Skip to main content
Top
Published in: Skeletal Radiology 6/2019

01-06-2019 | Scientific Article

Patterns of cartilage degeneration in knees with medial tibiofemoral offset

Authors: Palanan Siriwanarangsun, Karen C. Chen, Tim Finkenstaedt, Won C. Bae, Sheronda Statum, Amilcare Gentili, Christine B. Chung

Published in: Skeletal Radiology | Issue 6/2019

Login to get access

Abstract

Objective

To determine if radiographic medial tibiofemoral offset (MTFO) is associated with: (1) magnetic resonance imaging (MRI) pathology of cartilage, meniscus, and ligament; and (2) a distinct pattern of lateral cartilage degeneration on MRI.

Materials and methods

Three hundred consecutive adult knee MRIs with anteroposterior (AP) radiographs were retrospectively reviewed, and 145 studies were included. MTFO was defined as a medial extension of the medial femoral condyle beyond the articular surface of the medial tibial plateau on weight-bearing AP radiographs. The patients were then divided into the MTFO (n = 61) or no-offset (n = 84) groups. On MRI data obtained on a 1.5-Tesla system, articular cartilage of the femoral condyle and tibial plateau were graded using a modified Outerbridge classification (36 sub-regions similar to whole-organ MRI Score (WORMS) system). In addition, MR pathology of the ACL, MCL, LCL, medial and lateral menisci, were determined.

Results

Significantly increased (ANOVA p < 0.007) MR grade of the ligaments, menisci, and cartilage in the MTFO group (ranging from 0.3 to 2.5) compared to the control group (0.2 to 1.1). Color maps of the cartilage grades suggested a marked difference in both severity of degeneration and regional variations between the groups. MTFO group exhibited focally increased cartilage grades in the central, non-weight regions of lateral compartment (region p = 0.07 to 0.12, interaction p = 0.05 to 0.1).

Conclusions

MTFO is associated with overall degeneration of the knee and features a distinct lateral cartilage degeneration pattern, which may reflect non-physiologic contact of the cartilage between the lateral tibial eminence and lateral central femoral condyle.
Literature
2.
go back to reference Blalock D, Miller A, Tilley M, Wang J. Joint instability and osteoarthritis. Clin Med Insights Arthritis Musculoskelet Dis. 2015;8:15–23. Blalock D, Miller A, Tilley M, Wang J. Joint instability and osteoarthritis. Clin Med Insights Arthritis Musculoskelet Dis. 2015;8:15–23.
3.
go back to reference Hunter DJ, Sharma L, Skaife T. Alignment and osteoarthritis of the knee. J Bone Joint Surg Am. 2009;91(Suppl 1):85–9.CrossRefPubMed Hunter DJ, Sharma L, Skaife T. Alignment and osteoarthritis of the knee. J Bone Joint Surg Am. 2009;91(Suppl 1):85–9.CrossRefPubMed
4.
go back to reference Reijman M, Pols HA, Bergink AP, Hazes JM, Belo JN, Lievense AM, et al. Body mass index associated with onset and progression of osteoarthritis of the knee but not of the hip: the Rotterdam Study. Ann Rheum Dis. 2007;66(2):158–62.CrossRefPubMed Reijman M, Pols HA, Bergink AP, Hazes JM, Belo JN, Lievense AM, et al. Body mass index associated with onset and progression of osteoarthritis of the knee but not of the hip: the Rotterdam Study. Ann Rheum Dis. 2007;66(2):158–62.CrossRefPubMed
5.
go back to reference Wu DD, Burr DB, Boyd RD, Radin EL. Bone and cartilage changes following experimental varus or valgus tibial angulation. J Orthop Res. 1990;8:572–85.CrossRefPubMed Wu DD, Burr DB, Boyd RD, Radin EL. Bone and cartilage changes following experimental varus or valgus tibial angulation. J Orthop Res. 1990;8:572–85.CrossRefPubMed
6.
go back to reference Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35(10):1756–69.CrossRefPubMed Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35(10):1756–69.CrossRefPubMed
7.
go back to reference Hosseini A, Van de Velde SK, Kozanek M, Gill TJ, Grodzinsky AJ, Rubash HE, et al. In-vivo time-dependent articular cartilage contact behavior of the tibiofemoral joint. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2010;18(7):909–16.CrossRefPubMedCentral Hosseini A, Van de Velde SK, Kozanek M, Gill TJ, Grodzinsky AJ, Rubash HE, et al. In-vivo time-dependent articular cartilage contact behavior of the tibiofemoral joint. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2010;18(7):909–16.CrossRefPubMedCentral
8.
go back to reference Andriacchi TP, Briant PL, Bevill SL, Koo S. Rotational changes at the knee after ACL injury cause cartilage thinning. Clin Orthop Relat Res. 2006;442:39–44.CrossRefPubMed Andriacchi TP, Briant PL, Bevill SL, Koo S. Rotational changes at the knee after ACL injury cause cartilage thinning. Clin Orthop Relat Res. 2006;442:39–44.CrossRefPubMed
9.
go back to reference Khamaisy S, Zuiderbaan HA, Thein R, Gladnick BP, Pearle AD. Coronal tibiofemoral subluxation in knee osteoarthritis. Skelet Radiol. 2016;45(1):57–61.CrossRef Khamaisy S, Zuiderbaan HA, Thein R, Gladnick BP, Pearle AD. Coronal tibiofemoral subluxation in knee osteoarthritis. Skelet Radiol. 2016;45(1):57–61.CrossRef
10.
go back to reference Khamaisy S, Nam D, Thein R, Rivkin G, Liebergall M, Pearle A. Limb alignment, subluxation, and bone density relationship in the osteoarthritic varus knee. J Knee Surg. 2015;28(3):207–12.PubMed Khamaisy S, Nam D, Thein R, Rivkin G, Liebergall M, Pearle A. Limb alignment, subluxation, and bone density relationship in the osteoarthritic varus knee. J Knee Surg. 2015;28(3):207–12.PubMed
11.
go back to reference Biswal S, Hastie T, Andriacchi TP, Bergman GA, Dillingham MF, Lang P. Risk factors for progressive cartilage loss in the knee: a longitudinal magnetic resonance imaging study in forty-three patients. Arthritis Rheum. 2002;46:2884–92.CrossRefPubMed Biswal S, Hastie T, Andriacchi TP, Bergman GA, Dillingham MF, Lang P. Risk factors for progressive cartilage loss in the knee: a longitudinal magnetic resonance imaging study in forty-three patients. Arthritis Rheum. 2002;46:2884–92.CrossRefPubMed
12.
go back to reference Major NM, Beard LN, Helms CA. Accuracy of MR imaging of the knee in adolescents. Am J Roentgenol. 2003;180(1):17–9.CrossRef Major NM, Beard LN, Helms CA. Accuracy of MR imaging of the knee in adolescents. Am J Roentgenol. 2003;180(1):17–9.CrossRef
13.
go back to reference Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2--preliminary findings at 3 T. Radiology. 2000;214(1):259–66.CrossRefPubMed Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2--preliminary findings at 3 T. Radiology. 2000;214(1):259–66.CrossRefPubMed
14.
go back to reference Abdulaal OM, Rainford L, MacMahon P, Kavanagh E, Galligan M. Cashman J, et al. 3T MRI of the knee with optimised isotropic 3D sequences: accurate delineation of intra-articular pathology without prolonged acquisition times. Eur Radiol. 2017;27(11):4563–70.CrossRefPubMed Abdulaal OM, Rainford L, MacMahon P, Kavanagh E, Galligan M. Cashman J, et al. 3T MRI of the knee with optimised isotropic 3D sequences: accurate delineation of intra-articular pathology without prolonged acquisition times. Eur Radiol. 2017;27(11):4563–70.CrossRefPubMed
15.
16.
go back to reference Peterfy CG, Guermazi A, Zaim S, Tirman PFJ, Miaux Y, White D, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil. 2004;12(3):177–90.CrossRefPubMed Peterfy CG, Guermazi A, Zaim S, Tirman PFJ, Miaux Y, White D, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil. 2004;12(3):177–90.CrossRefPubMed
17.
go back to reference Eckstein F, Wirth W, Hudelmaier MI, Maschek S, Hitzl W, Wyman BT, et al. Relationship of compartment-specific structural knee status at baseline with change in cartilage morphology: a prospective observational study using data from the osteoarthritis initiative. Arthritis Res Ther. 2009;11(3):R90.CrossRefPubMedPubMedCentral Eckstein F, Wirth W, Hudelmaier MI, Maschek S, Hitzl W, Wyman BT, et al. Relationship of compartment-specific structural knee status at baseline with change in cartilage morphology: a prospective observational study using data from the osteoarthritis initiative. Arthritis Res Ther. 2009;11(3):R90.CrossRefPubMedPubMedCentral
18.
go back to reference Potter HG, Jain SK, Ma Y, Black BR, Fung S, Lyman S. Cartilage injury after acute, isolated anterior cruciate ligament tear: immediate and longitudinal effect with clinical/MRI follow-up. Am J Sports Med. 2012;40(2):276–85.CrossRefPubMed Potter HG, Jain SK, Ma Y, Black BR, Fung S, Lyman S. Cartilage injury after acute, isolated anterior cruciate ligament tear: immediate and longitudinal effect with clinical/MRI follow-up. Am J Sports Med. 2012;40(2):276–85.CrossRefPubMed
19.
go back to reference Van Ginckel A, Verdonk P, Witvrouw E. Cartilage adaptation after anterior cruciate ligament injury and reconstruction: implications for clinical management and research? A systematic review of longitudinal MRI studies. Osteoarthr Cartil. 2013;21(8):1009–24.CrossRefPubMed Van Ginckel A, Verdonk P, Witvrouw E. Cartilage adaptation after anterior cruciate ligament injury and reconstruction: implications for clinical management and research? A systematic review of longitudinal MRI studies. Osteoarthr Cartil. 2013;21(8):1009–24.CrossRefPubMed
20.
go back to reference Thein R, Boorman-Padgett J, Khamaisy S, Zuiderbaan HA, Wickiewicz TL, Imhauser CW, et al. Medial subluxation of the tibia after anterior cruciate ligament rupture as revealed by standing radiographs and comparison with a cadaveric model. Am J Sports Med. 2015;43(12):3027–33.CrossRefPubMed Thein R, Boorman-Padgett J, Khamaisy S, Zuiderbaan HA, Wickiewicz TL, Imhauser CW, et al. Medial subluxation of the tibia after anterior cruciate ligament rupture as revealed by standing radiographs and comparison with a cadaveric model. Am J Sports Med. 2015;43(12):3027–33.CrossRefPubMed
22.
go back to reference Simon D, Mascarenhas R, Saltzman BM, Rollins M, Bach BR Jr, MacDonald P. The relationship between anterior cruciate ligament injury and osteoarthritis of the knee. Adv Orthop. 2015;2015:928301.CrossRefPubMedPubMedCentral Simon D, Mascarenhas R, Saltzman BM, Rollins M, Bach BR Jr, MacDonald P. The relationship between anterior cruciate ligament injury and osteoarthritis of the knee. Adv Orthop. 2015;2015:928301.CrossRefPubMedPubMedCentral
23.
go back to reference Defrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med. 2006;34(8):1240–6.CrossRefPubMed Defrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med. 2006;34(8):1240–6.CrossRefPubMed
24.
go back to reference Li G, Papannagari R, DeFrate LE, Yoo JD, Park SE, Gill TJ. The effects of ACL deficiency on mediolateral translation and varus-valgus rotation. Acta Orthop. 2007;78(3):355–60.CrossRefPubMed Li G, Papannagari R, DeFrate LE, Yoo JD, Park SE, Gill TJ. The effects of ACL deficiency on mediolateral translation and varus-valgus rotation. Acta Orthop. 2007;78(3):355–60.CrossRefPubMed
25.
go back to reference Fukubayashi T, Torzilli PA, Sherman MF, Warren RF. An in vitro biomechanical evaluation of anterior-posterior motion of the knee. Tibial displacement, rotation, and torque. J Bone Joint Surg Am. 1982;64(2):258–64.CrossRefPubMed Fukubayashi T, Torzilli PA, Sherman MF, Warren RF. An in vitro biomechanical evaluation of anterior-posterior motion of the knee. Tibial displacement, rotation, and torque. J Bone Joint Surg Am. 1982;64(2):258–64.CrossRefPubMed
26.
go back to reference Lipke JM, Janecki CJ, Nelson CL, McLeod P, Thompson C, Thompson J, et al. The role of incompetence of the anterior cruciate and lateral ligaments in anterolateral and anteromedial instability. A biomechanical study of cadaver knees. J Bone Joint Surg Am. 1981;63(6):954–60.CrossRefPubMed Lipke JM, Janecki CJ, Nelson CL, McLeod P, Thompson C, Thompson J, et al. The role of incompetence of the anterior cruciate and lateral ligaments in anterolateral and anteromedial instability. A biomechanical study of cadaver knees. J Bone Joint Surg Am. 1981;63(6):954–60.CrossRefPubMed
27.
go back to reference Dargel J, Gotter M, Mader K, Pennig D, Koebke J, Schmidt-Wiethoff R. Biomechanics of the anterior cruciate ligament and implications for surgical reconstruction. Strategies Trauma Limb Reconstr. 2007;2(1):1–12.CrossRefPubMedPubMedCentral Dargel J, Gotter M, Mader K, Pennig D, Koebke J, Schmidt-Wiethoff R. Biomechanics of the anterior cruciate ligament and implications for surgical reconstruction. Strategies Trauma Limb Reconstr. 2007;2(1):1–12.CrossRefPubMedPubMedCentral
28.
go back to reference Tachibana Y, Mae T, Fujie H, Shino K, Ohori T, Yoshikawa H, et al. Effect of radial meniscal tear on in situ forces of meniscus and tibiofemoral relationship. Knee Surg Sports Traumatol Arthrosc. 2017;25(2):355–61.CrossRefPubMed Tachibana Y, Mae T, Fujie H, Shino K, Ohori T, Yoshikawa H, et al. Effect of radial meniscal tear on in situ forces of meniscus and tibiofemoral relationship. Knee Surg Sports Traumatol Arthrosc. 2017;25(2):355–61.CrossRefPubMed
29.
go back to reference Arno S, Bell CP, Uquillas C, Borukhov I, Walker PS. Tibiofemoral contact mechanics following a horizontal cleavage lesion in the posterior horn of the medial meniscus. J Orthop Res. 2015;33(4):584–90.CrossRefPubMed Arno S, Bell CP, Uquillas C, Borukhov I, Walker PS. Tibiofemoral contact mechanics following a horizontal cleavage lesion in the posterior horn of the medial meniscus. J Orthop Res. 2015;33(4):584–90.CrossRefPubMed
30.
go back to reference Christoforakis J, Pradhan R, Sanchez-Ballester J, Hunt N, Strachan RK. Is there an association between articular cartilage changes and degenerative meniscus tears? Arthroscopy. 2005;21(11):1366–9.CrossRefPubMed Christoforakis J, Pradhan R, Sanchez-Ballester J, Hunt N, Strachan RK. Is there an association between articular cartilage changes and degenerative meniscus tears? Arthroscopy. 2005;21(11):1366–9.CrossRefPubMed
32.
go back to reference Ho-Pham LT, Lai TQ, Mai LD, Doan MC, Pham HN, Nguyen TV. Prevalence of radiographic osteoarthritis of the knee and its relationship to self-reported pain. PLoS One. 2014;9(4):e94563.CrossRefPubMedPubMedCentral Ho-Pham LT, Lai TQ, Mai LD, Doan MC, Pham HN, Nguyen TV. Prevalence of radiographic osteoarthritis of the knee and its relationship to self-reported pain. PLoS One. 2014;9(4):e94563.CrossRefPubMedPubMedCentral
Metadata
Title
Patterns of cartilage degeneration in knees with medial tibiofemoral offset
Authors
Palanan Siriwanarangsun
Karen C. Chen
Tim Finkenstaedt
Won C. Bae
Sheronda Statum
Amilcare Gentili
Christine B. Chung
Publication date
01-06-2019
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 6/2019
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-018-3093-3

Other articles of this Issue 6/2019

Skeletal Radiology 6/2019 Go to the issue