Skip to main content
Top
Published in: Annals of Intensive Care 1/2018

Open Access 01-12-2018 | Research

Performance of closed-loop resuscitation of haemorrhagic shock with fluid alone or in combination with norepinephrine: an experimental study

Authors: Nicolas Libert, Guillaume Chenegros, Anatole Harrois, Nathalie Baudry, Gilles Cordurie, Ryad Benosman, Eric Vicaut, Jacques Duranteau

Published in: Annals of Intensive Care | Issue 1/2018

Login to get access

Abstract

Background

Closed-loop resuscitation can improve personalization of care, decrease workload and bring expert knowledge in isolated areas. We have developed a new device to control the administration of fluid or simultaneous co-administration of fluid and norepinephrine using arterial pressure.

Method

We evaluated the performance of our prototype in a rodent model of haemorrhagic shock. After haemorrhagic shock, rats were randomized to five experimental groups: three were resuscitated with fluid and two with co-administration of fluid and norepinephrine. Among groups resuscitated with fluid, one was resuscitated by a physician and two were resuscitated according to two different closed-loop algorithms. Among groups resuscitated with fluid and norepinephrine, one was resuscitated by a physician and the other one by the closed-loop device. The precision of arterial pressure during the resuscitation period was assessed using rising time, time passed in the target area and performance error calculations.

Results

Groups resuscitated with fluid had similar performances and passed as much time in the target area of 80–90 mmHg as the manual group [manual: 76.8% (67.9–78.2), closed-loop: 64.6% (45.7–72.9) and 80.9% (59.1–85.3)]. Rats resuscitated with fluid and norepinephrine using closed-loop passed similar time in target area than manual group [closed-loop: 74.4% (58.4–84.5) vs. manual: 60.1% (46.1–72.4)] but had shorter rising time to reach target area [160 s (106–187) vs. 434 s (254–1081)] than those resuscitated by a physician. Rats resuscitated with co-administration of fluid and norepinephrine required less fluid and had less hemodilution than rats resuscitated with fluid alone. Lactate decrease was similar between groups resuscitated with fluid alone and fluid with norepinephrine.

Conclusions

This study assessed extensively the performances of several algorithms for closed-loop resuscitation of haemorrhagic shock with fluid alone and with co-administration of fluid and norepinephrine. The performance of the closed-loop algorithms tested was similar to physician-guided treatment with considerable saving of work for the caregiver. Arterial pressure closed-loop guided algorithms can be extended to combined administration of fluid and norepinephrine.
Appendix
Available only for authorised users
Literature
1.
go back to reference Maegele M, Lefering R, Yucel N, Tjardes T, Rixen D, Paffrath T, et al. Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury. 2007;38(3):298–304.CrossRef Maegele M, Lefering R, Yucel N, Tjardes T, Rixen D, Paffrath T, et al. Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury. 2007;38(3):298–304.CrossRef
2.
go back to reference Sondeen JL, Coppes VG, Holcomb JB. Blood pressure at which rebleeding occurs after resuscitation in swine with aortic injury. J Trauma. 2003;54(5 Suppl):S110–7.PubMed Sondeen JL, Coppes VG, Holcomb JB. Blood pressure at which rebleeding occurs after resuscitation in swine with aortic injury. J Trauma. 2003;54(5 Suppl):S110–7.PubMed
3.
go back to reference Burgert JM, Gegel BT, Austin R 3rd, Davila A, Deeds J, Hodges L, et al. Effects of arterial blood pressure on rebleeding using Celox and TraumaDEX in a porcine model of lethal femoral injury. AANA J. 2010;78(3):230–6.PubMed Burgert JM, Gegel BT, Austin R 3rd, Davila A, Deeds J, Hodges L, et al. Effects of arterial blood pressure on rebleeding using Celox and TraumaDEX in a porcine model of lethal femoral injury. AANA J. 2010;78(3):230–6.PubMed
4.
go back to reference Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care. 2016;20:100.CrossRef Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care. 2016;20:100.CrossRef
5.
go back to reference Kramer GC, Kinsky MP, Prough DS, Salinas J, Sondeen JL, Hazel-Scerbo ML, et al. Closed-loop control of fluid therapy for treatment of hypovolemia. J Trauma. 2008;64(4 Suppl):S333–41.CrossRef Kramer GC, Kinsky MP, Prough DS, Salinas J, Sondeen JL, Hazel-Scerbo ML, et al. Closed-loop control of fluid therapy for treatment of hypovolemia. J Trauma. 2008;64(4 Suppl):S333–41.CrossRef
6.
go back to reference Salinas J, Chung KK, Mann EA, Cancio LC, Kramer GC, Serio-Melvin ML, et al. Computerized decision support system improves fluid resuscitation following severe burns: an original study. Crit Care Med. 2011;39(9):2031–8.CrossRef Salinas J, Chung KK, Mann EA, Cancio LC, Kramer GC, Serio-Melvin ML, et al. Computerized decision support system improves fluid resuscitation following severe burns: an original study. Crit Care Med. 2011;39(9):2031–8.CrossRef
7.
go back to reference Ying H, Bonnerup C, Kirschner R, Deyo D, Michell M, Kramer G, editors. Closed-loop fuzzy control of resuscitation of hemorrhagic shock in sheep. In: Engineering in Medicine and Biology, 2002 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002 Proceedings of the Second Joint; 2002: IEEE. Ying H, Bonnerup C, Kirschner R, Deyo D, Michell M, Kramer G, editors. Closed-loop fuzzy control of resuscitation of hemorrhagic shock in sheep. In: Engineering in Medicine and Biology, 2002 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002 Proceedings of the Second Joint; 2002: IEEE.
8.
go back to reference Chaisson NF, Kirschner RA, Deyo DJ, Lopez JA, Prough DS, Kramer GC. Near-infrared spectroscopy-guided closed-loop resuscitation of hemorrhage. J Trauma. 2003;54(5 Suppl):S183–92.PubMed Chaisson NF, Kirschner RA, Deyo DJ, Lopez JA, Prough DS, Kramer GC. Near-infrared spectroscopy-guided closed-loop resuscitation of hemorrhage. J Trauma. 2003;54(5 Suppl):S183–92.PubMed
9.
go back to reference Rafie AD, Rath PA, Michell MW, Kirschner RA, Deyo DJ, Prough DS, et al. Hypotensive resuscitation of multiple hemorrhages using crystalloid and colloids. Shock. 2004;22(3):262–9.CrossRef Rafie AD, Rath PA, Michell MW, Kirschner RA, Deyo DJ, Prough DS, et al. Hypotensive resuscitation of multiple hemorrhages using crystalloid and colloids. Shock. 2004;22(3):262–9.CrossRef
10.
go back to reference do Nascimento P Jr, Vaid SU, Hoskins SL, Espana JM, Kinsky MP, Kramer GC. Hypertonic 15% sodium pyruvate offers no initial resuscitation advantage compared with 8% hypertonic NACl in sheep with multiple hemorrhages. Shock. 2007;27(5):565–71.CrossRef do Nascimento P Jr, Vaid SU, Hoskins SL, Espana JM, Kinsky MP, Kramer GC. Hypertonic 15% sodium pyruvate offers no initial resuscitation advantage compared with 8% hypertonic NACl in sheep with multiple hemorrhages. Shock. 2007;27(5):565–71.CrossRef
11.
go back to reference Li T, Zhu Y, Fang Y, Liu L. Determination of the optimal mean arterial pressure for postbleeding resuscitation after hemorrhagic shock in rats. Anesthesiology. 2012;116(1):103–12.CrossRef Li T, Zhu Y, Fang Y, Liu L. Determination of the optimal mean arterial pressure for postbleeding resuscitation after hemorrhagic shock in rats. Anesthesiology. 2012;116(1):103–12.CrossRef
12.
go back to reference Wiggers CJ. The present status of the shock problem. Physiol Rev. 1942;22:74–123.CrossRef Wiggers CJ. The present status of the shock problem. Physiol Rev. 1942;22:74–123.CrossRef
13.
go back to reference Varvel JR, Donoho DL, Shafer SL. Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm. 1992;20(1):63–94.CrossRef Varvel JR, Donoho DL, Shafer SL. Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm. 1992;20(1):63–94.CrossRef
14.
go back to reference Liu N, Chazot T, Genty A, Landais A, Restoux A, McGee K, et al. Titration of propofol for anesthetic induction and maintenance guided by the bispectral index: closed-loop versus manual control: a prospective, randomized, multicenter study. Anesthesiology. 2006;104(4):686–95.CrossRef Liu N, Chazot T, Genty A, Landais A, Restoux A, McGee K, et al. Titration of propofol for anesthetic induction and maintenance guided by the bispectral index: closed-loop versus manual control: a prospective, randomized, multicenter study. Anesthesiology. 2006;104(4):686–95.CrossRef
15.
go back to reference Noguchi KGYR, Brunner E, Konietschke F. nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments. J Stat Softw. 2012;50(12):1–23.CrossRef Noguchi KGYR, Brunner E, Konietschke F. nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments. J Stat Softw. 2012;50(12):1–23.CrossRef
16.
go back to reference Vaid SU, Shah A, Michell MW, Rafie AD, Deyo DJ, Prough DS, et al. Normotensive and hypotensive closed-loop resuscitation using 3.0% NaCl to treat multiple hemorrhages in sheep. Crit Care Med. 2006;34(4):1185–92.CrossRef Vaid SU, Shah A, Michell MW, Rafie AD, Deyo DJ, Prough DS, et al. Normotensive and hypotensive closed-loop resuscitation using 3.0% NaCl to treat multiple hemorrhages in sheep. Crit Care Med. 2006;34(4):1185–92.CrossRef
17.
go back to reference Rinehart J, Lee C, Canales C, Kong A, Kain Z, Cannesson M. Closed-loop fluid administration compared to anesthesiologist management for hemodynamic optimization and resuscitation during surgery: an in vivo study. Anesth Analg. 2013;117(5):1119–29.CrossRef Rinehart J, Lee C, Canales C, Kong A, Kain Z, Cannesson M. Closed-loop fluid administration compared to anesthesiologist management for hemodynamic optimization and resuscitation during surgery: an in vivo study. Anesth Analg. 2013;117(5):1119–29.CrossRef
18.
go back to reference Marques NR, Ford BJ, Khan MN, Kinsky M, Deyo DJ, Mileski WJ, et al. Automated closed-loop resuscitation of multiple hemorrhages: a comparison between fuzzy logic and decision table controllers in a sheep model. Disaster Mil Med. 2017;3:1.CrossRef Marques NR, Ford BJ, Khan MN, Kinsky M, Deyo DJ, Mileski WJ, et al. Automated closed-loop resuscitation of multiple hemorrhages: a comparison between fuzzy logic and decision table controllers in a sheep model. Disaster Mil Med. 2017;3:1.CrossRef
19.
go back to reference Hundeshagen G, Kramer GC, Ribeiro Marques N, Salter MG, Koutrouvelis AK, Li H, et al. Closed-loop- and decision-assist-guided fluid therapy of human hemorrhage. Crit Care Med. 2017;45(10):e1068–74.CrossRef Hundeshagen G, Kramer GC, Ribeiro Marques N, Salter MG, Koutrouvelis AK, Li H, et al. Closed-loop- and decision-assist-guided fluid therapy of human hemorrhage. Crit Care Med. 2017;45(10):e1068–74.CrossRef
20.
go back to reference Sperry JL, Minei JP, Frankel HL, West MA, Harbrecht BG, Moore EE, et al. Early use of vasopressors after injury: caution before constriction. J Trauma. 2008;64(1):9–14.CrossRef Sperry JL, Minei JP, Frankel HL, West MA, Harbrecht BG, Moore EE, et al. Early use of vasopressors after injury: caution before constriction. J Trauma. 2008;64(1):9–14.CrossRef
21.
go back to reference Harrois A, Baudry N, Huet O, Kato H, Dupic L, Lohez M, et al. Norepinephrine decreases fluid requirements and blood loss while preserving intestinal villi microcirculation during fluid resuscitation of uncontrolled hemorrhagic shock in mice. Anesthesiology. 2015;122(5):1093–102.CrossRef Harrois A, Baudry N, Huet O, Kato H, Dupic L, Lohez M, et al. Norepinephrine decreases fluid requirements and blood loss while preserving intestinal villi microcirculation during fluid resuscitation of uncontrolled hemorrhagic shock in mice. Anesthesiology. 2015;122(5):1093–102.CrossRef
22.
go back to reference Sng BL, Tan HS, Sia AT. Closed-loop double-vasopressor automated system vs manual bolus vasopressor to treat hypotension during spinal anaesthesia for caesarean section: a randomised controlled trial. Anaesthesia. 2014;69(1):37–45.CrossRef Sng BL, Tan HS, Sia AT. Closed-loop double-vasopressor automated system vs manual bolus vasopressor to treat hypotension during spinal anaesthesia for caesarean section: a randomised controlled trial. Anaesthesia. 2014;69(1):37–45.CrossRef
23.
go back to reference Ngan Kee WD, Khaw KS, Tam YH, Ng FF, Lee SW. Performance of a closed-loop feedback computer-controlled infusion system for maintaining blood pressure during spinal anaesthesia for caesarean section: a randomized controlled comparison of norepinephrine versus phenylephrine. J Clin Monit Comput. 2017;31(3):617–23.CrossRef Ngan Kee WD, Khaw KS, Tam YH, Ng FF, Lee SW. Performance of a closed-loop feedback computer-controlled infusion system for maintaining blood pressure during spinal anaesthesia for caesarean section: a randomized controlled comparison of norepinephrine versus phenylephrine. J Clin Monit Comput. 2017;31(3):617–23.CrossRef
24.
go back to reference Ngan Kee WD, Tam YH, Khaw KS, Ng FF, Critchley LA, Karmakar MK. Closed-loop feedback computer-controlled infusion of phenylephrine for maintaining blood pressure during spinal anaesthesia for caesarean section: a preliminary descriptive study. Anaesthesia. 2007;62(12):1251–6.CrossRef Ngan Kee WD, Tam YH, Khaw KS, Ng FF, Critchley LA, Karmakar MK. Closed-loop feedback computer-controlled infusion of phenylephrine for maintaining blood pressure during spinal anaesthesia for caesarean section: a preliminary descriptive study. Anaesthesia. 2007;62(12):1251–6.CrossRef
25.
go back to reference Kashihara K, Kawada T, Uemura K, Sugimachi M, Sunagawa K. Adaptive predictive control of arterial blood pressure based on a neural network during acute hypotension. Ann Biomed Eng. 2004;32(10):1365–83.CrossRef Kashihara K, Kawada T, Uemura K, Sugimachi M, Sunagawa K. Adaptive predictive control of arterial blood pressure based on a neural network during acute hypotension. Ann Biomed Eng. 2004;32(10):1365–83.CrossRef
26.
go back to reference Uemura K, Kawada T, Zheng C, Li M, Sugimachi M. Computer-controlled closed-loop drug infusion system for automated hemodynamic resuscitation in endotoxin-induced shock. BMC Anesthesiol. 2017;17(1):145.CrossRef Uemura K, Kawada T, Zheng C, Li M, Sugimachi M. Computer-controlled closed-loop drug infusion system for automated hemodynamic resuscitation in endotoxin-induced shock. BMC Anesthesiol. 2017;17(1):145.CrossRef
Metadata
Title
Performance of closed-loop resuscitation of haemorrhagic shock with fluid alone or in combination with norepinephrine: an experimental study
Authors
Nicolas Libert
Guillaume Chenegros
Anatole Harrois
Nathalie Baudry
Gilles Cordurie
Ryad Benosman
Eric Vicaut
Jacques Duranteau
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2018
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-018-0436-0

Other articles of this Issue 1/2018

Annals of Intensive Care 1/2018 Go to the issue