Skip to main content
Top
Published in: Osteoporosis International 3/2007

01-03-2007 | Original Article

Peripheral bone mineral density and its predictors in healthy school girls from two different socioeconomic groups in Delhi

Authors: R. K. Marwaha, N. Tandon, D. H. K. Reddy, K. Mani, S. Puri, N. Aggarwal, K. Grewal, S. Singh

Published in: Osteoporosis International | Issue 3/2007

Login to get access

Abstract

Summary

Peripheral bone density measurements are scarce and the factors, which predict bone mineral density at these sites, especially in children, are not clearly known. In this study, age, height, weight and alkaline phosphatase had a significant association on peripheral bone mineral density in healthy Indian school girls.

Introduction

Factors that lead to the attainment of peak bone mass at peripheral sites, during period of growth are not clearly known.

Methods

Six-hundred and sixty-four randomly selected 7- to 17-year-old girls from upper and lower socioeconomic status (USES/LSES) schools were assessed clinically and a recording of their height and weight was undertaken. Serum calcium, phosphorus, total alkaline phosphatase (ALP), 25-hydroxyvitamin D (25-OHD) and parathyroid hormone (PTH) were measured in all of them. Bone mineral density (BMD) was measured at the distal forearm (BMDdf) and calcaneum (BMDca) by peripheral dual energy X-ray absorptiometry (pDXA).

Results

Girls belonging to the USES were significantly taller (149.7 ± 12.3 cm vs 144.4 ± 11.9 cm; P < 0.001) and weighed more (44.3 ± 12.9 kg vs 35.9 ± 10.0 kg; P < 0.001) than girls from the LSES. USES girls had a significantly higher mean serum calcium (9.3 ± 0.7 mg/dl vs 9.2 ± 0.8 mg/dl; P < 0.05) and significantly lower alkaline phosphatase (316 ± 166 IU/l vs 423 ± 228 IU/l; P < 0.01) and iPTH (29.9 ± 18.4 pg/ml vs 45.7 ± 64.6 pg/ml; P < 0.01). There was no significant difference in mean serum phosphorus and 25-OHD levels between the two groups. USES subjects had higher BMD at both sites than LSES subjects. BMDdf and BMDca increased with age and tended to plateau by 16 years and 12 years of age respectively in both the groups. Age, height and weight explained approximately 50% of the variability, while biochemical parameters explained approximately 30% of variability in BMD at both the sites. The only biochemical parameter which had a significant association with BMD was ALP at the distal forearm.

Conclusion

In conclusion, age, nutrition, height and weight are significantly associated with BMD at peripheral sites.
Literature
1.
go back to reference Bachrach LK (2005) Osteoporosis and measurement of bone mass in children and adolescents. Endocrinol Metab Clin North Am 34:521–535PubMedCrossRef Bachrach LK (2005) Osteoporosis and measurement of bone mass in children and adolescents. Endocrinol Metab Clin North Am 34:521–535PubMedCrossRef
2.
go back to reference Mora S, Gilsanz V (2003) Establishment of peak bone mass. Endocrinol Metab Clin North Am 32:39–63PubMedCrossRef Mora S, Gilsanz V (2003) Establishment of peak bone mass. Endocrinol Metab Clin North Am 32:39–63PubMedCrossRef
3.
go back to reference Chinn DJ, Fordham JN, Kibirige MS et al (2005) Bone density at the os calcis: reference values, reproducibility, and associations of fracture history and physical activity. Arch Dis Child 90:30–35PubMedCrossRef Chinn DJ, Fordham JN, Kibirige MS et al (2005) Bone density at the os calcis: reference values, reproducibility, and associations of fracture history and physical activity. Arch Dis Child 90:30–35PubMedCrossRef
4.
go back to reference Hernandez-Prado B, Lazcano-Ponce E, Cruz-Valdez A et al (2002) Validity of bone mineral density measurements in distal sites as an indicator of total bone mineral density in a group of pre-adolescent and adolescent women. Arch Med Res 33:33–39PubMedCrossRef Hernandez-Prado B, Lazcano-Ponce E, Cruz-Valdez A et al (2002) Validity of bone mineral density measurements in distal sites as an indicator of total bone mineral density in a group of pre-adolescent and adolescent women. Arch Med Res 33:33–39PubMedCrossRef
5.
go back to reference Miller PD, Siris ES, Barrett-Connor E et al (2002) Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: Evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res 17:2222–2230PubMedCrossRef Miller PD, Siris ES, Barrett-Connor E et al (2002) Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: Evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res 17:2222–2230PubMedCrossRef
6.
go back to reference Leib ES, Lewiecki EM, Binkley N et al (2004) Official positions of the International Society for Clinical Densitometry. J Clin Densitom 7:1–5PubMedCrossRef Leib ES, Lewiecki EM, Binkley N et al (2004) Official positions of the International Society for Clinical Densitometry. J Clin Densitom 7:1–5PubMedCrossRef
7.
go back to reference Blake GM, Chinn DJ, Steel SA et al (2005) A list of device-specific thresholds for the clinical interpretation of peripheral X-ray absorptiometry examinations. Osteoporos Int 16:2149–2156PubMedCrossRef Blake GM, Chinn DJ, Steel SA et al (2005) A list of device-specific thresholds for the clinical interpretation of peripheral X-ray absorptiometry examinations. Osteoporos Int 16:2149–2156PubMedCrossRef
8.
go back to reference Marwaha RK, Tandon N, Reddy DHK et al (2005) Vitamin D and bone mineral density status of healthy schoolchildren in northern India. Am J Clin Nutr 82:477–482PubMed Marwaha RK, Tandon N, Reddy DHK et al (2005) Vitamin D and bone mineral density status of healthy schoolchildren in northern India. Am J Clin Nutr 82:477–482PubMed
9.
go back to reference Afghani A, Xie B, Wiswell RA et al (2003) Bone mass of Asian adolescents in China: influence of physical activity and smoking. Med Sci Sports Exerc 35:720–729PubMedCrossRef Afghani A, Xie B, Wiswell RA et al (2003) Bone mass of Asian adolescents in China: influence of physical activity and smoking. Med Sci Sports Exerc 35:720–729PubMedCrossRef
10.
go back to reference Matsukura T, Kagamimori S, Yamagami T et al (2000) Reference data of forearm bone mineral density in healthy Japanese male and female subjects in the second decade based on calendar age and puberty onset: Japanese Population Based Osteoporosis (JPOS) study. Osteoporos Int 11: 858–865PubMedCrossRef Matsukura T, Kagamimori S, Yamagami T et al (2000) Reference data of forearm bone mineral density in healthy Japanese male and female subjects in the second decade based on calendar age and puberty onset: Japanese Population Based Osteoporosis (JPOS) study. Osteoporos Int 11: 858–865PubMedCrossRef
11.
go back to reference Ikeda Y, Iki M, Morita A et al (2004) Ultrasound bone densitometry of the calcaneus, determined with Sahara, in healthy Japanese adolescents: Japanese Population-based Osteoporosis (JPOS) Study. J Bone Miner Metab 22:248–253PubMedCrossRef Ikeda Y, Iki M, Morita A et al (2004) Ultrasound bone densitometry of the calcaneus, determined with Sahara, in healthy Japanese adolescents: Japanese Population-based Osteoporosis (JPOS) Study. J Bone Miner Metab 22:248–253PubMedCrossRef
12.
go back to reference Tandon N, Marwaha RK, Kalra S et al (2003) Bone mineral parameters in healthy young Indian adults with optimal vitamin D availability. Natl Med J India 16:298–302PubMed Tandon N, Marwaha RK, Kalra S et al (2003) Bone mineral parameters in healthy young Indian adults with optimal vitamin D availability. Natl Med J India 16:298–302PubMed
13.
go back to reference Zanchetta JR, Plotkin H, Alvarez Filgueira ML (1995) Bone mass in children: normative values for the 2–20-year-old population. Bone 16:393S–399SPubMed Zanchetta JR, Plotkin H, Alvarez Filgueira ML (1995) Bone mass in children: normative values for the 2–20-year-old population. Bone 16:393S–399SPubMed
14.
go back to reference Arabi A, Nabulsi M, Maalouf J et al (2004) Bone mineral density by age, gender, pubertal stages, and socioeconomic status in healthy Lebanese children and adolescents. Bone 35:1169–1179PubMedCrossRef Arabi A, Nabulsi M, Maalouf J et al (2004) Bone mineral density by age, gender, pubertal stages, and socioeconomic status in healthy Lebanese children and adolescents. Bone 35:1169–1179PubMedCrossRef
15.
go back to reference Rubin K, Schirduan V, Gendreau P et al (1993) Predictors of axial and peripheral bone mineral density in healthy children and adolescents, with special attention to the role of puberty. J Pediatr 123:863–870PubMedCrossRef Rubin K, Schirduan V, Gendreau P et al (1993) Predictors of axial and peripheral bone mineral density in healthy children and adolescents, with special attention to the role of puberty. J Pediatr 123:863–870PubMedCrossRef
16.
go back to reference Katzman DK, Bachrach LK, Carter DR et al (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339PubMedCrossRef Katzman DK, Bachrach LK, Carter DR et al (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339PubMedCrossRef
17.
go back to reference Matkovic V, Jelic T, Wardlaw GM et al (1994) Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 93:799–808PubMedCrossRef Matkovic V, Jelic T, Wardlaw GM et al (1994) Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 93:799–808PubMedCrossRef
18.
go back to reference Gunnes M (1994) Bone mineral density in the cortical and trabecular distal forearm in healthy children and adolescents. Acta Paediatr 83:463–467PubMedCrossRef Gunnes M (1994) Bone mineral density in the cortical and trabecular distal forearm in healthy children and adolescents. Acta Paediatr 83:463–467PubMedCrossRef
19.
go back to reference Volta C, Bagni B, Iughetti L et al (2004) Bone mass evaluated by calcaneous ultrasound and radial peripheral computed tomography in 726 youngsters. Acta Pediatr 93:747–751CrossRef Volta C, Bagni B, Iughetti L et al (2004) Bone mass evaluated by calcaneous ultrasound and radial peripheral computed tomography in 726 youngsters. Acta Pediatr 93:747–751CrossRef
20.
go back to reference Pettifor JM, Moodley GP (1997) Appendicular bone mass in children with a high prevalence of low dietary calcium intakes. J Bone Miner Res 12:1824–1832PubMedCrossRef Pettifor JM, Moodley GP (1997) Appendicular bone mass in children with a high prevalence of low dietary calcium intakes. J Bone Miner Res 12:1824–1832PubMedCrossRef
21.
go back to reference Kardinaal AF, Hoorneman G, Vaananen K et al (2000) Determinants of bone mass and bone geometry in adolescent and young adult women. Calcif Tissue Int 66:81–89PubMedCrossRef Kardinaal AF, Hoorneman G, Vaananen K et al (2000) Determinants of bone mass and bone geometry in adolescent and young adult women. Calcif Tissue Int 66:81–89PubMedCrossRef
22.
go back to reference Cheng JCY, Leung SSSF, Lee WTK et al (1998) Determinants of axial and peripheral bone mass in Chinese adolescents. Arch Dis Child 78:524–530PubMed Cheng JCY, Leung SSSF, Lee WTK et al (1998) Determinants of axial and peripheral bone mass in Chinese adolescents. Arch Dis Child 78:524–530PubMed
23.
go back to reference Arabi A, Tamim H, Nabulsi M et al (2004) Sex differences in the association of body-composition variables on bone mass in healthy children and adolescents. Am J Clin Nutr 80:1428–1435PubMed Arabi A, Tamim H, Nabulsi M et al (2004) Sex differences in the association of body-composition variables on bone mass in healthy children and adolescents. Am J Clin Nutr 80:1428–1435PubMed
24.
go back to reference Gunnes M, Lehmann EH (1995) Dietary calcium, saturated fat, fiber and vitamin C as predictors of forearm cortical and trabecular bone mineral density in healthy children and adolescents. Acta Paediatr.84:388–392PubMedCrossRef Gunnes M, Lehmann EH (1995) Dietary calcium, saturated fat, fiber and vitamin C as predictors of forearm cortical and trabecular bone mineral density in healthy children and adolescents. Acta Paediatr.84:388–392PubMedCrossRef
25.
go back to reference Cvijetic S, Baric IC, Bolanca S et al (2003) Ultrasound bone measurement in children and adolescents. Correlation with nutrition, puberty, anthropometry, and physical activity. J Clin Epidemiol 56:591–597PubMedCrossRef Cvijetic S, Baric IC, Bolanca S et al (2003) Ultrasound bone measurement in children and adolescents. Correlation with nutrition, puberty, anthropometry, and physical activity. J Clin Epidemiol 56:591–597PubMedCrossRef
26.
go back to reference Novotny R, Daida YG, Grove JS et al (2004) Adolescent dairy consumption and physical activity associated with bone mass. Prev Med 39:355–360PubMedCrossRef Novotny R, Daida YG, Grove JS et al (2004) Adolescent dairy consumption and physical activity associated with bone mass. Prev Med 39:355–360PubMedCrossRef
27.
go back to reference Kardinaal AF, Ando S, Charles P et al (1999) Dietary calcium and bone density in adolescent girls and young women in Europe. J Bone Miner Res 14:583–592PubMedCrossRef Kardinaal AF, Ando S, Charles P et al (1999) Dietary calcium and bone density in adolescent girls and young women in Europe. J Bone Miner Res 14:583–592PubMedCrossRef
28.
go back to reference Outila TA, Karkkainen MUM, Lamberg-Allardt CJE (2001) Vitamin D status affects serum parathyroid hormone concentrations during winter in female adolescents: associations with forearm bone mineral density. Am J Clin Nutr 74:206–210PubMed Outila TA, Karkkainen MUM, Lamberg-Allardt CJE (2001) Vitamin D status affects serum parathyroid hormone concentrations during winter in female adolescents: associations with forearm bone mineral density. Am J Clin Nutr 74:206–210PubMed
29.
go back to reference Stein EM, Laing EM, Hall DB et al (2006) Serum 25-hydroxyvitamin D concentrations in girls aged 4–8 y living in the southeastern United States. Am J Clin Nutr 83:75–81PubMed Stein EM, Laing EM, Hall DB et al (2006) Serum 25-hydroxyvitamin D concentrations in girls aged 4–8 y living in the southeastern United States. Am J Clin Nutr 83:75–81PubMed
30.
go back to reference Cheng S, Tylavsky F, Kroger H et al (2003) Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. Am J Clin Nutr 78:485–492PubMed Cheng S, Tylavsky F, Kroger H et al (2003) Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. Am J Clin Nutr 78:485–492PubMed
31.
go back to reference Bonofiglio D, Maggiolini M, Catalano S et al (2000). Parathyroid hormone is elevated but bone markers and density are normal in young female subjects who consume inadequate dietary calcium. Br J Nutr 84:111–116PubMed Bonofiglio D, Maggiolini M, Catalano S et al (2000). Parathyroid hormone is elevated but bone markers and density are normal in young female subjects who consume inadequate dietary calcium. Br J Nutr 84:111–116PubMed
32.
go back to reference van Coeverden SCCM, Netelenbos JC, de Ridder CM et al (2002) Bone metabolism markers and bone mass in healthy pubertal boys and girls. Clin Endocrinol (Oxf) 57:107–116CrossRef van Coeverden SCCM, Netelenbos JC, de Ridder CM et al (2002) Bone metabolism markers and bone mass in healthy pubertal boys and girls. Clin Endocrinol (Oxf) 57:107–116CrossRef
33.
go back to reference Lehtonen-Veromaa M, Mottonen T, Irjala K et al (2000) A 1-year prospective study on the relationship between physical activity, markers of bone metabolism, and bone acquisition in peripubertal girls. J Clin Endocrinol Metab 85:3726–3732PubMedCrossRef Lehtonen-Veromaa M, Mottonen T, Irjala K et al (2000) A 1-year prospective study on the relationship between physical activity, markers of bone metabolism, and bone acquisition in peripubertal girls. J Clin Endocrinol Metab 85:3726–3732PubMedCrossRef
34.
go back to reference Mora S, Pitukcheewanont P, Kaufman FR et al (1999) Biochemical markers of bone turnover and the volume and the density of bone in children at different stages of sexual development. J Bone Miner Res 14:1664–1671PubMedCrossRef Mora S, Pitukcheewanont P, Kaufman FR et al (1999) Biochemical markers of bone turnover and the volume and the density of bone in children at different stages of sexual development. J Bone Miner Res 14:1664–1671PubMedCrossRef
35.
go back to reference Libanati C, Baylink DJ, Lois-Wenzel E et al (1999) Studies on the potential mediators of skeletal changes occurring during puberty in girls. J. Clin. Endocrinol. Metab 84:2807–2814PubMedCrossRef Libanati C, Baylink DJ, Lois-Wenzel E et al (1999) Studies on the potential mediators of skeletal changes occurring during puberty in girls. J. Clin. Endocrinol. Metab 84:2807–2814PubMedCrossRef
36.
go back to reference Ross PD, Knowlton W (1998) Rapid bone loss is associated with increased levels of biochemical markers. J Bone Miner Res 13:297–302PubMedCrossRef Ross PD, Knowlton W (1998) Rapid bone loss is associated with increased levels of biochemical markers. J Bone Miner Res 13:297–302PubMedCrossRef
37.
go back to reference Rosen CJ, Chesnut III CH, Mallinak NJS (1997) The predictive value of biochemical markers of bone turnover for bone mineral density in early postmenopausal women treated with hormone replacement or calcium supplementation. J Clin Endocrinol Metab 82:1904–1910PubMedCrossRef Rosen CJ, Chesnut III CH, Mallinak NJS (1997) The predictive value of biochemical markers of bone turnover for bone mineral density in early postmenopausal women treated with hormone replacement or calcium supplementation. J Clin Endocrinol Metab 82:1904–1910PubMedCrossRef
38.
go back to reference Moncrieff MW, Lunt HRW, Arthur LJH (1973) Nutritional rickets at puberty. Arch Dis Child 48:221–224PubMedCrossRef Moncrieff MW, Lunt HRW, Arthur LJH (1973) Nutritional rickets at puberty. Arch Dis Child 48:221–224PubMedCrossRef
Metadata
Title
Peripheral bone mineral density and its predictors in healthy school girls from two different socioeconomic groups in Delhi
Authors
R. K. Marwaha
N. Tandon
D. H. K. Reddy
K. Mani
S. Puri
N. Aggarwal
K. Grewal
S. Singh
Publication date
01-03-2007
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 3/2007
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-006-0247-2

Other articles of this Issue 3/2007

Osteoporosis International 3/2007 Go to the issue