Skip to main content
Top
Published in: Radiological Physics and Technology 2/2020

01-06-2020

Performance of a linear accelerator couch positioning quality control task using an electronic portal imaging device

Authors: A. Afzalifar, A. A. Mowlavi, M. Mohammadi

Published in: Radiological Physics and Technology | Issue 2/2020

Login to get access

Abstract

Short and semi-automated quality assurance (QA) programs are becoming one of the most popular and highly demanding tasks in radiotherapy. The current research investigates the accuracy of a four degrees of freedom (4DoF) medical linear accelerator couch positioning with a fast and accurate method based on images acquired using an electronic portal imaging device (EPID). An accurate EPID QA phantom and a proper in-house code were used. A Siemens medical linear accelerator equipped with an a-Si EPID was used to acquire portal images. For verifying the mechanical performance of the EPID positioning, EPID sensitivity, and accuracy of the code response from the image processing point of view were investigated. To characterize the results, three deviations in the phantom positioning were deliberately created. The translational and rotational displacements of the treatment couch were then evaluated. The loading effect on the treatment couch was then investigated. The results of prerequisite tests, including the mechanical performance of the EPID, and the sensitivity and accuracy of the recognition codes, were assessed. The results were found to be within the tolerance range reported at AAPM TG-142. The mean deviations of the tests between expected and measured displacements by 4DoF treatment couch were found to be 0.13° ± 0.11°, 0.12 ± 0.17 mm, 0.17 ± 0.13 mm, and 0.04 ± 0.09 mm for rotational, longitudinal, lateral, and vertical shifts, respectively. The results showed that the proposed method is a reliable and fast approach to find the uncertainties occurring intreatment couch positioning.
Literature
1.
go back to reference Verellen D, De Ridder M, Linthout N, Tournel K, Soete G, Storme G. Innovations in image-guided radiotherapy. Nat Rev Cancer. 2007;7:949.CrossRef Verellen D, De Ridder M, Linthout N, Tournel K, Soete G, Storme G. Innovations in image-guided radiotherapy. Nat Rev Cancer. 2007;7:949.CrossRef
2.
go back to reference Schwarz M, Giske K, Stoll A, Nill S, Huber PE, Debus J, et al. IGRT versus non-IGRT for postoperative head-and-neck IMRT patients: dosimetric consequences arising from a PTV margin reduction. Radiat Oncol. 2012;7:133.CrossRef Schwarz M, Giske K, Stoll A, Nill S, Huber PE, Debus J, et al. IGRT versus non-IGRT for postoperative head-and-neck IMRT patients: dosimetric consequences arising from a PTV margin reduction. Radiat Oncol. 2012;7:133.CrossRef
3.
go back to reference Sandler HM, Liu P-Y, Dunn RL, Khan DC, Tropper SE, Sanda MG, et al. Reduction in patient-reported acute morbidity in prostate cancer patients treated with 81-Gy Intensity-modulated radiotherapy using reduced planning target volume margins and electromagnetic tracking: assessing the impact of margin reduction study. Urology. 2010;75:1004–8.CrossRef Sandler HM, Liu P-Y, Dunn RL, Khan DC, Tropper SE, Sanda MG, et al. Reduction in patient-reported acute morbidity in prostate cancer patients treated with 81-Gy Intensity-modulated radiotherapy using reduced planning target volume margins and electromagnetic tracking: assessing the impact of margin reduction study. Urology. 2010;75:1004–8.CrossRef
4.
go back to reference Molinelli S, de Pooter J, Romero AM, Wunderink W, Cattaneo M, Calandrino R, et al. Simultaneous tumour dose escalation and liver sparing in stereotactic body radiation therapy (SBRT) for liver tumours due to CTV-to-PTV margin reduction. Radiother Oncol. 2008;87:432–8.CrossRef Molinelli S, de Pooter J, Romero AM, Wunderink W, Cattaneo M, Calandrino R, et al. Simultaneous tumour dose escalation and liver sparing in stereotactic body radiation therapy (SBRT) for liver tumours due to CTV-to-PTV margin reduction. Radiother Oncol. 2008;87:432–8.CrossRef
5.
go back to reference Hyer DE, Mart CJ, Nixon E. Development and implementation of an EPID-based method for localizing isocenter. J Appl Clin Med Phys. 2012;13:72–81.CrossRef Hyer DE, Mart CJ, Nixon E. Development and implementation of an EPID-based method for localizing isocenter. J Appl Clin Med Phys. 2012;13:72–81.CrossRef
6.
go back to reference Hammoud R, Patel SH, Pradhan D, Kim J, Guan H, Li S, et al. Examining margin reduction and its impact on dose distribution for prostate cancer patients undergoing daily cone-beam computed tomography. Int J Radiat Oncol Biol Phys. 2008;71:265–73.CrossRef Hammoud R, Patel SH, Pradhan D, Kim J, Guan H, Li S, et al. Examining margin reduction and its impact on dose distribution for prostate cancer patients undergoing daily cone-beam computed tomography. Int J Radiat Oncol Biol Phys. 2008;71:265–73.CrossRef
7.
go back to reference Klein EE, Hanley J, Bayouth J, Yin FF, Simon W, Dresser S, et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009;36:4197–212.CrossRef Klein EE, Hanley J, Bayouth J, Yin FF, Simon W, Dresser S, et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009;36:4197–212.CrossRef
8.
go back to reference Kutcher GJ, Coia L, Gillin M, Hanson WF, Leibel S, Morton RJ, et al. Comprehensive QA for radiation oncology: report of AAPM radiation therapy committee task group 40. Med Phys. 1994;21:581–618.CrossRef Kutcher GJ, Coia L, Gillin M, Hanson WF, Leibel S, Morton RJ, et al. Comprehensive QA for radiation oncology: report of AAPM radiation therapy committee task group 40. Med Phys. 1994;21:581–618.CrossRef
9.
go back to reference Ébastien Clippe S, Sarrut D, Malet C, Miguet S, Ginestet C, Carrie C. Patient setup error measurement using 3D intensity-based image registration techniques. Int J Radiat Oncol Biol Phys. 2003;56:259–65.CrossRef Ébastien Clippe S, Sarrut D, Malet C, Miguet S, Ginestet C, Carrie C. Patient setup error measurement using 3D intensity-based image registration techniques. Int J Radiat Oncol Biol Phys. 2003;56:259–65.CrossRef
10.
go back to reference Wilbert J, Guckenberger M, Polat B, Sauer O, Vogele M, Flentje M, et al. Semi-robotic 6 degree of freedom positioning for intracranial high precision radiotherapy; first phantom and clinical results. Radiat Oncol. 2010;5:42.CrossRef Wilbert J, Guckenberger M, Polat B, Sauer O, Vogele M, Flentje M, et al. Semi-robotic 6 degree of freedom positioning for intracranial high precision radiotherapy; first phantom and clinical results. Radiat Oncol. 2010;5:42.CrossRef
11.
go back to reference Takemura A, Ueda S, Noto K, Kojima H, Isomura N. Comparison of the motion accuracy of a six degrees of freedom radiotherapy couch with and without weights. Int J Med Phys Clin Eng Radiat Oncol. 2013;2:69.CrossRef Takemura A, Ueda S, Noto K, Kojima H, Isomura N. Comparison of the motion accuracy of a six degrees of freedom radiotherapy couch with and without weights. Int J Med Phys Clin Eng Radiat Oncol. 2013;2:69.CrossRef
12.
go back to reference Schmidhalter D, Fix M, Wyss M, Schaer N, Munro P, Scheib S, et al. Evaluation of a new six degrees of freedom couch for radiation therapy. Med Phys. 2013;40:111710.CrossRef Schmidhalter D, Fix M, Wyss M, Schaer N, Munro P, Scheib S, et al. Evaluation of a new six degrees of freedom couch for radiation therapy. Med Phys. 2013;40:111710.CrossRef
13.
go back to reference Dhabaan A, Schreibmann E, Siddiqi A, Elder E, Fox T, Ogunleye T, et al. Six degrees of freedom CBCT-based positioning for intracranial targets treated with frameless stereotactic radiosurgery. J Appl Clin Med Phys. 2012;13:215–25.CrossRef Dhabaan A, Schreibmann E, Siddiqi A, Elder E, Fox T, Ogunleye T, et al. Six degrees of freedom CBCT-based positioning for intracranial targets treated with frameless stereotactic radiosurgery. J Appl Clin Med Phys. 2012;13:215–25.CrossRef
14.
go back to reference Rowshanfarzad P, Sabet M, O'Connor DJ, McCowan PM, McCurdy B, Greer PB. Detection and correction for EPID and gantry sag during arc delivery using cine EPID imaging. Med Phys. 2012;39:623–35.CrossRef Rowshanfarzad P, Sabet M, O'Connor DJ, McCowan PM, McCurdy B, Greer PB. Detection and correction for EPID and gantry sag during arc delivery using cine EPID imaging. Med Phys. 2012;39:623–35.CrossRef
15.
go back to reference Yousif Y, Van Rensburg A. Performance evaluation of the siemens electronic portal imaging device for IMRT plan verification. Int J Med Phys Clin Eng Radiat Oncol. 2015;4:215.CrossRef Yousif Y, Van Rensburg A. Performance evaluation of the siemens electronic portal imaging device for IMRT plan verification. Int J Med Phys Clin Eng Radiat Oncol. 2015;4:215.CrossRef
16.
go back to reference Murthy KK, Al-Rahbi Z, Sivakumar S, Davis C, Ravichandran R, El Ghamrawy K. Verification of setup errors in external beam radiation therapy using electronic portal imaging. J Med Phys/Assoc Med Physicists India. 2008;33:49. Murthy KK, Al-Rahbi Z, Sivakumar S, Davis C, Ravichandran R, El Ghamrawy K. Verification of setup errors in external beam radiation therapy using electronic portal imaging. J Med Phys/Assoc Med Physicists India. 2008;33:49.
17.
go back to reference Das IJ, Cao M, Cheng CW, Misic V, Scheuring K, Schüle E, et al. A quality assurance phantom for electronic portal imaging devices. J Appl Clin Med Phys. 2011;12:391–403.CrossRef Das IJ, Cao M, Cheng CW, Misic V, Scheuring K, Schüle E, et al. A quality assurance phantom for electronic portal imaging devices. J Appl Clin Med Phys. 2011;12:391–403.CrossRef
18.
go back to reference Pesznyák C, Polgár I, Weisz C, Király R, Zaránd P. Verification of quality parameters for portal images in radiotherapy. Radiol Oncol. 2011;45:68–74.CrossRef Pesznyák C, Polgár I, Weisz C, Király R, Zaránd P. Verification of quality parameters for portal images in radiotherapy. Radiol Oncol. 2011;45:68–74.CrossRef
19.
go back to reference Misiarz A, Krawczyk P, Swat K, Andrasiak M. Assessment of the influence of a carbon fiber tabletop on portal imaging. Nucl Instrum Methods Phys Res Sect A. 2013;714:53–7.CrossRef Misiarz A, Krawczyk P, Swat K, Andrasiak M. Assessment of the influence of a carbon fiber tabletop on portal imaging. Nucl Instrum Methods Phys Res Sect A. 2013;714:53–7.CrossRef
20.
go back to reference Pesznyák C, Fekete G, Mózes Á, Kiss B, Király R, Polgár I, et al. Quality control of portal imaging with PTW EPID QC phantom®. Strahlenther Onkol. 2009;185:56–60.CrossRef Pesznyák C, Fekete G, Mózes Á, Kiss B, Király R, Polgár I, et al. Quality control of portal imaging with PTW EPID QC phantom®. Strahlenther Onkol. 2009;185:56–60.CrossRef
Metadata
Title
Performance of a linear accelerator couch positioning quality control task using an electronic portal imaging device
Authors
A. Afzalifar
A. A. Mowlavi
M. Mohammadi
Publication date
01-06-2020
Publisher
Springer Singapore
Published in
Radiological Physics and Technology / Issue 2/2020
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-020-00557-4

Other articles of this Issue 2/2020

Radiological Physics and Technology 2/2020 Go to the issue