Skip to main content
Top
Published in: Skeletal Radiology 7/2016

01-07-2016 | Scientific Article

Performances of low-dose dual-energy CT in reducing artifacts from implanted metallic orthopedic devices

Authors: Laura Filograna, Nicola Magarelli, Antonio Leone, Chiara de Waure, Giovanna Elisa Calabrò, Tim Finkenstaedt, Michael John Thali, Lorenzo Bonomo

Published in: Skeletal Radiology | Issue 7/2016

Login to get access

Abstract

Objectives

The objective was to evaluate the performances of dose-reduced dual-energy computed tomography (DECT) in decreasing metallic artifacts from orthopedic devices compared with dose-neutral DECT, dose-neutral single-energy computed tomography (SECT), and dose-reduced SECT.

Materials and methods

Thirty implants in 20 consecutive cadavers underwent both SECT and DECT at three fixed CT dose indexes (CTDI): 20.0, 10.0, and 5.0 mGy. Extrapolated monoenergetic DECT images at 64, 69, 88, 105, 120, and 130 keV, and individually adjusted monoenergy for optimized image quality (OPTkeV) were generated. In each group, the image quality of the seven monoenergetic images and of the SECT image was assessed qualitatively and quantitatively by visually rating and by measuring the maximum streak artifact respectively.

Results

The comparison between SECT and OPTkeV evaluated overall within all groups showed a significant difference (p <0.001), with OPTkeV images providing better images. Comparing OPTkeV with the other DECT images, a significant difference was shown (p <0.001), with OPTkeV and 130-keV images providing the qualitatively best results. The OPTkeV images of 5.0-mGy acquisitions provided percentages of images with scores 1 and 2 of 36 % and 30 % respectively, compared with 0 % and 33.3 % of the corresponding SECT images of 10- and 20-mGy acquisitions. Moreover, DECT reconstructions at the OPTkeV of the low-dose group showed higher CT numbers than the SECT images of dose groups 1 and 2.

Conclusions

This study demonstrates that low-dose DECT permits a reduction of artifacts due to metallic implants to be obtained in a similar manner to neutral-dose DECT and better than reduced or neutral-dose SECT.
Literature
1.
go back to reference Lee MJ, Kim S, Lee SA, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics. 2007;27:791–803.CrossRefPubMed Lee MJ, Kim S, Lee SA, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics. 2007;27:791–803.CrossRefPubMed
2.
go back to reference Watzke O, Kalender WA. A pragmatic approach to metal artifact reduction in CT: merging of metal artifact reduced images. Eur Radiol. 2004;14:849–56.CrossRefPubMed Watzke O, Kalender WA. A pragmatic approach to metal artifact reduction in CT: merging of metal artifact reduced images. Eur Radiol. 2004;14:849–56.CrossRefPubMed
3.
4.
go back to reference Haramati N, Staron RB, Mazel-Sperling K, et al. CT scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph. 1994;18:429–34.CrossRefPubMed Haramati N, Staron RB, Mazel-Sperling K, et al. CT scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph. 1994;18:429–34.CrossRefPubMed
5.
go back to reference White LM, Buckwalter KA. Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Semin Musculoskelet Radiol. 1977;6:5–17.CrossRef White LM, Buckwalter KA. Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Semin Musculoskelet Radiol. 1977;6:5–17.CrossRef
6.
go back to reference Douglas-Akinwande AC, Buckwalter KA, Rydberg J, Rankin JL, Choplin RH. Multichannel CT: evaluating the spine in postoperative patients with orthopedic hardware. Radiographics. 2006;26:S97–S110.CrossRefPubMed Douglas-Akinwande AC, Buckwalter KA, Rydberg J, Rankin JL, Choplin RH. Multichannel CT: evaluating the spine in postoperative patients with orthopedic hardware. Radiographics. 2006;26:S97–S110.CrossRefPubMed
7.
go back to reference Buckwalter KA, Parr JA, Choplin RH, Capello WN. Multichannel CT imaging of orthopedic hardware and implants. Semin Musculoskelet Radiol. 2006;10:86–97.CrossRefPubMed Buckwalter KA, Parr JA, Choplin RH, Capello WN. Multichannel CT imaging of orthopedic hardware and implants. Semin Musculoskelet Radiol. 2006;10:86–97.CrossRefPubMed
8.
go back to reference Kachelriess M, Watzke O, Kalender WA. Generalized multidimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys. 2001;28:475–90.CrossRefPubMed Kachelriess M, Watzke O, Kalender WA. Generalized multidimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys. 2001;28:475–90.CrossRefPubMed
9.
go back to reference Veldkamp WJ, Joemai RM, van der Molen AJ, Geleijns J. Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT. Med Phys. 2010;37:620–8.CrossRefPubMed Veldkamp WJ, Joemai RM, van der Molen AJ, Geleijns J. Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT. Med Phys. 2010;37:620–8.CrossRefPubMed
10.
go back to reference Mahnken AH, Raupach R, Wildberger JE, et al. A new algorithm for metal artifact reduction in computed tomography: in vitro and in vivo evaluation after total hip replacement. Investig Radiol. 2003;38:769–75.CrossRef Mahnken AH, Raupach R, Wildberger JE, et al. A new algorithm for metal artifact reduction in computed tomography: in vitro and in vivo evaluation after total hip replacement. Investig Radiol. 2003;38:769–75.CrossRef
11.
go back to reference Bal M, Spies L. Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering. Med Phys. 2006;33:2852–9.CrossRefPubMed Bal M, Spies L. Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering. Med Phys. 2006;33:2852–9.CrossRefPubMed
12.
go back to reference Link TM, Berning W, Schering S, et al. CT of metal implants: reduction of artifacts using an extended CT scale technique. J Comput Assist Tomogr. 2000;24:165–72.CrossRefPubMed Link TM, Berning W, Schering S, et al. CT of metal implants: reduction of artifacts using an extended CT scale technique. J Comput Assist Tomogr. 2000;24:165–72.CrossRefPubMed
13.
go back to reference Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M. Normalized metal artifact reduction (NMAR) in computed tomography. Med Phys. 2010;37:5482–93.CrossRefPubMed Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M. Normalized metal artifact reduction (NMAR) in computed tomography. Med Phys. 2010;37:5482–93.CrossRefPubMed
14.
go back to reference Lemmens C, Faul D, Nuyts J. Suppression of metal artifacts in CT using a reconstruction procedure that combines MAP and projection completion. IEEE Trans Med Imaging. 2009;28:250–60.CrossRefPubMed Lemmens C, Faul D, Nuyts J. Suppression of metal artifacts in CT using a reconstruction procedure that combines MAP and projection completion. IEEE Trans Med Imaging. 2009;28:250–60.CrossRefPubMed
15.
go back to reference Yu L, Li H, Mueller J, et al. Metal artifact reduction from reformatted projections for hip prostheses in multislice helical computed tomography techniques and initial clinical results. Investig Radiol. 2009;44:691–6.CrossRef Yu L, Li H, Mueller J, et al. Metal artifact reduction from reformatted projections for hip prostheses in multislice helical computed tomography techniques and initial clinical results. Investig Radiol. 2009;44:691–6.CrossRef
16.
go back to reference Prell D, Kyriakou Y, Kachelrie M, Kalender WA. Reducing metal artifacts in computed tomography caused by hip endoprostheses using a physics-based approach. Investig Radiol. 2010;45:747–54.CrossRef Prell D, Kyriakou Y, Kachelrie M, Kalender WA. Reducing metal artifacts in computed tomography caused by hip endoprostheses using a physics-based approach. Investig Radiol. 2010;45:747–54.CrossRef
17.
go back to reference Coupal TM, Mallinson PI, McLaughlin P, Nicolaou S, Munk PL, Ouellette H. Peering through the glare: using dual-energy CT to overcome the problem of metal artefacts in bone radiology. Skeletal Radiol. 2014;43:567–75.CrossRefPubMed Coupal TM, Mallinson PI, McLaughlin P, Nicolaou S, Munk PL, Ouellette H. Peering through the glare: using dual-energy CT to overcome the problem of metal artefacts in bone radiology. Skeletal Radiol. 2014;43:567–75.CrossRefPubMed
18.
go back to reference Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21:1424–9.CrossRefPubMed Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21:1424–9.CrossRefPubMed
19.
go back to reference Zhou C, Zhao YE, Luo S, et al. Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol. 2011;18:1252–7.CrossRefPubMed Zhou C, Zhao YE, Luo S, et al. Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol. 2011;18:1252–7.CrossRefPubMed
20.
go back to reference Meinel FG, Bischoff B, Zhang Q, Bamberg F, Reiser MF, Johnson TR. Metal artifact reduction by dual energy computed tomography using energetic extrapolation: a systematically optimized protocol. Investig Radiol. 2012;47:406–14.CrossRef Meinel FG, Bischoff B, Zhang Q, Bamberg F, Reiser MF, Johnson TR. Metal artifact reduction by dual energy computed tomography using energetic extrapolation: a systematically optimized protocol. Investig Radiol. 2012;47:406–14.CrossRef
21.
go back to reference Guggenberger R, Winklhofer S, Osterhoff G, et al. Metallic artifact reduction with mono-energetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol. 2012;22:2357–64.CrossRefPubMed Guggenberger R, Winklhofer S, Osterhoff G, et al. Metallic artifact reduction with mono-energetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol. 2012;22:2357–64.CrossRefPubMed
22.
go back to reference Filograna L, Magarelli N, Leone A, et al. Value of monoenergetic dual-energy CT (DECT) for artefact reduction from metallic orthopedic implants in post-mortem studies. Skeletal Radiol. 2015;44:1287–1294.CrossRefPubMed Filograna L, Magarelli N, Leone A, et al. Value of monoenergetic dual-energy CT (DECT) for artefact reduction from metallic orthopedic implants in post-mortem studies. Skeletal Radiol. 2015;44:1287–1294.CrossRefPubMed
23.
go back to reference Chen JH, Jin EH, He W, Zhao LQ. Combining automatic tube current modulation with adaptive statistical iterative reconstruction for low-dose chest CT screening. PLoS One. 2014;9:e92414.CrossRefPubMedPubMedCentral Chen JH, Jin EH, He W, Zhao LQ. Combining automatic tube current modulation with adaptive statistical iterative reconstruction for low-dose chest CT screening. PLoS One. 2014;9:e92414.CrossRefPubMedPubMedCentral
24.
go back to reference Shin HJ, Chung YE, Lee YH, et al. Radiation dose reduction via sinogram affirmed iterative reconstruction and automatic tube voltage modulation (CARE kV) in abdominal CT. Korean J Radiol. 2013;14:886–93.CrossRefPubMedPubMedCentral Shin HJ, Chung YE, Lee YH, et al. Radiation dose reduction via sinogram affirmed iterative reconstruction and automatic tube voltage modulation (CARE kV) in abdominal CT. Korean J Radiol. 2013;14:886–93.CrossRefPubMedPubMedCentral
25.
go back to reference Pickhardt PJ, Lubner MG, Kim DH, et al. Abdominal CT with model-based iterative reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging. AJR Am J Roentgenol. 2012;199:1266–74.CrossRefPubMedPubMedCentral Pickhardt PJ, Lubner MG, Kim DH, et al. Abdominal CT with model-based iterative reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging. AJR Am J Roentgenol. 2012;199:1266–74.CrossRefPubMedPubMedCentral
26.
27.
go back to reference Kalra MK, Maher MM, Toth TL, et al. Strategies for CT radiation dose optimization. Radiology. 2004;230:619–28.CrossRefPubMed Kalra MK, Maher MM, Toth TL, et al. Strategies for CT radiation dose optimization. Radiology. 2004;230:619–28.CrossRefPubMed
28.
go back to reference Thomas C, Patschan O, Ketelsen D, et al. Dual-energy CT for the characterization of urinary calculi: in vitro and in vivo evaluation of a low-dose scanning protocol. Eur Radiol. 2009;19:1553–9.CrossRefPubMed Thomas C, Patschan O, Ketelsen D, et al. Dual-energy CT for the characterization of urinary calculi: in vitro and in vivo evaluation of a low-dose scanning protocol. Eur Radiol. 2009;19:1553–9.CrossRefPubMed
29.
go back to reference Thomas C, Heuschmid M, Schilling D, et al. Urinary calculi composed of uric acid, cystine, and mineral salts: differentiation with dual-energy CT at a radiation dose comparable to that of intravenous pyelography. Radiology. 2010;257:402–9.CrossRefPubMed Thomas C, Heuschmid M, Schilling D, et al. Urinary calculi composed of uric acid, cystine, and mineral salts: differentiation with dual-energy CT at a radiation dose comparable to that of intravenous pyelography. Radiology. 2010;257:402–9.CrossRefPubMed
30.
go back to reference Pache G, Bulla S, Baumann T, et al. Dose reduction does not affect detection of bone marrow lesions with dual-energy CT virtual noncalcium technique. Acad Radiol. 2012;19:1539–45.CrossRefPubMed Pache G, Bulla S, Baumann T, et al. Dose reduction does not affect detection of bone marrow lesions with dual-energy CT virtual noncalcium technique. Acad Radiol. 2012;19:1539–45.CrossRefPubMed
Metadata
Title
Performances of low-dose dual-energy CT in reducing artifacts from implanted metallic orthopedic devices
Authors
Laura Filograna
Nicola Magarelli
Antonio Leone
Chiara de Waure
Giovanna Elisa Calabrò
Tim Finkenstaedt
Michael John Thali
Lorenzo Bonomo
Publication date
01-07-2016
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 7/2016
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-016-2377-8

Other articles of this Issue 7/2016

Skeletal Radiology 7/2016 Go to the issue

Browser's Notes

Browser’s notes