Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2019

Open Access 01-12-2019 | Research

Peripheral myelin protein 2 – a novel cluster of mutations causing Charcot-Marie-Tooth neuropathy

Authors: Paulius Palaima, Teodora Chamova, Sebastian Jander, Vanyo Mitev, Christine Van Broeckhoven, Ivailo Tournev, Kristien Peeters, Albena Jordanova

Published in: Orphanet Journal of Rare Diseases | Issue 1/2019

Login to get access

Abstract

Background

Charcot-Marie-Tooth (CMT) disease is the most common inherited neuromuscular disorder characterized by wide clinical, genetic and pathomechanistic heterogeneity. Recently, the gene encoding peripheral myelin protein 2 (PMP2) was identified as a novel cause for CMT neuropathy with three mutations that structurally cluster together (p.Ile43Asn, p.Thr51Pro, p.Ile52Thr) reported in five families.

Results

Using whole exome sequencing and cohort screening we identified two novel missense substitutions in PMP2 in Bulgarian (p.Met114Thr, c.341C > T) and German (p.Val115Ala, c.344 T > C) families. The mutations affect adjacent and highly conserved amino acid residues outside of the known mutation-rich region in the protein. Crystal structure analysis positions the affected residues within a cluster of highly conserved fatty acid coordinating residues implying their functional significance. The clinical, electrophysiological and imaging features in both families were consistent with a childhood onset polyneuropathy with variable patterns of demyelination, slow to very slow progression, and most severe involvement of the peroneal muscles.

Conclusions

We expand the genetic and phenotypic spectrum of PMP2-related peripheral neuropathy. Our findings reveal a second mutational cluster in the protein.
Appendix
Available only for authorised users
Literature
1.
go back to reference Barreto LC, Oliveira FS, Nunes PS, et al. Epidemiologic study of Charcot-Marie-tooth disease: a systematic review. Neuroepidemiology. 2016;46:157–65.CrossRef Barreto LC, Oliveira FS, Nunes PS, et al. Epidemiologic study of Charcot-Marie-tooth disease: a systematic review. Neuroepidemiology. 2016;46:157–65.CrossRef
2.
go back to reference Pareyson D, Saveri P, Pisciotta C. New developments in Charcot-Marie-tooth neuropathy and related diseases. Curr Opin Neurol. 2017;30:471–80.CrossRef Pareyson D, Saveri P, Pisciotta C. New developments in Charcot-Marie-tooth neuropathy and related diseases. Curr Opin Neurol. 2017;30:471–80.CrossRef
3.
go back to reference Dyck PJ, Lambert EH. Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. Arch Neurol. 1968;18:619–25.CrossRef Dyck PJ, Lambert EH. Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. Arch Neurol. 1968;18:619–25.CrossRef
4.
go back to reference Thomas PK, Calne DB. Motor nerve conduction velocity in peroneal muscular atrophy: evidence for genetic heterogeneity. J Neurol Neurosurg Psychiatry. 1974;37:68–75.CrossRef Thomas PK, Calne DB. Motor nerve conduction velocity in peroneal muscular atrophy: evidence for genetic heterogeneity. J Neurol Neurosurg Psychiatry. 1974;37:68–75.CrossRef
5.
go back to reference Bradley WG, Madrid R, Davis CJ. The peroneal muscular atrophy syndrome. Clinical genetic, electrophysiological and nerve biopsy studies. Part 3. Clinical, electrophysiological and pathological correlations. J Neurol Sci. 1977;32:123–36.CrossRef Bradley WG, Madrid R, Davis CJ. The peroneal muscular atrophy syndrome. Clinical genetic, electrophysiological and nerve biopsy studies. Part 3. Clinical, electrophysiological and pathological correlations. J Neurol Sci. 1977;32:123–36.CrossRef
6.
go back to reference Schmitt S, Castelvetri LC, Simons M. Metabolism and functions of lipids in myelin. Biochim Biophys Acta. 1851;2015:999–1005. Schmitt S, Castelvetri LC, Simons M. Metabolism and functions of lipids in myelin. Biochim Biophys Acta. 1851;2015:999–1005.
7.
go back to reference Greenfield S, Brostoff S, Eylar EH, Morell P. Protein composition of myelin of the peripheral nervous system. J Neurochem. 1973;20:1207–16.CrossRef Greenfield S, Brostoff S, Eylar EH, Morell P. Protein composition of myelin of the peripheral nervous system. J Neurochem. 1973;20:1207–16.CrossRef
8.
go back to reference Lupski JR, de Oca-Luna RM, Slaugenhaupt S, et al. DNA duplication associated with Charcot-Marie-tooth disease type 1A. Cell. 1991;66:219–32.CrossRef Lupski JR, de Oca-Luna RM, Slaugenhaupt S, et al. DNA duplication associated with Charcot-Marie-tooth disease type 1A. Cell. 1991;66:219–32.CrossRef
9.
go back to reference Timmerman V, Nelis E, Van Hul W, et al. The peripheral myelin protein gene PMP-22 is contained within the Charcot-Marie-tooth disease type 1A duplication. Nat Genet. 1992;1:171–5.CrossRef Timmerman V, Nelis E, Van Hul W, et al. The peripheral myelin protein gene PMP-22 is contained within the Charcot-Marie-tooth disease type 1A duplication. Nat Genet. 1992;1:171–5.CrossRef
10.
go back to reference Rossor AM, Polke JM, Houlden H, Reilly MM. Clinical implications of genetic advances in Charcot–Marie–tooth disease. Nat Rev Neurol. 2013;9:562–71.CrossRef Rossor AM, Polke JM, Houlden H, Reilly MM. Clinical implications of genetic advances in Charcot–Marie–tooth disease. Nat Rev Neurol. 2013;9:562–71.CrossRef
11.
go back to reference Gonzaga-Jauregui C, Harel T, Gambin T, et al. Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Rep. 2015;12:1169–83.CrossRef Gonzaga-Jauregui C, Harel T, Gambin T, et al. Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Rep. 2015;12:1169–83.CrossRef
12.
go back to reference Hong YB, Joo J, Hyun YS, et al. A mutation in PMP2 causes dominant demyelinating Charcot-Marie-tooth neuropathy. PLoS Genet. 2016;12:e1005829.CrossRef Hong YB, Joo J, Hyun YS, et al. A mutation in PMP2 causes dominant demyelinating Charcot-Marie-tooth neuropathy. PLoS Genet. 2016;12:e1005829.CrossRef
13.
go back to reference Motley WW, Palaima P, Yum SW, et al. De novo PMP2 mutations in families with type 1 Charcot–Marie–tooth disease. Brain. 2016;139:1649–56.CrossRef Motley WW, Palaima P, Yum SW, et al. De novo PMP2 mutations in families with type 1 Charcot–Marie–tooth disease. Brain. 2016;139:1649–56.CrossRef
14.
go back to reference Punetha J, Mackay-Loder L, Harel T, et al. Identification of a pathogenic PMP2 variant in a multi-generational family with CMT type 1: clinical gene panels versus genome-wide approaches to molecular diagnosis. Mol Genet Metab. 2018;125:302–4.CrossRef Punetha J, Mackay-Loder L, Harel T, et al. Identification of a pathogenic PMP2 variant in a multi-generational family with CMT type 1: clinical gene panels versus genome-wide approaches to molecular diagnosis. Mol Genet Metab. 2018;125:302–4.CrossRef
15.
go back to reference Ruskamo S, Yadav RP, Sharma S, et al. Atomic resolution view into the structure-function relationships of the human myelin peripheral membrane protein P2. Acta Crystallogr D Biol Crystallogr. 2014;70:165–76.CrossRef Ruskamo S, Yadav RP, Sharma S, et al. Atomic resolution view into the structure-function relationships of the human myelin peripheral membrane protein P2. Acta Crystallogr D Biol Crystallogr. 2014;70:165–76.CrossRef
16.
go back to reference Ruskamo S, Nieminen T, Kristiansen CK, et al. Molecular mechanisms of Charcot-Marie-tooth neuropathy linked to mutations in human myelin protein P2. Sci Rep. 2017;7:6510.CrossRef Ruskamo S, Nieminen T, Kristiansen CK, et al. Molecular mechanisms of Charcot-Marie-tooth neuropathy linked to mutations in human myelin protein P2. Sci Rep. 2017;7:6510.CrossRef
17.
go back to reference Stettner M, Zenker J, Klingler F, et al. The role of peripheral myelin protein 2 in Remyelination. Cell Mol Neurobiol. 2018;38:487–96.CrossRef Stettner M, Zenker J, Klingler F, et al. The role of peripheral myelin protein 2 in Remyelination. Cell Mol Neurobiol. 2018;38:487–96.CrossRef
18.
go back to reference Zenker J, Stettner M, Ruskamo S, et al. A role of peripheral myelin protein 2 in lipid homeostasis of myelinating Schwann cells. Glia. 2014;62:1502–12.CrossRef Zenker J, Stettner M, Ruskamo S, et al. A role of peripheral myelin protein 2 in lipid homeostasis of myelinating Schwann cells. Glia. 2014;62:1502–12.CrossRef
19.
go back to reference Karczewski KJ, Francioli LC, Tiao G et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes: supplementary information. 2019. Karczewski KJ, Francioli LC, Tiao G et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes: supplementary information. 2019.
20.
go back to reference Krieger E, Vriend G. New ways to boost molecular dynamics simulations. J Comput Chem. 2015;36:996–1007.CrossRef Krieger E, Vriend G. New ways to boost molecular dynamics simulations. J Comput Chem. 2015;36:996–1007.CrossRef
21.
go back to reference Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. Nucleic Acids Res. 2005;33:W382–8.CrossRef Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. Nucleic Acids Res. 2005;33:W382–8.CrossRef
22.
go back to reference Huang F, Nau WM. A conformational flexibility Scale for amino acids in peptides. Angew Chem. 2003;115:2371–4.CrossRef Huang F, Nau WM. A conformational flexibility Scale for amino acids in peptides. Angew Chem. 2003;115:2371–4.CrossRef
23.
go back to reference Majava V, Polverini E, Mazzini A, et al. Structural and functional characterization of human peripheral nervous system myelin protein P2. PLoS One. 2010;5:e10300.CrossRef Majava V, Polverini E, Mazzini A, et al. Structural and functional characterization of human peripheral nervous system myelin protein P2. PLoS One. 2010;5:e10300.CrossRef
24.
go back to reference Giese KP, Martini R, Lemke G, Soriano P, Schachner M. Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell. 1992;71:565–76.CrossRef Giese KP, Martini R, Lemke G, Soriano P, Schachner M. Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell. 1992;71:565–76.CrossRef
25.
go back to reference Saporta MA, Katona I, Zhang X, et al. Neuropathy in a human without the PMP22 gene. Arch Neurol. 2011;68. Saporta MA, Katona I, Zhang X, et al. Neuropathy in a human without the PMP22 gene. Arch Neurol. 2011;68.
26.
go back to reference Li H, Durbin R. Fast and accurate long-read alignment with burrows–wheeler transform. Bioinformatics. 2010;26:589–95.CrossRef Li H, Durbin R. Fast and accurate long-read alignment with burrows–wheeler transform. Bioinformatics. 2010;26:589–95.CrossRef
27.
go back to reference McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.CrossRef McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.CrossRef
28.
go back to reference Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–93.CrossRef Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–93.CrossRef
29.
go back to reference Saunders CT, Wong WSW, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: accurate somatic small-variant calling from sequenced tumor–normal sample pairs. Bioinformatics. 2012;28:1811–7.CrossRef Saunders CT, Wong WSW, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: accurate somatic small-variant calling from sequenced tumor–normal sample pairs. Bioinformatics. 2012;28:1811–7.CrossRef
30.
go back to reference Reumers J, De Rijk P, Zhao H, et al. Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing. Nat Biotechnol. 2012;30:61–8.CrossRef Reumers J, De Rijk P, Zhao H, et al. Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing. Nat Biotechnol. 2012;30:61–8.CrossRef
31.
go back to reference Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.CrossRef Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.CrossRef
32.
go back to reference Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc. 2016;11:1–9.CrossRef Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc. 2016;11:1–9.CrossRef
33.
go back to reference Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age[letter]. Nat Methods. 2014;11(4):361–2.CrossRef Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age[letter]. Nat Methods. 2014;11(4):361–2.CrossRef
34.
go back to reference Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–94.CrossRef Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–94.CrossRef
35.
go back to reference Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.CrossRef Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.CrossRef
Metadata
Title
Peripheral myelin protein 2 – a novel cluster of mutations causing Charcot-Marie-Tooth neuropathy
Authors
Paulius Palaima
Teodora Chamova
Sebastian Jander
Vanyo Mitev
Christine Van Broeckhoven
Ivailo Tournev
Kristien Peeters
Albena Jordanova
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2019
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-019-1162-x

Other articles of this Issue 1/2019

Orphanet Journal of Rare Diseases 1/2019 Go to the issue