Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2017

Open Access 01-12-2017 | Research article

Percutaneous medial hemi-epiphysiodesis using a transphyseal screw for caput valgum associated with developmental dysplasia of the hip

Authors: Chang Ho Shin, Wan Kee Hong, Doo Jae Lee, Won Joon Yoo, In Ho Choi, Tae-Joon Cho

Published in: BMC Musculoskeletal Disorders | Issue 1/2017

Login to get access

Abstract

Background

The purpose of this study was to evaluate the radiologic outcome of percutaneous medial hemi-epiphysiodesis using a transphyseal screw for the management of caput valgum associated with developmental dysplasia of the hip (DDH).

Methods

Eighteen hips (18 patients) having caput valgum treated with screw hemi-epiphysiodesis were followed for more than 2 years, and were included in this study. The mean age at the time of the index operation was 8.3 years (range, 4.3 to 10.7 years) and age at the latest follow-up was 12.2 years (range, 9.4 to 16.4 years). The screw in 5 hips was changed into a longer one at postoperative 21.8 months (range, 14 to 29 months) because the proximal femur outgrew the screw. The screws in 11 hips were removed at the mean age of 10.9 years (range, 8.0 to 14.5 years). We retrospectively analyzed the change in various radiologic parameters over time.

Results

The mean Hilgenreiner-epiphyseal angle (HEA) of the operated side was 5.1 ± 11.3° preoperatively, and increased to 20.6 ± 11.3° at the latest follow-up (p = 0.001). The mean difference of the HEA between the operated and contralateral sides was 16.9 ± 15.1° preoperatively, which decreased to 2.4 ± 12.4° at the latest follow-up (p = 0.008). The mean articulo-trochanteric distance of the operated side, which was 3.2 ± 5.5 mm longer than that of the contralateral side preoperatively, became 5.6 ± 9.1 mm shorter at the latest follow-up (p = 0.001). The ratio of femoral neck length of the operated side to that of the contralateral side decreased over the follow-up period. Acetabular shape as measured by the Sharp angle and acetabular roof angle and femoral head coverage as measured by lateral center-edge angle did not change significantly by the index operation. The ratio of medial joint space width of the operated side to that of the contralateral side did not change significantly.

Conclusions

Screw medial hemi-epiphysiodesis can effectively correct caput valgum associated with DDH. However, this technique remains coxa brevis and does not seem to significantly affect acetabular morphology or reduce subluxation.
Literature
1.
go back to reference Brougham DI, Broughton NS, Cole WG, Menelaus MB. Avascular necrosis following closed reduction of congenital dislocation of the hip. Review of influencing factors and long-term follow-up. J Bone Joint Surg Br. 1990;72(4):557–62.CrossRefPubMed Brougham DI, Broughton NS, Cole WG, Menelaus MB. Avascular necrosis following closed reduction of congenital dislocation of the hip. Review of influencing factors and long-term follow-up. J Bone Joint Surg Br. 1990;72(4):557–62.CrossRefPubMed
2.
go back to reference Morcuende JA, Meyer MD, Dolan LA, Weinstein SL. Long-term outcome after open reduction through an anteromedial approach for congenital dislocation of the hip. J Bone Joint Surg Am. 1997;79(6):810–7.CrossRefPubMed Morcuende JA, Meyer MD, Dolan LA, Weinstein SL. Long-term outcome after open reduction through an anteromedial approach for congenital dislocation of the hip. J Bone Joint Surg Am. 1997;79(6):810–7.CrossRefPubMed
3.
go back to reference Roposch A, Stohr KK, Dobson M. The effect of the femoral head ossific nucleus in the treatment of developmental dysplasia of the hip. A meta-analysis. J Bone Joint Surg Am. 2009;91(4):911–8.CrossRefPubMed Roposch A, Stohr KK, Dobson M. The effect of the femoral head ossific nucleus in the treatment of developmental dysplasia of the hip. A meta-analysis. J Bone Joint Surg Am. 2009;91(4):911–8.CrossRefPubMed
4.
go back to reference Shin CH, Yoo WJ, Park MS, Kim JH, Choi IH, Cho TJ. Acetabular remodeling and role of osteotomy after closed reduction of developmental dysplasia of the hip. J Bone Joint Surg Am. 2016;98(11):952–7.CrossRefPubMed Shin CH, Yoo WJ, Park MS, Kim JH, Choi IH, Cho TJ. Acetabular remodeling and role of osteotomy after closed reduction of developmental dysplasia of the hip. J Bone Joint Surg Am. 2016;98(11):952–7.CrossRefPubMed
5.
go back to reference Malvitz TA, Weinstein SL. Closed reduction for congenital dysplasia of the hip. Functional and radiographic results after an average of thirty years. J Bone Joint Surg Am. 1994;76(12):1777–92.CrossRefPubMed Malvitz TA, Weinstein SL. Closed reduction for congenital dysplasia of the hip. Functional and radiographic results after an average of thirty years. J Bone Joint Surg Am. 1994;76(12):1777–92.CrossRefPubMed
6.
go back to reference Kalamchi A, MacEwen GD. Avascular necrosis following treatment of congenital dislocation of the hip. J Bone Joint Surg Am. 1980;62(6):876–88.CrossRefPubMed Kalamchi A, MacEwen GD. Avascular necrosis following treatment of congenital dislocation of the hip. J Bone Joint Surg Am. 1980;62(6):876–88.CrossRefPubMed
7.
go back to reference Siffert RS. Patterns of deformity of the developing hip. Clin Orthop Relat Res. 1981;160:14–29. Siffert RS. Patterns of deformity of the developing hip. Clin Orthop Relat Res. 1981;160:14–29.
8.
go back to reference Kim HW, Morcuende JA, Dolan LA, Weinstein SL. Acetabular development in developmental dysplasia of the hip complicated by lateral growth disturbance of the capital femoral epiphysis. J Bone Joint Surg Am. 2000;82-A(12):1692–700.CrossRefPubMed Kim HW, Morcuende JA, Dolan LA, Weinstein SL. Acetabular development in developmental dysplasia of the hip complicated by lateral growth disturbance of the capital femoral epiphysis. J Bone Joint Surg Am. 2000;82-A(12):1692–700.CrossRefPubMed
9.
go back to reference Joo SY, Oh CW, Grissom L, Kumar SJ, MacEwen GD. Three-dimensional computerized tomographic analysis of the deformity of lateral growth disturbance of proximal femoral physis. J Pediatr Orthop. 2009;29(6):540–6.CrossRefPubMed Joo SY, Oh CW, Grissom L, Kumar SJ, MacEwen GD. Three-dimensional computerized tomographic analysis of the deformity of lateral growth disturbance of proximal femoral physis. J Pediatr Orthop. 2009;29(6):540–6.CrossRefPubMed
10.
go back to reference Oh CW, Joo SY, Kumar SJ, Macewen GD. A radiological classification of lateral growth arrest of the proximal femoral physis after treatment for developmental dysplasia of the hip. J Pediatr Orthop. 2009;29(4):331–5.CrossRefPubMed Oh CW, Joo SY, Kumar SJ, Macewen GD. A radiological classification of lateral growth arrest of the proximal femoral physis after treatment for developmental dysplasia of the hip. J Pediatr Orthop. 2009;29(4):331–5.CrossRefPubMed
11.
go back to reference Roposch A, Ridout D, Protopapa E, Nicolaou N, Gelfer Y. Osteonecrosis complicating developmental dysplasia of the hip compromises subsequent acetabular remodeling. Clin Orthop Relat Res. 2013;471(7):2318–26.CrossRefPubMedPubMedCentral Roposch A, Ridout D, Protopapa E, Nicolaou N, Gelfer Y. Osteonecrosis complicating developmental dysplasia of the hip compromises subsequent acetabular remodeling. Clin Orthop Relat Res. 2013;471(7):2318–26.CrossRefPubMedPubMedCentral
12.
go back to reference Cerezal L, Kassarjian A, Canga A, Dobado MC, Montero JA, Llopis E, Rolon A, Perez-Carro L. Anatomy, biomechanics, imaging, and management of ligamentum teres injuries. Radiographics. 2010;30(6):1637–51.CrossRefPubMed Cerezal L, Kassarjian A, Canga A, Dobado MC, Montero JA, Llopis E, Rolon A, Perez-Carro L. Anatomy, biomechanics, imaging, and management of ligamentum teres injuries. Radiographics. 2010;30(6):1637–51.CrossRefPubMed
13.
go back to reference Torode IP, Young JL. Caput valgum associated with developmental dysplasia of the hip: management by transphyseal screw fixation. J Child Orthop. 2015;9(5):371–9.CrossRefPubMedPubMedCentral Torode IP, Young JL. Caput valgum associated with developmental dysplasia of the hip: management by transphyseal screw fixation. J Child Orthop. 2015;9(5):371–9.CrossRefPubMedPubMedCentral
14.
go back to reference Chang CH, Chi CH, Lee ZL. Progressive coxa vara by eccentric growth tethering in immature pigs. J Pediatr Orthop B. 2006;15(4):302–6.CrossRefPubMed Chang CH, Chi CH, Lee ZL. Progressive coxa vara by eccentric growth tethering in immature pigs. J Pediatr Orthop B. 2006;15(4):302–6.CrossRefPubMed
15.
go back to reference d'Heurle A, McCarthy J, Klimaski D, Stringer K. Proximal femoral growth modification: effect of screw, plate, and drill on asymmetric growth of the hip. J Pediatr Orthop. 2016. d'Heurle A, McCarthy J, Klimaski D, Stringer K. Proximal femoral growth modification: effect of screw, plate, and drill on asymmetric growth of the hip. J Pediatr Orthop. 2016.
16.
go back to reference McCarthy JJ, Noonan KJ, Nemke B, Markel M. Guided growth of the proximal femur: a pilot study in the lamb model. J Pediatr Orthop. 2010;30(7):690–4.CrossRefPubMed McCarthy JJ, Noonan KJ, Nemke B, Markel M. Guided growth of the proximal femur: a pilot study in the lamb model. J Pediatr Orthop. 2010;30(7):690–4.CrossRefPubMed
17.
go back to reference McGillion S, Clarke NM. Lateral growth arrest of the proximal femoral physis: a new technique for serial radiological observation. J Child Orthop. 2011;5(3):201–7.CrossRefPubMedPubMedCentral McGillion S, Clarke NM. Lateral growth arrest of the proximal femoral physis: a new technique for serial radiological observation. J Child Orthop. 2011;5(3):201–7.CrossRefPubMedPubMedCentral
18.
go back to reference Lee WC, Kao HK, Yang WE, Ho PC, Chang CH. Guided growth of the proximal femur for hip displacement in children with cerebral palsy. J Pediatr Orthop. 2016;36(5):511–5.CrossRefPubMed Lee WC, Kao HK, Yang WE, Ho PC, Chang CH. Guided growth of the proximal femur for hip displacement in children with cerebral palsy. J Pediatr Orthop. 2016;36(5):511–5.CrossRefPubMed
19.
go back to reference Boniforti FG, Fujii G, Angliss RD, Benson MK. The reliability of measurements of pelvic radiographs in infants. J Bone Joint Surg Br. 1997;79(4):570–5.CrossRefPubMed Boniforti FG, Fujii G, Angliss RD, Benson MK. The reliability of measurements of pelvic radiographs in infants. J Bone Joint Surg Br. 1997;79(4):570–5.CrossRefPubMed
20.
go back to reference Tonnis D. Normal values of the hip joint for the evaluation of X-rays in children and adults. Clin Orthop Relat Res. 1976;119:39–47. Tonnis D. Normal values of the hip joint for the evaluation of X-rays in children and adults. Clin Orthop Relat Res. 1976;119:39–47.
21.
go back to reference Weinstein JN, Kuo KN, Millar EA. Congenital coxa vara. A retrospective review. J Pediatr Orthop. 1984;4(1):70–7.CrossRefPubMed Weinstein JN, Kuo KN, Millar EA. Congenital coxa vara. A retrospective review. J Pediatr Orthop. 1984;4(1):70–7.CrossRefPubMed
22.
go back to reference Foroohar A, McCarthy JJ, Yucha D, Clarke S, Brey J. Head-shaft angle measurement in children with cerebral palsy. J Pediatr Orthop. 2009;29(3):248–50.CrossRefPubMed Foroohar A, McCarthy JJ, Yucha D, Clarke S, Brey J. Head-shaft angle measurement in children with cerebral palsy. J Pediatr Orthop. 2009;29(3):248–50.CrossRefPubMed
23.
go back to reference Edgren W. Coxa plana. A clinical and radiological investigation with particular reference to the importance of the metaphyseal changes for the final shape of the proximal part of the femur. Acta Orthop Scand Suppl. 1965;Suppl 84:1–129. Edgren W. Coxa plana. A clinical and radiological investigation with particular reference to the importance of the metaphyseal changes for the final shape of the proximal part of the femur. Acta Orthop Scand Suppl. 1965;Suppl 84:1–129.
24.
go back to reference de Farias TH, Borges VQ, de Souza ES, Miki N, Abdala F. Radiographic study on the anatomical characteristics of the proximal femur in Brazilian adults. Rev Bras Ortop. 2015;50(1):16–21.CrossRefPubMedPubMedCentral de Farias TH, Borges VQ, de Souza ES, Miki N, Abdala F. Radiographic study on the anatomical characteristics of the proximal femur in Brazilian adults. Rev Bras Ortop. 2015;50(1):16–21.CrossRefPubMedPubMedCentral
25.
go back to reference Sharp I. Acetabular dysplasia. Bone Joint J. 1961;43(2):268–72. Sharp I. Acetabular dysplasia. Bone Joint J. 1961;43(2):268–72.
26.
go back to reference Tönnis D. Congenital dysplasia and dislocation of the hip in children and adults: Springer Science & Business Media. Berlin: Springer Verlag; 1987. Tönnis D. Congenital dysplasia and dislocation of the hip in children and adults: Springer Science & Business Media. Berlin: Springer Verlag; 1987.
27.
go back to reference Wiberg G. Studies on dysplastic acetabula and congenital subluxation of the hip joint: with special reference to the complication of osteoarthritis. Acta Chir Scand. 1939;83(58):53–68. Wiberg G. Studies on dysplastic acetabula and congenital subluxation of the hip joint: with special reference to the complication of osteoarthritis. Acta Chir Scand. 1939;83(58):53–68.
28.
go back to reference Yoo W, Choi I, Cho T-J, Chung C, Shin Y-W, Shin S. Shelf acetabuloplasty for children with Perthes’ disease and reducible subluxation of the hip. Bone Joint J. 2009;91(10):1383–7.CrossRef Yoo W, Choi I, Cho T-J, Chung C, Shin Y-W, Shin S. Shelf acetabuloplasty for children with Perthes’ disease and reducible subluxation of the hip. Bone Joint J. 2009;91(10):1383–7.CrossRef
29.
go back to reference Chen IH, Kuo KN, Lubicky JP. Prognosticating factors in acetabular development following reduction of developmental dysplasia of the hip. J Pediatr Orthop. 1994;14(1):3–8.CrossRefPubMed Chen IH, Kuo KN, Lubicky JP. Prognosticating factors in acetabular development following reduction of developmental dysplasia of the hip. J Pediatr Orthop. 1994;14(1):3–8.CrossRefPubMed
30.
go back to reference Boese CK, Dargel J, Oppermann J, Eysel P, Scheyerer MJ, Bredow J, Lechler P. The femoral neck-shaft angle on plain radiographs: a systematic review. Skelet Radiol. 2016;45(1):19–28.CrossRef Boese CK, Dargel J, Oppermann J, Eysel P, Scheyerer MJ, Bredow J, Lechler P. The femoral neck-shaft angle on plain radiographs: a systematic review. Skelet Radiol. 2016;45(1):19–28.CrossRef
31.
go back to reference Shi YY, Liu TJ, Zhao Q, Zhang LJ, Ji SJ, Wang EB. The normal centre-edge angle of Wiberg in the Chinese population: a population-based cross-sectional study. J Bone Joint Surg Br. 2010;92(8):1144–7.CrossRefPubMed Shi YY, Liu TJ, Zhao Q, Zhang LJ, Ji SJ, Wang EB. The normal centre-edge angle of Wiberg in the Chinese population: a population-based cross-sectional study. J Bone Joint Surg Br. 2010;92(8):1144–7.CrossRefPubMed
32.
go back to reference Harris NH. Acetabular growth potential in congenital dislocation of the hip and some factors upon which it may depend. Clin Orthop Relat Res. 1976;119:99–106. Harris NH. Acetabular growth potential in congenital dislocation of the hip and some factors upon which it may depend. Clin Orthop Relat Res. 1976;119:99–106.
33.
go back to reference Menelaus MB. Correction of leg length discrepancy by epiphysial arrest. J Bone Joint Surg Br. 1966;48(2):336–9.PubMed Menelaus MB. Correction of leg length discrepancy by epiphysial arrest. J Bone Joint Surg Br. 1966;48(2):336–9.PubMed
Metadata
Title
Percutaneous medial hemi-epiphysiodesis using a transphyseal screw for caput valgum associated with developmental dysplasia of the hip
Authors
Chang Ho Shin
Wan Kee Hong
Doo Jae Lee
Won Joon Yoo
In Ho Choi
Tae-Joon Cho
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2017
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-017-1833-5

Other articles of this Issue 1/2017

BMC Musculoskeletal Disorders 1/2017 Go to the issue