Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2009

Open Access 01-12-2009 | Research

Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study

Authors: Lorenzo Masia, Maura Casadio, Psiche Giannoni, Giulio Sandini, Pietro Morasso

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2009

Login to get access

Abstract

Background

In the last two decades robot training in neuromotor rehabilitation was mainly focused on shoulder-elbow movements. Few devices were designed and clinically tested for training coordinated movements of the wrist, which are crucial for achieving even the basic level of motor competence that is necessary for carrying out ADLs (activities of daily life). Moreover, most systems of robot therapy use point-to-point reaching movements which tend to emphasize the pathological tendency of stroke patients to break down goal-directed movements into a number of jerky sub-movements. For this reason we designed a wrist robot with a range of motion comparable to that of normal subjects and implemented a self-adapting training protocol for tracking smoothly moving targets in order to facilitate the emergence of smoothness in the motor control patterns and maximize the recovery of the normal RoM (range of motion) of the different DoFs (degrees of Freedom).

Methods

The IIT-wrist robot is a 3 DoFs light exoskeleton device, with direct-drive of each DoF and a human-like range of motion for Flexion/Extension (FE), Abduction/Adduction (AA) and Pronation/Supination (PS). Subjects were asked to track a variable-frequency oscillating target using only one wrist DoF at time, in such a way to carry out a progressive splinting therapy. The RoM of each DoF was angularly scanned in a staircase-like fashion, from the "easier" to the "more difficult" angular position. An Adaptive Controller evaluated online performance parameters and modulated both the assistance and the difficulty of the task in order to facilitate smoother and more precise motor command patterns.

Results

Three stroke subjects volunteered to participate in a preliminary test session aimed at verify the acceptability of the device and the feasibility of the designed protocol. All of them were able to perform the required task. The wrist active RoM of motion was evaluated for each patient at the beginning and at the end of the test therapy session and the results suggest a positive trend.

Conclusion

The positive outcomes of the preliminary tests motivate the planning of a clinical trial and provide experimental evidence for defining appropriate inclusion/exclusion criteria.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gupta A, O'Malley MK, Patoglu V, Burgar C: Design, Control and Performance of RiceWist: A Force Feedback Exoskeleton for Wrist Rehabilitation and Training. The Intl J of Robotics Res 2008,27(1):233-251. 10.1177/0278364907084261CrossRef Gupta A, O'Malley MK, Patoglu V, Burgar C: Design, Control and Performance of RiceWist: A Force Feedback Exoskeleton for Wrist Rehabilitation and Training. The Intl J of Robotics Res 2008,27(1):233-251. 10.1177/0278364907084261CrossRef
2.
go back to reference Shor PC, Lum PS, Burgar CG, Loos HFM, Majmundar M, Yap R: The Effect of Robotic-Aided Therapy on Upper Extremity Joint Passive Range of Motion Pain", Proc of Intl Conf on Rehab Robotics, Integration of Assisted Technol in the Information Age. Edited by: Mounir Mokhtari. IOS Press; 2001:79-83. Shor PC, Lum PS, Burgar CG, Loos HFM, Majmundar M, Yap R: The Effect of Robotic-Aided Therapy on Upper Extremity Joint Passive Range of Motion Pain", Proc of Intl Conf on Rehab Robotics, Integration of Assisted Technol in the Information Age. Edited by: Mounir Mokhtari. IOS Press; 2001:79-83.
3.
go back to reference Krebs HI, Volpe BT, Williams D, Celestino J, Charles SK, Lynch D, Hogan N: Robot-Aided Rehabilitation: A Robot for Wrist Rehabilitation. IEEE Trans on Neural Systems and Rehab Engineering 2007, 5: 327-335. 10.1109/TNSRE.2007.903899CrossRef Krebs HI, Volpe BT, Williams D, Celestino J, Charles SK, Lynch D, Hogan N: Robot-Aided Rehabilitation: A Robot for Wrist Rehabilitation. IEEE Trans on Neural Systems and Rehab Engineering 2007, 5: 327-335. 10.1109/TNSRE.2007.903899CrossRef
4.
go back to reference Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC: Robot-Based Hand Motor Therapy After Stokes. Brain 2008, 131: 425-437. 10.1093/brain/awm311CrossRefPubMed Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC: Robot-Based Hand Motor Therapy After Stokes. Brain 2008, 131: 425-437. 10.1093/brain/awm311CrossRefPubMed
5.
go back to reference Takaiwa M, Noritsugu T: Development of Wrist Rehabilitation Equipment Using Pneumatic Parallel Manipulator. Proceeding of the 2005 IEEE International Conference of Robotics and Automation, Barcelona 2005, 2302-2307. full_textCrossRef Takaiwa M, Noritsugu T: Development of Wrist Rehabilitation Equipment Using Pneumatic Parallel Manipulator. Proceeding of the 2005 IEEE International Conference of Robotics and Automation, Barcelona 2005, 2302-2307. full_textCrossRef
6.
go back to reference Lambercy O, Dovat L, Gassert R, Burdet E, Teo CL, Milner TE: A Haptic Knob for Rehabilitation of Hand Function. IEEE Transactions on Neural Systems and Rehabilitation Engineering (TNSRE) 2007,15(3):356-366. 10.1109/TNSRE.2007.903913CrossRef Lambercy O, Dovat L, Gassert R, Burdet E, Teo CL, Milner TE: A Haptic Knob for Rehabilitation of Hand Function. IEEE Transactions on Neural Systems and Rehabilitation Engineering (TNSRE) 2007,15(3):356-366. 10.1109/TNSRE.2007.903913CrossRef
7.
go back to reference Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C: Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil 2003,84(6):915-20. 10.1016/S0003-9993(02)04954-7CrossRefPubMed Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C: Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil 2003,84(6):915-20. 10.1016/S0003-9993(02)04954-7CrossRefPubMed
8.
go back to reference Loureiro RCV, Collin CF, Harwin WS: Robot Aided Therapy: Challenges Ahead for Upper Limb Stoke Rehabilitation. Proceed of Intl Conf on Disability, Virtual Reality and Assoc Tech 2004, 33-39. Loureiro RCV, Collin CF, Harwin WS: Robot Aided Therapy: Challenges Ahead for Upper Limb Stoke Rehabilitation. Proceed of Intl Conf on Disability, Virtual Reality and Assoc Tech 2004, 33-39.
9.
go back to reference Jack D, Boian R, Merians AS, Tremaine M, Burdea GC, Adamovich S, Recce M, Poizner H: Virtual Reality-Enhanced Stroke Rehabilitation. IEEE Trans on Neural Syst and Rehab Engineer 2001, 9: 308-318. 10.1109/7333.948460CrossRef Jack D, Boian R, Merians AS, Tremaine M, Burdea GC, Adamovich S, Recce M, Poizner H: Virtual Reality-Enhanced Stroke Rehabilitation. IEEE Trans on Neural Syst and Rehab Engineer 2001, 9: 308-318. 10.1109/7333.948460CrossRef
10.
go back to reference Krebs HI, Ferraro M, Buerger SP, Newbery MJ, Makiyama A, Sandmann M, Lynch D, Volpe BT, Hogan N: Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. Journal of NeuroEngineering and Rehabilitation 2004, 1: 5. 10.1186/1743-0003-1-5PubMedCentralCrossRefPubMed Krebs HI, Ferraro M, Buerger SP, Newbery MJ, Makiyama A, Sandmann M, Lynch D, Volpe BT, Hogan N: Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. Journal of NeuroEngineering and Rehabilitation 2004, 1: 5. 10.1186/1743-0003-1-5PubMedCentralCrossRefPubMed
11.
go back to reference Nef T, Mihelj M, Kiefer G, Perndl C, Muller R, Riener R: ARMin - Exoskeleton for Arm Therapy in Stroke Patients. Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics, 13-15 June 2007, Noordwijk, The Netherlands 68-74. Nef T, Mihelj M, Kiefer G, Perndl C, Muller R, Riener R: ARMin - Exoskeleton for Arm Therapy in Stroke Patients. Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics, 13-15 June 2007, Noordwijk, The Netherlands 68-74.
12.
go back to reference Loureiro R, Harwin W: Reach & Grasp therapy: Design and control of a 9 DoF Robotic neuro-rehabilitation system. IEEE 10th Int Conf Rehab Robot., 13-15 June 2007, Noordwijk, The Netherlands 2007, 68-74. Loureiro R, Harwin W: Reach & Grasp therapy: Design and control of a 9 DoF Robotic neuro-rehabilitation system. IEEE 10th Int Conf Rehab Robot., 13-15 June 2007, Noordwijk, The Netherlands 2007, 68-74.
13.
go back to reference Rosati G, Gallina P, Masiero S: Design, Implementation and Clinical Tests of a Wire-Based Robot for Neurorehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2007,15(4):560-569. 10.1109/TNSRE.2007.908560CrossRefPubMed Rosati G, Gallina P, Masiero S: Design, Implementation and Clinical Tests of a Wire-Based Robot for Neurorehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2007,15(4):560-569. 10.1109/TNSRE.2007.908560CrossRefPubMed
14.
go back to reference Timmermans AAA, Seelen HAM, Willmann RD, Kingma H: Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. Journal of NeuroEngineering and Rehabilitation 2009, 6: 1. 10.1186/1743-0003-6-1PubMedCentralCrossRefPubMed Timmermans AAA, Seelen HAM, Willmann RD, Kingma H: Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. Journal of NeuroEngineering and Rehabilitation 2009, 6: 1. 10.1186/1743-0003-6-1PubMedCentralCrossRefPubMed
15.
go back to reference McGrath M, Ulrich S, Bonutti P, Smith J, Seyler T, Mont M: Evaluation of Static Progressive Stretch for the Treatment of Wrist Stiffness. The Journal of Hand Surgery 2008,33(9):1498-1504. 10.1016/j.jhsa.2008.05.018CrossRefPubMed McGrath M, Ulrich S, Bonutti P, Smith J, Seyler T, Mont M: Evaluation of Static Progressive Stretch for the Treatment of Wrist Stiffness. The Journal of Hand Surgery 2008,33(9):1498-1504. 10.1016/j.jhsa.2008.05.018CrossRefPubMed
16.
go back to reference Doornberg JN, Ring D, Jupiter JB: Static progressive splinting for posttraumatic elbow stiffness. J Orthop Trauma 2006, 20: 400-404. 10.1097/00005131-200607000-00006CrossRefPubMed Doornberg JN, Ring D, Jupiter JB: Static progressive splinting for posttraumatic elbow stiffness. J Orthop Trauma 2006, 20: 400-404. 10.1097/00005131-200607000-00006CrossRefPubMed
17.
go back to reference McPherson JJ, Becker AH: Dynamic Splint to Reduce the Passive Component of Hypertonicity. Archives of Physical Medicine and Rehabilitation 1985, 66: 249-252. 10.1016/0003-9993(85)90162-5CrossRefPubMed McPherson JJ, Becker AH: Dynamic Splint to Reduce the Passive Component of Hypertonicity. Archives of Physical Medicine and Rehabilitation 1985, 66: 249-252. 10.1016/0003-9993(85)90162-5CrossRefPubMed
18.
go back to reference Scheker LR, Chesher SP, Netscher DT, Julliard KN, O'neill WL: Functional Results of Dynamic Splinting after Transmetacarpal, Wrist, and Distal Forearm Replantation. Journal of Hand Surgery 1995, 20: 584-590.CrossRef Scheker LR, Chesher SP, Netscher DT, Julliard KN, O'neill WL: Functional Results of Dynamic Splinting after Transmetacarpal, Wrist, and Distal Forearm Replantation. Journal of Hand Surgery 1995, 20: 584-590.CrossRef
19.
go back to reference Coverdale J: Does a Uni-directional Dynamic Splint Affect Bi-directional Wrist ROM? American Society of Hand Therapists Annual Meeting, September 21, 20002 Coverdale J: Does a Uni-directional Dynamic Splint Affect Bi-directional Wrist ROM? American Society of Hand Therapists Annual Meeting, September 21, 20002
20.
go back to reference Masia L, Casadio M, Morasso P, Pozzo T, Sandini G: Using a Wrist Robot for Evaluating how Human Operators learn to perform Pointing Movements to a Rotating Frame of Reference. Proceed IEEE BioRob October 19-22 2008, Scottsdale, AZ, USA 2008. Masia L, Casadio M, Morasso P, Pozzo T, Sandini G: Using a Wrist Robot for Evaluating how Human Operators learn to perform Pointing Movements to a Rotating Frame of Reference. Proceed IEEE BioRob October 19-22 2008, Scottsdale, AZ, USA 2008.
21.
go back to reference Nudo RJ: Mechanisms for recovery of motor function following cortical damage. Current Opinion in Neurobiology 2006, 16: 638-644. 10.1016/j.conb.2006.10.004CrossRefPubMed Nudo RJ: Mechanisms for recovery of motor function following cortical damage. Current Opinion in Neurobiology 2006, 16: 638-644. 10.1016/j.conb.2006.10.004CrossRefPubMed
22.
go back to reference Tna H, Srinivan B, Eberman B, Cheng B: Human factors for the design of a force reflecting haptic interface. Dynamic Syst Control 1994,55(1):353-359. Tna H, Srinivan B, Eberman B, Cheng B: Human factors for the design of a force reflecting haptic interface. Dynamic Syst Control 1994,55(1):353-359.
23.
go back to reference Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE: Optimizing Compliant, Model-Based Robotic Assistance to Promote Neurorehabilitation. IEEE Trans Neural Syst Rehabil Engineer 2008, 16: 286-97. 10.1109/TNSRE.2008.918389CrossRef Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE: Optimizing Compliant, Model-Based Robotic Assistance to Promote Neurorehabilitation. IEEE Trans Neural Syst Rehabil Engineer 2008, 16: 286-97. 10.1109/TNSRE.2008.918389CrossRef
25.
go back to reference Bridger Robert: Introduction to Ergonomics. CRC 3rd edition. 2008. Bridger Robert: Introduction to Ergonomics. CRC 3rd edition. 2008.
26.
go back to reference Gavriel Salvendy: Handbook of Human Factors and Ergonomics. Third edition. J Wiley; 1997. Gavriel Salvendy: Handbook of Human Factors and Ergonomics. Third edition. J Wiley; 1997.
27.
go back to reference Casadio M, Giannoni P, Morasso P, Sanguineti V: A proof of concept study for the integration of robot therapy with physiotherapy in the treatment of stroke patients. Clinical Rehab 2009, 23: 217-228. 10.1177/0269215508096759CrossRef Casadio M, Giannoni P, Morasso P, Sanguineti V: A proof of concept study for the integration of robot therapy with physiotherapy in the treatment of stroke patients. Clinical Rehab 2009, 23: 217-228. 10.1177/0269215508096759CrossRef
28.
go back to reference Emken JL, Benitez R, Sideris A, Bobrow JE, Reinkensmeyer DJ: Motor adaptation as a greedy optimization of error and effort. J Neurophysiol 2007,97(5):3997-4006. 10.1152/jn.01095.2006CrossRefPubMed Emken JL, Benitez R, Sideris A, Bobrow JE, Reinkensmeyer DJ: Motor adaptation as a greedy optimization of error and effort. J Neurophysiol 2007,97(5):3997-4006. 10.1152/jn.01095.2006CrossRefPubMed
29.
go back to reference Colombo R, Pisano F, Mazzone A, Delconte C, Micera S, Carrozza MC, Dario P, Minuco G: Design strategies to improve patient motivation during robot- aided rehabilitation. Journal of NeuroEngineering and Rehabilitation 2007, 4: 3. 10.1186/1743-0003-4-3PubMedCentralCrossRefPubMed Colombo R, Pisano F, Mazzone A, Delconte C, Micera S, Carrozza MC, Dario P, Minuco G: Design strategies to improve patient motivation during robot- aided rehabilitation. Journal of NeuroEngineering and Rehabilitation 2007, 4: 3. 10.1186/1743-0003-4-3PubMedCentralCrossRefPubMed
30.
go back to reference Masia L, Krebs HI, Cappa P, Hogan N: Design and characterization of hand module for whole-arm rehabilitation following stroke. IEEE/ASME Trans Mechatronics 2007,12(4):399-407. 10.1109/TMECH.2007.901928CrossRefPubMed Masia L, Krebs HI, Cappa P, Hogan N: Design and characterization of hand module for whole-arm rehabilitation following stroke. IEEE/ASME Trans Mechatronics 2007,12(4):399-407. 10.1109/TMECH.2007.901928CrossRefPubMed
Metadata
Title
Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study
Authors
Lorenzo Masia
Maura Casadio
Psiche Giannoni
Giulio Sandini
Pietro Morasso
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2009
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-6-44

Other articles of this Issue 1/2009

Journal of NeuroEngineering and Rehabilitation 1/2009 Go to the issue