Skip to main content
Top
Published in: European Journal of Orthopaedic Surgery & Traumatology 1/2014

01-07-2014 | General Review

PEEK rod systems for the spine

Authors: Andreas F. Mavrogenis, Christos Vottis, George Triantafyllopoulos, Panayiotis J. Papagelopoulos, Spyros G. Pneumaticos

Published in: European Journal of Orthopaedic Surgery & Traumatology | Special Issue 1/2014

Login to get access

Abstract

Traditional materials for the spine such as titanium and stainless steel have produced satisfying long-term fusion rates, mainly due to their strength and stiffness. However, although fixation with titanium rods leads to high fusion rates, increased stiffness of titanium constructs may also contribute to stress shielding and adjacent segment degeneration. Dynamic and flexible materials such as the Dynesys system allow better stress distribution to all of the spinal columns, but increase the rate of complications including screw loosening, infection, back and leg pain, and endplate vertebral fracture. Semi-rigid instrumentation systems using rods made from synthetic polymers such as the polyetheretherketone (PEEK) have been recently introduced as an alternative biomaterial for the spine. PEEK is a fully biocompatible and inert semi-crystalline thermoplastic polymer with minimal toxicity; it has a modulus of elasticity between that of cortical and cancellous bone, and significantly lower than titanium. However, there are very few clinical studies with small sample size and short-term follow-up using PEEK rod-pedicle screw spinal instrumentation systems. Additionally, their results are conflicting. To enhance the literature, this review discusses the effect of this medical for the spine and summarizes the results of the most important related series.
Literature
1.
go back to reference Ponnappan RV, Sherhan H, Zerda B, Patel R, Albert T, Vaccaro AR (2009) Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation. Spine J 9:263–267PubMedCrossRef Ponnappan RV, Sherhan H, Zerda B, Patel R, Albert T, Vaccaro AR (2009) Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation. Spine J 9:263–267PubMedCrossRef
2.
go back to reference Rutherford EE, Tarplett LJ, Davies EM, Harley JM, King LJ (2007) Lumbar spine fusion and stabilization: hardware, techniques, and imaging appearances. Radiographics 27:1737–1749PubMedCrossRef Rutherford EE, Tarplett LJ, Davies EM, Harley JM, King LJ (2007) Lumbar spine fusion and stabilization: hardware, techniques, and imaging appearances. Radiographics 27:1737–1749PubMedCrossRef
3.
go back to reference Asher MA, Carson WL, Hardacker JW et al (2007) The effect of arthrodesis, implant stiffness, and time on the canine lumbar spine. J Spinal Disord Tech 20:549–559PubMedCrossRef Asher MA, Carson WL, Hardacker JW et al (2007) The effect of arthrodesis, implant stiffness, and time on the canine lumbar spine. J Spinal Disord Tech 20:549–559PubMedCrossRef
4.
go back to reference Dobbs MB, Lenke LG, Kim YJ et al (2006) Anterior/posterior spinal instrumentation versus posterior instrumentation alone for the treatment of adolescent idiopathic scoliotic curves more than 90 degrees. Spine 31:2386–2391PubMedCrossRef Dobbs MB, Lenke LG, Kim YJ et al (2006) Anterior/posterior spinal instrumentation versus posterior instrumentation alone for the treatment of adolescent idiopathic scoliotic curves more than 90 degrees. Spine 31:2386–2391PubMedCrossRef
5.
7.
go back to reference Wedemeyer M, Parent S, Mahar A et al (2007) Titanium versus stainless steel for anterior spinal fusions: an analysis of rod stress as a predictor of rod breakage during physiologic loading in a bovine model. Spine 32:42–48PubMedCrossRef Wedemeyer M, Parent S, Mahar A et al (2007) Titanium versus stainless steel for anterior spinal fusions: an analysis of rod stress as a predictor of rod breakage during physiologic loading in a bovine model. Spine 32:42–48PubMedCrossRef
8.
go back to reference Cavagna R, Tournier C, Aunoble S, Bouler JM, Antonietti P et al (2008) Lumbar decompression and fusion in elderly osteoporotic patients: prospective study using less rigid titanium rod fixation. J Spinal Disord Tech 21(2):86–91PubMedCrossRef Cavagna R, Tournier C, Aunoble S, Bouler JM, Antonietti P et al (2008) Lumbar decompression and fusion in elderly osteoporotic patients: prospective study using less rigid titanium rod fixation. J Spinal Disord Tech 21(2):86–91PubMedCrossRef
9.
go back to reference Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976) 29(17):1938–1944CrossRef Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976) 29(17):1938–1944CrossRef
10.
go back to reference Sears W, Sergides I, Kazemi N et al (2011) Incidence and prevalence of surgery at segments adjacent to a previous posterior lumbar arthrodesis. Spine J 11:11–20PubMedCrossRef Sears W, Sergides I, Kazemi N et al (2011) Incidence and prevalence of surgery at segments adjacent to a previous posterior lumbar arthrodesis. Spine J 11:11–20PubMedCrossRef
11.
go back to reference Hikata T, Kamata M, Furukawa M (2012) Risk factors for adjacent segment disease after posterior lumbar interbody fusion and efficacy of simultaneous decompression surgery for symptomatic adjacent segment disease. J Spinal Disord Tech [Epub ahead of print] Hikata T, Kamata M, Furukawa M (2012) Risk factors for adjacent segment disease after posterior lumbar interbody fusion and efficacy of simultaneous decompression surgery for symptomatic adjacent segment disease. J Spinal Disord Tech [Epub ahead of print]
12.
go back to reference Lund T, Oxland TR (2011) Adjacent level disk disease: Is it really a fusion disease?. Orthop Clin N Am 42(4):529–541, viiiCrossRef Lund T, Oxland TR (2011) Adjacent level disk disease: Is it really a fusion disease?. Orthop Clin N Am 42(4):529–541, viiiCrossRef
13.
go back to reference Adogwa O, Parker SL, Shau DN et al (2012) Cost per quality-adjusted life year gained of laminectomy and extension of instrumented fusion for adjacent-segment disease: defining the value of surgical intervention. J Neurosurg Spine 16(2):141–146PubMedCrossRef Adogwa O, Parker SL, Shau DN et al (2012) Cost per quality-adjusted life year gained of laminectomy and extension of instrumented fusion for adjacent-segment disease: defining the value of surgical intervention. J Neurosurg Spine 16(2):141–146PubMedCrossRef
14.
go back to reference Anandjiwala J, Seo JY, Ha KY et al (2011) Adjacent segment degeneration after instrumented posterolateral lumbar fusion: a prospective cohort study with a minimum five-year follow-up. Eur Spine J 20(11):1951–1960PubMedCentralPubMedCrossRef Anandjiwala J, Seo JY, Ha KY et al (2011) Adjacent segment degeneration after instrumented posterolateral lumbar fusion: a prospective cohort study with a minimum five-year follow-up. Eur Spine J 20(11):1951–1960PubMedCentralPubMedCrossRef
15.
go back to reference Ormond DR, Albert L Jr, Das K (2012) Polyetheretherketone (PEEK) rods in lumbar spine degenerative disease: a case series. J Spinal Disord Tech [Epub ahead of print] Ormond DR, Albert L Jr, Das K (2012) Polyetheretherketone (PEEK) rods in lumbar spine degenerative disease: a case series. J Spinal Disord Tech [Epub ahead of print]
16.
go back to reference Grob D, Benini A, Junge A et al (2005) Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine 30:324–331PubMedCrossRef Grob D, Benini A, Junge A et al (2005) Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine 30:324–331PubMedCrossRef
17.
go back to reference Highsmith JM, Tumialan LM, Rodts GE (2007) Flexible rods and the case for dynamic stabilization. Neurosurg Focus 22(1):E11PubMedCrossRef Highsmith JM, Tumialan LM, Rodts GE (2007) Flexible rods and the case for dynamic stabilization. Neurosurg Focus 22(1):E11PubMedCrossRef
18.
go back to reference Mandigo CE, Sampath P, Kaiser MG (2007) Posterior dynamic stabilization of the lumbar spine: pedicle based stabilization with the AccuFlex rod system. Neurosurg Focus 22:E9PubMedCrossRef Mandigo CE, Sampath P, Kaiser MG (2007) Posterior dynamic stabilization of the lumbar spine: pedicle based stabilization with the AccuFlex rod system. Neurosurg Focus 22:E9PubMedCrossRef
19.
go back to reference Senegas J (2002) Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments: the Wallis system. Eur Spine J 11(Suppl 2):S164–S169PubMedCentralPubMed Senegas J (2002) Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments: the Wallis system. Eur Spine J 11(Suppl 2):S164–S169PubMedCentralPubMed
20.
go back to reference Welch WC, Cheng BC, Awad TE et al (2007) Clinical outcomes of the Dynesys dynamic neutralization system: 1-year preliminary results. Neurosurg Focus 22:E8PubMedCrossRef Welch WC, Cheng BC, Awad TE et al (2007) Clinical outcomes of the Dynesys dynamic neutralization system: 1-year preliminary results. Neurosurg Focus 22:E8PubMedCrossRef
21.
go back to reference Sapkas GS, Themistocleous GS, Mavrogenis AF, Benetos IS, Metaxas N, Papagelopoulos PJ (2007) Stabilization of the lumbar spine using the dynamic neutralization system. Orthopedics 30(10):859–865PubMed Sapkas GS, Themistocleous GS, Mavrogenis AF, Benetos IS, Metaxas N, Papagelopoulos PJ (2007) Stabilization of the lumbar spine using the dynamic neutralization system. Orthopedics 30(10):859–865PubMed
22.
go back to reference Sapkas GS, Mavrogenis AF, Starantzis KA, Soultanis K, Kokkalis ZT, Papagelopoulos PJ (2012) Outcome of a dynamic neutralization system for the spine. Orthopedics 35(10):e1497–e1502PubMedCrossRef Sapkas GS, Mavrogenis AF, Starantzis KA, Soultanis K, Kokkalis ZT, Papagelopoulos PJ (2012) Outcome of a dynamic neutralization system for the spine. Orthopedics 35(10):e1497–e1502PubMedCrossRef
23.
go back to reference De Iure F, Bosco G, Cappuccio M, Paderni S, Amendola L (2012) Posterior lumbar fusion by peek rods in degenerative spine: preliminary report on 30 cases. Eur Spine J 21(Suppl 1):S50–S54PubMedCrossRef De Iure F, Bosco G, Cappuccio M, Paderni S, Amendola L (2012) Posterior lumbar fusion by peek rods in degenerative spine: preliminary report on 30 cases. Eur Spine J 21(Suppl 1):S50–S54PubMedCrossRef
24.
go back to reference Qi L, Li M, Zhang S, Xue J, Si H (2013) Comparative effectiveness of PEEK rods versus titanium alloy rods in lumbar fusion: a preliminary report. Acta Neurochir (Wien) 155(7):1187–1193CrossRef Qi L, Li M, Zhang S, Xue J, Si H (2013) Comparative effectiveness of PEEK rods versus titanium alloy rods in lumbar fusion: a preliminary report. Acta Neurochir (Wien) 155(7):1187–1193CrossRef
25.
go back to reference Athanasakopoulos M, Mavrogenis AF, Triantafyllopoulos G, Koufos S, Pneumaticos SG (2013) Posterior spinal fusion using pedicle screws. Orthopedics 36(7):e951–e957PubMedCrossRef Athanasakopoulos M, Mavrogenis AF, Triantafyllopoulos G, Koufos S, Pneumaticos SG (2013) Posterior spinal fusion using pedicle screws. Orthopedics 36(7):e951–e957PubMedCrossRef
26.
go back to reference Gornet MF, Chan FW, Coleman JC, Murrell B, Nockels RP, Taylor BA, Lanman TH, Ochoa JA (2011) Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs. J Biomech Eng 133(8):081009PubMedCrossRef Gornet MF, Chan FW, Coleman JC, Murrell B, Nockels RP, Taylor BA, Lanman TH, Ochoa JA (2011) Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs. J Biomech Eng 133(8):081009PubMedCrossRef
27.
go back to reference Goel VK, Panjabi MM, Patwardhan AG et al (2006) Test protocols for evaluation of spinal implants. J Bone Joint Surg Am 88(Suppl 2):103–109PubMedCrossRef Goel VK, Panjabi MM, Patwardhan AG et al (2006) Test protocols for evaluation of spinal implants. J Bone Joint Surg Am 88(Suppl 2):103–109PubMedCrossRef
28.
go back to reference Sagamonyants KB, Jarman-Smith ML, Devine JN, Aronow MS, Gronowicz GA (2008) The in vitro response of human osteoblasts to polyetheretherketone substrates compared to commercially pure titanium. Biomaterials 29:1563–1572CrossRef Sagamonyants KB, Jarman-Smith ML, Devine JN, Aronow MS, Gronowicz GA (2008) The in vitro response of human osteoblasts to polyetheretherketone substrates compared to commercially pure titanium. Biomaterials 29:1563–1572CrossRef
29.
go back to reference Moon S-M, Ingalhalikar A, Highsmith JM, Vaccaro AR (2009) Biomechanical rigidity of an all-polyetheretherketone anterior thoracolumbar spinal reconstruction construct: an in vitro corpectomy model. Spine J 9(4):330–335PubMedCrossRef Moon S-M, Ingalhalikar A, Highsmith JM, Vaccaro AR (2009) Biomechanical rigidity of an all-polyetheretherketone anterior thoracolumbar spinal reconstruction construct: an in vitro corpectomy model. Spine J 9(4):330–335PubMedCrossRef
30.
go back to reference Ahn YH, Chen WM, Lee K-Y, Park K-W, Lee S-J (2008) Comparison of the load-sharing characteristics between pedicle-based dynamic and rigid rod devices. Biomed Mater 3(4):044101PubMedCrossRef Ahn YH, Chen WM, Lee K-Y, Park K-W, Lee S-J (2008) Comparison of the load-sharing characteristics between pedicle-based dynamic and rigid rod devices. Biomed Mater 3(4):044101PubMedCrossRef
31.
go back to reference Nockels RP (2007) Early clinical experience with semi-rigid (PEEK) posterior instrumentation in lumbar fusion. Paper presented at American Association of Neurological Surgeons Annual Meeting, Washington, USA Nockels RP (2007) Early clinical experience with semi-rigid (PEEK) posterior instrumentation in lumbar fusion. Paper presented at American Association of Neurological Surgeons Annual Meeting, Washington, USA
32.
go back to reference Panjabi MM (2007) Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech 22:257–265CrossRef Panjabi MM (2007) Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech 22:257–265CrossRef
33.
go back to reference Turner JL, Paller DJ, Murrell CB (2010) The mechanical effect of commercially pure titanium and polyetheretherketone rods on spinal implants at the operative and adjacent levels. Spine (Phila Pa 1976) 35(21):E1076–E1082CrossRef Turner JL, Paller DJ, Murrell CB (2010) The mechanical effect of commercially pure titanium and polyetheretherketone rods on spinal implants at the operative and adjacent levels. Spine (Phila Pa 1976) 35(21):E1076–E1082CrossRef
34.
go back to reference Bruner HJ, Guan Y, Yoganandan N et al (2010) Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation: laboratory investigation. J Neurosurg Spine 13(6):766–772PubMedCrossRef Bruner HJ, Guan Y, Yoganandan N et al (2010) Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation: laboratory investigation. J Neurosurg Spine 13(6):766–772PubMedCrossRef
35.
go back to reference Chamoli U, Diwan AD, Tsafnat N (2013) Pedicle screw-based posterior dynamic stabilizers for degenerative spine: in vitro biomechanical testing and clinical outcomes. J Biomed Mater Res A. doi:10.1002/jbm.a.34986 Chamoli U, Diwan AD, Tsafnat N (2013) Pedicle screw-based posterior dynamic stabilizers for degenerative spine: in vitro biomechanical testing and clinical outcomes. J Biomed Mater Res A. doi:10.​1002/​jbm.​a.​34986
36.
go back to reference Williams AL, Gornet MF, Burkus JK (2005) CT evaluation of lumbar interbody fusion: current concepts. AJNR Am J Neuroradiol 26(8):2057–2066PubMed Williams AL, Gornet MF, Burkus JK (2005) CT evaluation of lumbar interbody fusion: current concepts. AJNR Am J Neuroradiol 26(8):2057–2066PubMed
37.
go back to reference Sarbello JF, Lipman AJ, Hong J, Lawrence J, Bessey JT, Ponnappan RK, Vaccaro AR (2010) Patient perception of outcomes following failed spinal instrumentation with polyetheretherketone rods and titanium rods. Spine (Phila Pa 1976) 35(17):E843–E848CrossRef Sarbello JF, Lipman AJ, Hong J, Lawrence J, Bessey JT, Ponnappan RK, Vaccaro AR (2010) Patient perception of outcomes following failed spinal instrumentation with polyetheretherketone rods and titanium rods. Spine (Phila Pa 1976) 35(17):E843–E848CrossRef
38.
go back to reference Sandhu HS, Tothjun Diwan AD, Seim HB et al (2000) Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion. Spine 27:567–575CrossRef Sandhu HS, Tothjun Diwan AD, Seim HB et al (2000) Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion. Spine 27:567–575CrossRef
39.
go back to reference Cook SD, Patron LP, Christakis PM et al (2004) Comparison of methods for determining the presence and extent of anterior lumbar interbody fusion. Spine 29:1118–1123PubMedCrossRef Cook SD, Patron LP, Christakis PM et al (2004) Comparison of methods for determining the presence and extent of anterior lumbar interbody fusion. Spine 29:1118–1123PubMedCrossRef
40.
go back to reference Becker C (2003) Spine-tingling prospects: artificial disc implants are among the new technologies expected to revolutionize the outcomes of back surgery. Mod Healthc 33:30–32 Becker C (2003) Spine-tingling prospects: artificial disc implants are among the new technologies expected to revolutionize the outcomes of back surgery. Mod Healthc 33:30–32
41.
go back to reference Burkus JK (2002) Intervertebral fixation: clinical results with anterior cages. Orthop Clin N Am 33:349–357CrossRef Burkus JK (2002) Intervertebral fixation: clinical results with anterior cages. Orthop Clin N Am 33:349–357CrossRef
42.
go back to reference Burkus JK, Gornet MF, Dickman CA, Zdeblick TA (2002) Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15:337–349PubMedCrossRef Burkus JK, Gornet MF, Dickman CA, Zdeblick TA (2002) Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15:337–349PubMedCrossRef
43.
go back to reference Kleinstueck FS, Hu SS, Bradford DS (2002) Use of allograft femoral rings for spinal deformity in adults. Clin Orthop Relat Res 394:84–91PubMedCrossRef Kleinstueck FS, Hu SS, Bradford DS (2002) Use of allograft femoral rings for spinal deformity in adults. Clin Orthop Relat Res 394:84–91PubMedCrossRef
44.
go back to reference Kuslich SD, Davidson G, Dowdle JD et al (2000) Four-year follow-up results of lumbar spine arthrodesis using Bagby and Kuslich lumbar fusion cage. Spine 25:2656–2663PubMedCrossRef Kuslich SD, Davidson G, Dowdle JD et al (2000) Four-year follow-up results of lumbar spine arthrodesis using Bagby and Kuslich lumbar fusion cage. Spine 25:2656–2663PubMedCrossRef
Metadata
Title
PEEK rod systems for the spine
Authors
Andreas F. Mavrogenis
Christos Vottis
George Triantafyllopoulos
Panayiotis J. Papagelopoulos
Spyros G. Pneumaticos
Publication date
01-07-2014
Publisher
Springer Paris
Published in
European Journal of Orthopaedic Surgery & Traumatology / Issue Special Issue 1/2014
Print ISSN: 1633-8065
Electronic ISSN: 1432-1068
DOI
https://doi.org/10.1007/s00590-014-1421-4

Other articles of this Special Issue 1/2014

European Journal of Orthopaedic Surgery & Traumatology 1/2014 Go to the issue