Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 9/2015

01-08-2015 | Original Article

PET/MR brain imaging: evaluation of clinical UTE-based attenuation correction

Authors: Lars Birger Aasheim, Anna Karlberg, Pål Erik Goa, Asta Håberg, Sveinung Sørhaug, Unn-Merete Fagerli, Live Eikenes

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 9/2015

Login to get access

Abstract

One of the greatest challenges in PET/MR imaging is that of accurate MR-based attenuation correction (AC) of the acquired PET data, which must be solved if the PET/MR modality is to reach its full potential. The aim of this study was to investigate the performance of Siemens’ most recent version (VB20P) of MR-based AC of head PET data, by comparing it to CT-based AC.
Methods:18F-FDG PET data from seven lymphoma and twelve lung cancer patients examined with a Biograph mMR PET/MR system were reconstructed with both CT-based and MR-based AC, avoiding sources of error arising when comparing PET data from different systems. The resulting images were compared quantitatively by measuring changes in mean SUV in ten different brain regions in both hemispheres, as well as the brainstem. In addition, the attenuation maps (μ maps) were compared regarding volume and localization of cranial bone.
Results: The UTE μ maps clearly overestimate the amount of bone in the neck, while slightly underestimating the amount of bone in the cranium, and the localization of bone in the cranial region also differ from the CT μ maps. In air/tissue interfaces in the sinuses and ears, the MRAC method struggles to correctly classify the different tissues. The misclassification of tissue is most likely caused by a combination of artefacts and the insufficiency of the UTE method to accurately separate bone. Quantitatively, this results in a combination of overestimation (0.5–3.6 %) and underestimation (2.7–5.2 %) of PET activity throughout the brain, depending on the proximity to the inaccurate regions.
Conclusions: Our results indicate that the performance of the UTE method as implemented in VB20P is close to the theoretical maximum of such an MRAC method in the brain, while it does not perform satisfactorily in the neck or face/nasal area. Further improvement of the UTE MRAC or other available methods for more accurate segmentation of bone should be incorporated.
Footnotes
1
Personal communication with Dr. Peter Kreisler at Siemens.
 
Literature
1.
go back to reference Bailey DL, Karp JS, Surti S. Physics and Instrumentation in PET. In: Bailey DL, Townsend DW, Valk PE, Maisey MN, editors. Positron Emission Tomography. London: Springer; 2005, pp. 13–39.CrossRef Bailey DL, Karp JS, Surti S. Physics and Instrumentation in PET. In: Bailey DL, Townsend DW, Valk PE, Maisey MN, editors. Positron Emission Tomography. London: Springer; 2005, pp. 13–39.CrossRef
2.
go back to reference Townsend DW. Basic Science of PET and PET/CT. In: Valk PE, Delbeke D, Bailey DL, Townsend DW, Maisey MN, editors. Positron Emission Tomography. London: Springer; 2006, pp. 1–16.CrossRef Townsend DW. Basic Science of PET and PET/CT. In: Valk PE, Delbeke D, Bailey DL, Townsend DW, Maisey MN, editors. Positron Emission Tomography. London: Springer; 2006, pp. 1–16.CrossRef
3.
go back to reference Hofmann M, Pichler B, Schölkopf B, Beyer T. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 2009;36:93–104.CrossRef Hofmann M, Pichler B, Schölkopf B, Beyer T. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 2009;36:93–104.CrossRef
4.
go back to reference Kops E, Herzog H. Template based attenuation correction for PET in MR-PET scanners. IEEE Nucl Sci Symp Conf Rec 2008;2008:3786–9. Kops E, Herzog H. Template based attenuation correction for PET in MR-PET scanners. IEEE Nucl Sci Symp Conf Rec 2008;2008:3786–9.
5.
go back to reference Schreibmann E, Nye JA, Schuster DM, Martin DR, Votaw J, Fox T. MR-based attenuation correction for hybrid PET-MR brain imaging systems using deformable image registration. Med Phys 2010;37:2101–9.PubMedCrossRef Schreibmann E, Nye JA, Schuster DM, Martin DR, Votaw J, Fox T. MR-based attenuation correction for hybrid PET-MR brain imaging systems using deformable image registration. Med Phys 2010;37:2101–9.PubMedCrossRef
6.
go back to reference Zaidi H, Montandon ML, Slosman DO. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys 2003;30:937–48.PubMedCrossRef Zaidi H, Montandon ML, Slosman DO. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys 2003;30:937–48.PubMedCrossRef
7.
go back to reference Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 2010;51:812–8.PubMedCrossRef Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 2010;51:812–8.PubMedCrossRef
8.
go back to reference Aznar MC, Sersar R, Saabye J, et al. Whole-body PET/MRI: the effect of bone attenuation during MR-based attenuation correction in oncology imaging. Eur J Radiol 2014;83:1177–83.PubMedCrossRef Aznar MC, Sersar R, Saabye J, et al. Whole-body PET/MRI: the effect of bone attenuation during MR-based attenuation correction in oncology imaging. Eur J Radiol 2014;83:1177–83.PubMedCrossRef
9.
go back to reference Samarin A, Burger C, Wollenweber SD, et al. PET/MR imaging of bone lesions: implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging 2012;39:1154–60.PubMedCrossRef Samarin A, Burger C, Wollenweber SD, et al. PET/MR imaging of bone lesions: implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging 2012;39:1154–60.PubMedCrossRef
10.
go back to reference Bezrukov I, Mantlik F, Schmidt H, Schölkopf B, Pichler BJ, MR-Based PET. Attenuation correction for PET/MR imaging. Semin Nucl Med 2013;43:45–59.PubMedCrossRef Bezrukov I, Mantlik F, Schmidt H, Schölkopf B, Pichler BJ, MR-Based PET. Attenuation correction for PET/MR imaging. Semin Nucl Med 2013;43:45–59.PubMedCrossRef
11.
go back to reference Akbarzadeh A, Ay MR, Ahmadian A, Riahi Alam N, Zaidi H. MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med 2013;27:152–62.PubMedCrossRef Akbarzadeh A, Ay MR, Ahmadian A, Riahi Alam N, Zaidi H. MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med 2013;27:152–62.PubMedCrossRef
12.
go back to reference Andersen FL, Ladefoged CN, Beyer T, et al. Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone. Neuroimage 2014;84:206–16.PubMedCrossRef Andersen FL, Ladefoged CN, Beyer T, et al. Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone. Neuroimage 2014;84:206–16.PubMedCrossRef
13.
go back to reference Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 2003;27:825–46.PubMedCrossRef Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 2003;27:825–46.PubMedCrossRef
14.
go back to reference Berker Y, Franke J, Salomon A, et al. MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 2012; 53:796– 804.PubMedCrossRef Berker Y, Franke J, Salomon A, et al. MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 2012; 53:796– 804.PubMedCrossRef
15.
go back to reference Dickson JC, O’Meara C, Barnes A. A comparison of CT- and MR-based attenuation correction in neurological PET. Eur J Nucl Med Mol Imaging 2014;51:1–14. Dickson JC, O’Meara C, Barnes A. A comparison of CT- and MR-based attenuation correction in neurological PET. Eur J Nucl Med Mol Imaging 2014;51:1–14.
16.
go back to reference Choi H, Cheon GJ, Kim HJ, et al. Segmentation-based MR attenuation correction including bones also affects quantitation in brain studies: an initial result of 18F-FP-CIT PET/MR for patients with Parkinsonism. J Nucl Med 2014;55:1617– 22.PubMedCrossRef Choi H, Cheon GJ, Kim HJ, et al. Segmentation-based MR attenuation correction including bones also affects quantitation in brain studies: an initial result of 18F-FP-CIT PET/MR for patients with Parkinsonism. J Nucl Med 2014;55:1617– 22.PubMedCrossRef
17.
go back to reference Block KT, Uecker M. Simple method for adaptive gradient-delay compensation in radial MRI. Proc Int Soc Magn Reson Med 2011:2816. Block KT, Uecker M. Simple method for adaptive gradient-delay compensation in radial MRI. Proc Int Soc Magn Reson Med 2011:2816.
18.
go back to reference Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. elastix: A toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 2010;29:196–205.PubMedCrossRef Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. elastix: A toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 2010;29:196–205.PubMedCrossRef
19.
go back to reference Delso G, Carl M, Wiesinger F, et al. Anatomic evaluation of 3-dimensional ultrashort-echo-time bone maps for PET/MR attenuation correction. J Nucl Med 2014;55:780–5.PubMedCrossRef Delso G, Carl M, Wiesinger F, et al. Anatomic evaluation of 3-dimensional ultrashort-echo-time bone maps for PET/MR attenuation correction. J Nucl Med 2014;55:780–5.PubMedCrossRef
20.
go back to reference Navalpakkam BK, Braun H, Kuwert T, Quick HH. Magnetic resonance-based attenuation correction for PET/MR hybrid imaging using continuous valued attenuation maps. Invest Radiol 2013;48:323–32.PubMedCrossRef Navalpakkam BK, Braun H, Kuwert T, Quick HH. Magnetic resonance-based attenuation correction for PET/MR hybrid imaging using continuous valued attenuation maps. Invest Radiol 2013;48:323–32.PubMedCrossRef
21.
go back to reference Dice LR. Measures of the amount of ecologic association between species. Ecology 1945;26:297–302.CrossRef Dice LR. Measures of the amount of ecologic association between species. Ecology 1945;26:297–302.CrossRef
22.
go back to reference Cheetham AH, Hazel JE. Binary (presence-absence) similarity coefficients. J Paleontol 1969;43:1130–6. Cheetham AH, Hazel JE. Binary (presence-absence) similarity coefficients. J Paleontol 1969;43:1130–6.
23.
go back to reference Aitken AP, Giese D, Tsoumpas C, et al. Improved UTE-based attenuation correction for cranial PET-MR using dynamic magnetic field monitoring. Med Phys 2014;41:1–13.CrossRef Aitken AP, Giese D, Tsoumpas C, et al. Improved UTE-based attenuation correction for cranial PET-MR using dynamic magnetic field monitoring. Med Phys 2014;41:1–13.CrossRef
24.
go back to reference Oliveira RCG, Leles CR, Normanha LM, Lindh C, Ribeiro-Rotta RF. Assessments of trabecular bone density at implant sites on CT images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105:231–8.PubMedCrossRef Oliveira RCG, Leles CR, Normanha LM, Lindh C, Ribeiro-Rotta RF. Assessments of trabecular bone density at implant sites on CT images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105:231–8.PubMedCrossRef
25.
go back to reference Catana C, Kouwe A, Benner T, et al. Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype. J Nucl Med 2010;51:1431–8.PubMedCentralPubMedCrossRef Catana C, Kouwe A, Benner T, et al. Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype. J Nucl Med 2010;51:1431–8.PubMedCentralPubMedCrossRef
26.
go back to reference Velasquez LM, Boellaard R, Kollia G, et al. Repeatability of 18F-FDG PET in a multicenter phase i study of patients with advanced gastrointestinal malignancies. J Nucl Med 2009;50:1646–54.PubMedCrossRef Velasquez LM, Boellaard R, Kollia G, et al. Repeatability of 18F-FDG PET in a multicenter phase i study of patients with advanced gastrointestinal malignancies. J Nucl Med 2009;50:1646–54.PubMedCrossRef
27.
go back to reference Weber W, Ziegler S, Thödtmann R, Hanauske A, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 1999;40:1771–7.PubMed Weber W, Ziegler S, Thödtmann R, Hanauske A, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 1999;40:1771–7.PubMed
Metadata
Title
PET/MR brain imaging: evaluation of clinical UTE-based attenuation correction
Authors
Lars Birger Aasheim
Anna Karlberg
Pål Erik Goa
Asta Håberg
Sveinung Sørhaug
Unn-Merete Fagerli
Live Eikenes
Publication date
01-08-2015
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 9/2015
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-015-3060-3

Other articles of this Issue 9/2015

European Journal of Nuclear Medicine and Molecular Imaging 9/2015 Go to the issue