ML, Cook GJR, Blake GM, Marsden PK, Benatar NA, Fogelman I. A prospective study of risedronate on regional bone metabolism and blood flow at the lumbar spine measured by 18F-fluoride positron emission tomography. J Bone Miner Res. 2003;18:2215–22.CrossRef Frost ML, Cook GJR, Blake GM, Marsden PK, Benatar NA, Fogelman I. A prospective study of risedronate on regional bone metabolism and blood flow at the lumbar spine measured by 18F-fluoride positron emission tomography. J Bone Miner Res. 2003;18:2215–22.CrossRef
23.
go back to reference Frost ML, Siddique M, Blake GM, Moore AEB, Schleyer PJ, Dunn JT, et al. Differential effects of teriparatide on regional bone formation using 18F-fluoride positron emission tomography. J Bone Miner Res. 2011;26:1002–11.CrossRef Frost ML, Siddique M, Blake GM, Moore AEB, Schleyer PJ, Dunn JT, et al. Differential effects of teriparatide on regional bone formation using 18F-fluoride positron emission tomography. J Bone Miner Res. 2011;26:1002–11.CrossRef
24.
go back to reference Cook GJ, Lodge MA, Marsden PK, et al. Non-invasive assessment of skeletal kinetics using fluorine-18 fluoride positron emission tomography: evaluation of image and population-derived arterial input functions. Eur J Nucl Med. 1999;26:1424–9.CrossRef Cook GJ, Lodge MA, Marsden PK, et al. Non-invasive assessment of skeletal kinetics using fluorine-18 fluoride positron emission tomography: evaluation of image and population-derived arterial input functions. Eur J Nucl Med. 1999;26:1424–9.CrossRef
25.
go back to reference Installe J, Nzeusseu A, Bol A, et al. 18F-fluoride PET for monitoring therapeutic response in Paget’s disease of bone. J Nucl Med. 2005;46:1650–8.PubMed Installe J, Nzeusseu A, Bol A, et al. 18F-fluoride PET for monitoring therapeutic response in Paget’s disease of bone. J Nucl Med. 2005;46:1650–8.PubMed
26.
go back to reference • Blake GM, Siddique M, Frost ML, Moore AE, Fogelman I. Quantitative PET imaging using 18F sodium fluoride in the assessment of metabolic bone diseases and the monitoring of their response to therapy. PET Clin. 2012;7:275–91 The article discusses how 18F-NaF PET can be used to quantify bone metabolism and monitor responses to treatments through bone plasma clearance and SUV measurements. CrossRef • Blake GM, Siddique M, Frost ML, Moore AE, Fogelman I. Quantitative PET imaging using 18F sodium fluoride in the assessment of metabolic bone diseases and the monitoring of their response to therapy. PET Clin. 2012;7:275–91 The article discusses how 18F-NaF PET can be used to quantify bone metabolism and monitor responses to treatments through bone plasma clearance and SUV measurements. CrossRef
27.
go back to reference Blake GM, Frost ML, Fogelman I. Quantitative radionuclide studies of bone. J Nucl Med. 2009;50:1747–50.CrossRef Blake GM, Frost ML, Fogelman I. Quantitative radionuclide studies of bone. J Nucl Med. 2009;50:1747–50.CrossRef
28.
go back to reference • Kogan F, Fan AP, McWalter EJ, et al. PET/MRI of metabolic activity in osteoarthritis: a feasibility study. J Magn Reson Imaging. 2017;45(6):1736–45 This study demonstrates how hybrid PET-MRI can be used to detect metabolic bone abnormalities in osteoarthritis and could be applied specifically to metabolic bone diseases. CrossRef • Kogan F, Fan AP, McWalter EJ, et al. PET/MRI of metabolic activity in osteoarthritis: a feasibility study. J Magn Reson Imaging. 2017;45(6):1736–45 This study demonstrates how hybrid PET-MRI can be used to detect metabolic bone abnormalities in osteoarthritis and could be applied specifically to metabolic bone diseases. CrossRef
29.
go back to reference Menendez MI, Hettlich B, Wei L, Knopp MV. Feasibility of Na18F PET/CT and MRI for noninvasive in vivo quantification of knee pathophysiological bone metabolism in a canine model of post-traumatic osteoarthritis. Mol Imaging. 2017;16:1536012117714575.PubMedPubMedCentral Menendez MI, Hettlich B, Wei L, Knopp MV. Feasibility of Na18F PET/CT and MRI for noninvasive in vivo quantification of knee pathophysiological bone metabolism in a canine model of post-traumatic osteoarthritis. Mol Imaging. 2017;16:1536012117714575.PubMedPubMedCentral
30.
go back to reference Kogan F, Fan AP, Black M, Hargreaves B, Gold G. Imaging of bone metabolism and its spatial relationship with cartilage matrix changes in ACL-injured patients. Orthopaedic Research Society 2018 Annual meeting. New Orleans, LA 2018. Kogan F, Fan AP, Black M, Hargreaves B, Gold G. Imaging of bone metabolism and its spatial relationship with cartilage matrix changes in ACL-injured patients. Orthopaedic Research Society 2018 Annual meeting. New Orleans, LA 2018.
31.
go back to reference Crönlein M, Rauscher I, Beer AJ, Schwaiger M, Schäffeler C, Beirer M, et al. Visualization of stress fractures of the foot using PET-MRI: a feasibility study. Eur J Med Res. 2015;20:99.CrossRef Crönlein M, Rauscher I, Beer AJ, Schwaiger M, Schäffeler C, Beirer M, et al. Visualization of stress fractures of the foot using PET-MRI: a feasibility study. Eur J Med Res. 2015;20:99.CrossRef
32.
go back to reference Fogelman I, Bessent R. Age-related alterations in skeletal metabolism-24-hr whole-body retention of diphosphonate in 250 normal subjects: concise communication. J Nucl Med. 1982;23:296–300.PubMed Fogelman I, Bessent R. Age-related alterations in skeletal metabolism-24-hr whole-body retention of diphosphonate in 250 normal subjects: concise communication. J Nucl Med. 1982;23:296–300.PubMed
33.
go back to reference Thomsen K, Johansen J, Nilas L, et al. Whole body retention of 99mTc-diphosphonate. Relation to biochemical indices of bone turnover and to total body calcium. Eur J Nucl Med. 1987;13:32–5.CrossRef Thomsen K, Johansen J, Nilas L, et al. Whole body retention of 99mTc-diphosphonate. Relation to biochemical indices of bone turnover and to total body calcium. Eur J Nucl Med. 1987;13:32–5.CrossRef
34.
go back to reference van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13:777–87.CrossRef van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13:777–87.CrossRef
35.
go back to reference Canalis E, Delany AM. Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci. 2002;966:73–81.CrossRef Canalis E, Delany AM. Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci. 2002;966:73–81.CrossRef
36.
go back to reference Rubin MR, Bilezikian JP. Clinical review 151: the role of parathyroid hormone in the pathogenesis of glucocorticoid-induced osteoporosis: a re-examination of the evidence. J Clin Endocrinol Metab. 2002;87(9):4033–41.CrossRef Rubin MR, Bilezikian JP. Clinical review 151: the role of parathyroid hormone in the pathogenesis of glucocorticoid-induced osteoporosis: a re-examination of the evidence. J Clin Endocrinol Metab. 2002;87(9):4033–41.CrossRef
37.
go back to reference Blake GM, Park-Holohan SJ, Fogelman I. Quantitative studies of bone in postmenopausal women using (18)F-fluoride and (99m)Tc-methylene diphosphonate. J Nucl Med. 2002;43:338–45.PubMed Blake GM, Park-Holohan SJ, Fogelman I. Quantitative studies of bone in postmenopausal women using (18)F-fluoride and (99m)Tc-methylene diphosphonate. J Nucl Med. 2002;43:338–45.PubMed
38.
go back to reference Kato K, Aoki J, Endo K. Utility of FDG-PET in differential diagnosis of benign and malignant fractures in acute to subacute phase. Ann Nucl Med. 2003;17:41–6.CrossRef Kato K, Aoki J, Endo K. Utility of FDG-PET in differential diagnosis of benign and malignant fractures in acute to subacute phase. Ann Nucl Med. 2003;17:41–6.CrossRef
39.
go back to reference Schmitz A, Risse JH, Textor J, Zander D, Biersack HJ, Schmitt O, et al. FDG-PET findings of vertebral compression fractures in osteoporosis: preliminary results. Osteoporos Int. 2002;13:755–61.CrossRef Schmitz A, Risse JH, Textor J, Zander D, Biersack HJ, Schmitt O, et al. FDG-PET findings of vertebral compression fractures in osteoporosis: preliminary results. Osteoporos Int. 2002;13:755–61.CrossRef
40.
go back to reference Patsch JM, Li X, Baum T, Yap SP, Karampinos DC, Schwartz AV, et al. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res. 2013;28:1721–8.CrossRef Patsch JM, Li X, Baum T, Yap SP, Karampinos DC, Schwartz AV, et al. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res. 2013;28:1721–8.CrossRef
41.
go back to reference Huovinen V, Saunavaara V, Parkkola R, et al. Vertebral bone marrow glucose uptake is inversely associated with bone marrow fat in diabetic and healthy pigs: [(18)F]FDG-PET and MRI study. Bone. 2014;61:33–8.CrossRef Huovinen V, Saunavaara V, Parkkola R, et al. Vertebral bone marrow glucose uptake is inversely associated with bone marrow fat in diabetic and healthy pigs: [(18)F]FDG-PET and MRI study. Bone. 2014;61:33–8.CrossRef
42.
go back to reference Agrawal K, Agarwal Y, Chopra RK, et al. Evaluation of MR spectroscopy and diffusion-weighted MRI in postmenopausal bone strength. Cureus. 2015;e327:7. Agrawal K, Agarwal Y, Chopra RK, et al. Evaluation of MR spectroscopy and diffusion-weighted MRI in postmenopausal bone strength. Cureus. 2015;e327:7.
43.
go back to reference Schwartz AV, Sigurdsson S, Hue TF, Lang TF, Harris TB, Rosen CJ, et al. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab. 2013;98:2294–300.CrossRef Schwartz AV, Sigurdsson S, Hue TF, Lang TF, Harris TB, Rosen CJ, et al. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab. 2013;98:2294–300.CrossRef
44.
go back to reference Messa C, Goodman WG, Hoh CK, et al. Bone metabolic activity measured with positron emission tomography and [18F]fluoride ion in renal osteodystrophy: correlation with bone histomorphometry. J Clin Endocrinol Metab. 1993;77:949–55.PubMed Messa C, Goodman WG, Hoh CK, et al. Bone metabolic activity measured with positron emission tomography and [18F]fluoride ion in renal osteodystrophy: correlation with bone histomorphometry. J Clin Endocrinol Metab. 1993;77:949–55.PubMed
45.
go back to reference Usmani S, Marafi F, Esmail A, Ahmed N. A proof-of-concept study analyzing the clinical utility of fluorine-18-sodium fluoride PET-CT in skeletal staging of oncology patients with end-stage renal disease on dialysis. Nucl Med Commun. 2017;38(12):1067–75.CrossRef Usmani S, Marafi F, Esmail A, Ahmed N. A proof-of-concept study analyzing the clinical utility of fluorine-18-sodium fluoride PET-CT in skeletal staging of oncology patients with end-stage renal disease on dialysis. Nucl Med Commun. 2017;38(12):1067–75.CrossRef
46.
go back to reference Meunier PJ, Coindre JM, Edouard CM, Arlot ME. Bone histomorphometry in Paget’s disease. Quantitative and dynamic analysis of pagetic and nonpagetic bone tissue. Arthritis Rheum. 1980;23:1095–103.CrossRef Meunier PJ, Coindre JM, Edouard CM, Arlot ME. Bone histomorphometry in Paget’s disease. Quantitative and dynamic analysis of pagetic and nonpagetic bone tissue. Arthritis Rheum. 1980;23:1095–103.CrossRef
47.
go back to reference Cook GJ, Blake GM, Marsden PK, et al. Quantification of skeletal kinetic indices in Paget’s disease using dynamic 18F-fluoride positron emission tomography. J Bone Miner Res. 2002;17:854–9.CrossRef Cook GJ, Blake GM, Marsden PK, et al. Quantification of skeletal kinetic indices in Paget’s disease using dynamic 18F-fluoride positron emission tomography. J Bone Miner Res. 2002;17:854–9.CrossRef
48.
go back to reference Devogelaer JP. Modern therapy for Paget’s disease of bone: focus on bisphosphonates. Treat Endocrinol. 2002;1:241–57.CrossRef Devogelaer JP. Modern therapy for Paget’s disease of bone: focus on bisphosphonates. Treat Endocrinol. 2002;1:241–57.CrossRef
49.
go back to reference Cook GJ, Lodge MA, Blake GM, et al. Differences in skeletal kinetics between vertebral and humeral bone measured by 18F-fluoride positron emission tomography in postmenopausal women. J Bone Miner Res. 2000;15:763–9.CrossRef Cook GJ, Lodge MA, Blake GM, et al. Differences in skeletal kinetics between vertebral and humeral bone measured by 18F-fluoride positron emission tomography in postmenopausal women. J Bone Miner Res. 2000;15:763–9.CrossRef
50.
go back to reference Bala Y, Zebaze R, Seeman E. Role of cortical bone in bone fragility. Curr Opin Rheumatol. 2015;27:406–513.CrossRef Bala Y, Zebaze R, Seeman E. Role of cortical bone in bone fragility. Curr Opin Rheumatol. 2015;27:406–513.CrossRef
51.
go back to reference Bala Y, Zebaze R, Seeman E, et al. Cortical porosity identifies women with osteopenia at increased risk for forearm fractures. J Bone Miner Res. 2014;29:1356–62.CrossRef Bala Y, Zebaze R, Seeman E, et al. Cortical porosity identifies women with osteopenia at increased risk for forearm fractures. J Bone Miner Res. 2014;29:1356–62.CrossRef
52.
go back to reference Ahmed LA, Shigdel R, Bjørnerem Å, et al. Measurement of cortical porosity of the proximal femur improves identification of women with nonvertebral fragility fractures. Osteoporos Int. 2015;26:2137–46.CrossRef Ahmed LA, Shigdel R, Bjørnerem Å, et al. Measurement of cortical porosity of the proximal femur improves identification of women with nonvertebral fragility fractures. Osteoporos Int. 2015;26:2137–46.CrossRef
53.
go back to reference Li C, Seifert AC, Wehrli FW, et al. Cortical bone water concentration: dependence of MR imaging measures on age and pore volume fraction. Radiology. 2014;272:796–806.CrossRef Li C, Seifert AC, Wehrli FW, et al. Cortical bone water concentration: dependence of MR imaging measures on age and pore volume fraction. Radiology. 2014;272:796–806.CrossRef
54.
go back to reference Ito M. Recent progress in bone imaging for osteoporosis research. J Bone Miner Metab. 2011;29:131–40.CrossRef Ito M. Recent progress in bone imaging for osteoporosis research. J Bone Miner Metab. 2011;29:131–40.CrossRef
55.
go back to reference Rajapakse CS, Bashoor-Zadeh M, Li C, Sun W, Wright AC, Wehrli FW. Volumetric cortical bone porosity assessment with MR imaging: validation and clinical feasibility. Radiology. 2015;276:526–35.CrossRef Rajapakse CS, Bashoor-Zadeh M, Li C, Sun W, Wright AC, Wehrli FW. Volumetric cortical bone porosity assessment with MR imaging: validation and clinical feasibility. Radiology. 2015;276:526–35.CrossRef
56.
go back to reference Ni Q, Nyman JS, Wang X, Santos ADL, Nicolella DP. Assessment of water distribution changes in human cortical bone by nuclear magnetic resonance. Meas Sci Technol. 2007;18:715–23.CrossRef Ni Q, Nyman JS, Wang X, Santos ADL, Nicolella DP. Assessment of water distribution changes in human cortical bone by nuclear magnetic resonance. Meas Sci Technol. 2007;18:715–23.CrossRef
57.
go back to reference Techawiboonwong A, Song HK, Leonard MB, Wehrli FW. Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging. Radiology. 2008;248:824–33.CrossRef Techawiboonwong A, Song HK, Leonard MB, Wehrli FW. Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging. Radiology. 2008;248:824–33.CrossRef
58.
go back to reference Anumula S, Wehrli SL, Magland J, Wright AC, Wehrli FW. Ultra-short echo-time MRI detects changes in bone mineralization and water content in OVX rat bone in response to alendronate treatment. Bone. 2010;46:1391–9.CrossRef Anumula S, Wehrli SL, Magland J, Wright AC, Wehrli FW. Ultra-short echo-time MRI detects changes in bone mineralization and water content in OVX rat bone in response to alendronate treatment. Bone. 2010;46:1391–9.CrossRef
59.
go back to reference • Wiesinger F, Sacolick LI, Menini A, Zero TE, et al. MR bone imaging in the head. Magn Reson Med. 2016;75:107–14 This study demonstrates how zTE MRI can be used to distinguish bone and could be useful in MR-based attenuation correction of PET data, as it pertains to PET-MRI and metabolic bone diseases. CrossRef • Wiesinger F, Sacolick LI, Menini A, Zero TE, et al. MR bone imaging in the head. Magn Reson Med. 2016;75:107–14 This study demonstrates how zTE MRI can be used to distinguish bone and could be useful in MR-based attenuation correction of PET data, as it pertains to PET-MRI and metabolic bone diseases. CrossRef
Metadata
Title
PET-MRI for the Study of Metabolic Bone Disease
Authors
James S. Yoder
Feliks Kogan
Garry E. Gold
Publication date
01-12-2018
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 6/2018
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-018-0482-4

Other articles of this Issue 6/2018

Current Osteoporosis Reports 6/2018 Go to the issue

Kidney and Bone (I Salusky and T Nickolas, Section Editors)

Non-renal-Related Mechanisms of FGF23 Pathophysiology

Kidney and Bone (I Salusky and T Nickolas, Section Editors)

Updates in CKD-Associated Osteoporosis

Cancer-induced Musculoskeletal Diseases (J Sterling and E Keller, section editors)

Osteoblastic Factors in Prostate Cancer Bone Metastasis