Skip to main content
Top
Published in: Acta Neuropathologica 1/2017

Open Access 01-01-2017 | Original Paper

Pathological TDP-43 changes in Betz cells differ from those in bulbar and spinal α-motoneurons in sporadic amyotrophic lateral sclerosis

Authors: Heiko Braak, Albert C. Ludolph, Manuela Neumann, John Ravits, Kelly Del Tredici

Published in: Acta Neuropathologica | Issue 1/2017

Login to get access

Abstract

Two nerve cells types, Betz cells in layer Vb of the primary motor neocortex and α-motoneurons of the lower brainstem and spinal cord, become involved at the beginning of the pathological cascade underlying sporadic amyotrophic lateral sclerosis (sALS). In both neuronal types, the cell nuclei forfeit their normal (non-phosphorylated) expression of the 43-kDa transactive response DNA-binding protein (TDP-43). Here, we present initial evidence that in α-motoneurons the loss of normal nuclear TDP-43 expression is followed by the formation of phosphorylated TDP-43 aggregates (pTDP-43) within the cytoplasm, whereas in Betz cells, by contrast, the loss of normal nuclear TDP-43 expression remains mostly unaccompanied by the development of cytoplasmic aggregations. We discuss some implications of this phenomenon of nuclear clearing in the absence of cytoplasmic inclusions, namely, abnormal but soluble (and, thus, probably toxic) cytoplasmic TDP-43 could enter the axoplasm of Betz cells, and following its transmission to the corresponding α-motoneurons in the lower brainstem and spinal cord, possibly contribute in recipient neurons to the dysregulation of the normal nuclear protein. Because the cellular mechanisms that possibly inhibit the aggregation of TDP-43 in the cytoplasm of involved Betz cells are unknown, insight into such mechanisms could disclose a pathway by which the development of aggregates in this cell population could be accelerated, thereby opening an avenue for a causally based therapy.
Literature
1.
go back to reference Al-Chalabi A, Jones A, Troakes C, King A, Al-Sarraj S, van den Berg LH (2012) The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol 124:339–352CrossRefPubMed Al-Chalabi A, Jones A, Troakes C, King A, Al-Sarraj S, van den Berg LH (2012) The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol 124:339–352CrossRefPubMed
2.
go back to reference Appel SH (1981) Unifying hypothesis for the cause of amyotrophic lateral sclerosis, Parkinsonism and Alzheimer disease. Ann Neurol 10:499–505CrossRefPubMed Appel SH (1981) Unifying hypothesis for the cause of amyotrophic lateral sclerosis, Parkinsonism and Alzheimer disease. Ann Neurol 10:499–505CrossRefPubMed
3.
go back to reference Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611CrossRefPubMed Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611CrossRefPubMed
4.
go back to reference Ayala YM, Zago P, D’Ambrogio D, Xu YF, Buratti E et al (2008) Structural determinants of the cellular localization and shuttling of TDP-43. J Cell Sci 121:3778–3785CrossRefPubMed Ayala YM, Zago P, D’Ambrogio D, Xu YF, Buratti E et al (2008) Structural determinants of the cellular localization and shuttling of TDP-43. J Cell Sci 121:3778–3785CrossRefPubMed
5.
go back to reference Betz W (1874) Anatomischer Nachweis zweier Gehirncentra. Centralblatt für die medizinischen Wissenschaften 12(578–580):595–599 Betz W (1874) Anatomischer Nachweis zweier Gehirncentra. Centralblatt für die medizinischen Wissenschaften 12(578–580):595–599
6.
go back to reference Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin, pp 1–147 Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin, pp 1–147
7.
go back to reference Braak H (1984) Architectonics as seen by lipofuscin stains. In: Jones EG, Peters A (eds) Cerebral cortex. Cellular components of the cerebral cortex, Vol I. Plenum Press, New York, pp 59–104 Braak H (1984) Architectonics as seen by lipofuscin stains. In: Jones EG, Peters A (eds) Cerebral cortex. Cellular components of the cerebral cortex, Vol I. Plenum Press, New York, pp 59–104
8.
go back to reference Braak H, Braak E (1991) Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol 1:213–216CrossRefPubMed Braak H, Braak E (1991) Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol 1:213–216CrossRefPubMed
9.
go back to reference Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211CrossRefPubMed Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211CrossRefPubMed
10.
go back to reference Braak H, Ludolph AC, Thal DR, Del Tredici K (2010) Amyotrophic lateral sclerosis: dash-like inclusions of phosphorylated TDP-43 in somatodendritic and axonal compartments of somatomotor neurons of the lower brainstem and spinal cord. Acta Neuropathol 120:67–74CrossRefPubMed Braak H, Ludolph AC, Thal DR, Del Tredici K (2010) Amyotrophic lateral sclerosis: dash-like inclusions of phosphorylated TDP-43 in somatodendritic and axonal compartments of somatomotor neurons of the lower brainstem and spinal cord. Acta Neuropathol 120:67–74CrossRefPubMed
11.
go back to reference Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969CrossRefPubMed Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969CrossRefPubMed
12.
go back to reference Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Del Tredici K (2013) Amyotrophic lateral sclerosis––a model of corticofugal axonal spread. Nat Rev Neurol 9:708–714CrossRefPubMedPubMedCentral Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Del Tredici K (2013) Amyotrophic lateral sclerosis––a model of corticofugal axonal spread. Nat Rev Neurol 9:708–714CrossRefPubMedPubMedCentral
13.
go back to reference Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38CrossRefPubMedPubMedCentral Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38CrossRefPubMedPubMedCentral
14.
go back to reference Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig, pp 1–324 Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig, pp 1–324
15.
go back to reference Brooks BR (1991) The role of axonal transport in neurodegenerative disease spread: a meta-analysis of experimental and clinical poliomyelitis compares with amyotrophic lateral sclerosis. Can J Neurol Sci 18(Suppl 3):435–438CrossRefPubMed Brooks BR (1991) The role of axonal transport in neurodegenerative disease spread: a meta-analysis of experimental and clinical poliomyelitis compares with amyotrophic lateral sclerosis. Can J Neurol Sci 18(Suppl 3):435–438CrossRefPubMed
16.
go back to reference Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299CrossRefPubMed Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299CrossRefPubMed
17.
go back to reference Büttner-Ennever JA (2006) The extraocular motor nuclei: organization and functional neuroanatomy. Prog Brain Res 151:95–125CrossRefPubMed Büttner-Ennever JA (2006) The extraocular motor nuclei: organization and functional neuroanatomy. Prog Brain Res 151:95–125CrossRefPubMed
18.
go back to reference Chou SM, Norris FH (1993) Aymotrophic lateral sclerosis: lower motor neuron disease spreading to upper motor neurons. Muscle Nerve 16:864–869CrossRefPubMed Chou SM, Norris FH (1993) Aymotrophic lateral sclerosis: lower motor neuron disease spreading to upper motor neurons. Muscle Nerve 16:864–869CrossRefPubMed
19.
go back to reference D’Angelo MA, Raices M, Panowski SH, Hetzer MW (2009) Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136:284–295CrossRefPubMedPubMedCentral D’Angelo MA, Raices M, Panowski SH, Hetzer MW (2009) Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136:284–295CrossRefPubMedPubMedCentral
20.
go back to reference Eisen A, Weber M (2001) The motor cortex and amyotrophic lateral sclerosis. Muscle Nerve 24:564–579CrossRefPubMed Eisen A, Weber M (2001) The motor cortex and amyotrophic lateral sclerosis. Muscle Nerve 24:564–579CrossRefPubMed
21.
go back to reference Falcon B, Cavallini A, Angers R, Glover S, Murray TK, Barnham L et al (2015) Conformation determines the seeding potencies of native and recombinant tau aggregates. J Biol Chem 290:1049–1065CrossRefPubMed Falcon B, Cavallini A, Angers R, Glover S, Murray TK, Barnham L et al (2015) Conformation determines the seeding potencies of native and recombinant tau aggregates. J Biol Chem 290:1049–1065CrossRefPubMed
22.
go back to reference Fallini C, Bassell G, Rossoll W (2012) The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. Hum Mol Genet 21:3708–3718CrossRef Fallini C, Bassell G, Rossoll W (2012) The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. Hum Mol Genet 21:3708–3718CrossRef
23.
go back to reference Fatima M, Tan R, Halliday GM, Kril JJ (2015) Spread of pathology in amyotrophic lateral sclerosis: assessment of phosphorylated TDP-43 along axonal pathways. Acta Neuropathol Commun 3:47CrossRefPubMedPubMedCentral Fatima M, Tan R, Halliday GM, Kril JJ (2015) Spread of pathology in amyotrophic lateral sclerosis: assessment of phosphorylated TDP-43 along axonal pathways. Acta Neuropathol Commun 3:47CrossRefPubMedPubMedCentral
24.
go back to reference Feiler MS, Strobel B, Freischmidt A, Helferich AM, Kappel J, Brewer BM et al (2015) TDP-43 is intercellularly transmitted across axon terminals. J Cell Biol 211:897–911CrossRefPubMedPubMedCentral Feiler MS, Strobel B, Freischmidt A, Helferich AM, Kappel J, Brewer BM et al (2015) TDP-43 is intercellularly transmitted across axon terminals. J Cell Biol 211:897–911CrossRefPubMedPubMedCentral
25.
go back to reference Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A et al (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185:232–240CrossRefPubMed Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A et al (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185:232–240CrossRefPubMed
26.
go back to reference Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Diaz-Cabiale Z, Rivera A, Ferraro L et al (2012) Extrasynaptic neurotransmission in the modulation of brain function. Focus on the striatal neuronal-glial networks. Front Physiol 3:136CrossRefPubMedPubMedCentral Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Diaz-Cabiale Z, Rivera A, Ferraro L et al (2012) Extrasynaptic neurotransmission in the modulation of brain function. Focus on the striatal neuronal-glial networks. Front Physiol 3:136CrossRefPubMedPubMedCentral
27.
go back to reference Geser F, Brandmeir NJ, Kwong LK, Martinez-Lage M, McCluskey L, Xie SX et al (2008) Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol 65:636–641CrossRefPubMed Geser F, Brandmeir NJ, Kwong LK, Martinez-Lage M, McCluskey L, Xie SX et al (2008) Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol 65:636–641CrossRefPubMed
28.
go back to reference Giordana MT, Piccinini M, Grifoni S, De Marco G, Verecellino M, Magistrello M et al (2010) TDP-43 redistribution is an early event in sporadic amyotrophic lateral sclerosis. Brain Pathol 20:351–360CrossRefPubMed Giordana MT, Piccinini M, Grifoni S, De Marco G, Verecellino M, Magistrello M et al (2010) TDP-43 redistribution is an early event in sporadic amyotrophic lateral sclerosis. Brain Pathol 20:351–360CrossRefPubMed
29.
go back to reference Grad LI, Fernando SM, Cashman NR (2015) From molecule to molecule and cell to cell: prion-like mechanisms in amyotrophic lateral sclerosis. Neurobiol Dis 77:257–265CrossRefPubMed Grad LI, Fernando SM, Cashman NR (2015) From molecule to molecule and cell to cell: prion-like mechanisms in amyotrophic lateral sclerosis. Neurobiol Dis 77:257–265CrossRefPubMed
30.
go back to reference Guettier-Sigrist S, Hugel B, Coupin G, Freyssiner JM, Poindron P, Warter JM (2002) Possible pathogenic role of muscle cell dysfunction in motor neuron death in spinal muscular atrophy. Muscle Nerve 25:700–708CrossRefPubMed Guettier-Sigrist S, Hugel B, Coupin G, Freyssiner JM, Poindron P, Warter JM (2002) Possible pathogenic role of muscle cell dysfunction in motor neuron death in spinal muscular atrophy. Muscle Nerve 25:700–708CrossRefPubMed
31.
go back to reference Hardy J, Rogaeva E (2014) Motor neuron disease and frontotemporal dementia: sometimes related, sometimes not. Exp Neurol 262(Pt B):75–83CrossRefPubMed Hardy J, Rogaeva E (2014) Motor neuron disease and frontotemporal dementia: sometimes related, sometimes not. Exp Neurol 262(Pt B):75–83CrossRefPubMed
32.
go back to reference Hasegawa M, Arai T, Nonaka T, Kametani F, Yoshida M, Hashizume Y et al (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64:60–70CrossRefPubMedPubMedCentral Hasegawa M, Arai T, Nonaka T, Kametani F, Yoshida M, Hashizume Y et al (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64:60–70CrossRefPubMedPubMedCentral
33.
go back to reference Hornberger M, Kiernan MC (2016) Emergence of an imaging biomarker for amyotrophic lateral sclerosis: is the end point near? J Neurol Neurosurg Psychiatry 87:569CrossRefPubMed Hornberger M, Kiernan MC (2016) Emergence of an imaging biomarker for amyotrophic lateral sclerosis: is the end point near? J Neurol Neurosurg Psychiatry 87:569CrossRefPubMed
34.
go back to reference Kametani F, Obi T, Shishido T, Akatsu H, Muryama S et al (2016) Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. Sci Rep 6:23281CrossRefPubMedPubMedCentral Kametani F, Obi T, Shishido T, Akatsu H, Muryama S et al (2016) Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. Sci Rep 6:23281CrossRefPubMedPubMedCentral
35.
go back to reference Kanouchi T, Ohkubo T, Yokota T (2012) Can regional spreading of amyotrophic lateral sclerosis motor symptoms be explained by prion-like propagation? J Neurol Neurosurg Psychiatry 83:739–745CrossRefPubMedPubMedCentral Kanouchi T, Ohkubo T, Yokota T (2012) Can regional spreading of amyotrophic lateral sclerosis motor symptoms be explained by prion-like propagation? J Neurol Neurosurg Psychiatry 83:739–745CrossRefPubMedPubMedCentral
36.
go back to reference Kassubek J, Müller HP, Del Tredici K, Brettschneider J, Pinkhardt EH, Lulé D et al (2014) Diffusion tensor imaging analysis of sequential spreading of disease in amyotrophic lateral sclerosis confirms patterns ofTDP-43 pathology. Brain 137:1733–1740CrossRefPubMed Kassubek J, Müller HP, Del Tredici K, Brettschneider J, Pinkhardt EH, Lulé D et al (2014) Diffusion tensor imaging analysis of sequential spreading of disease in amyotrophic lateral sclerosis confirms patterns ofTDP-43 pathology. Brain 137:1733–1740CrossRefPubMed
37.
go back to reference Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955CrossRefPubMed Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955CrossRefPubMed
38.
go back to reference Kushchayev SV, Moskalenko VF, Wiener PC, Tsymbaliuk VI, Cherkasov VG, Dzyavulska IV et al (2012) The discovery of the pyramidal neurons: Vladimir Betz and a new era of neuroscience. Brain 135:285–300CrossRefPubMed Kushchayev SV, Moskalenko VF, Wiener PC, Tsymbaliuk VI, Cherkasov VG, Dzyavulska IV et al (2012) The discovery of the pyramidal neurons: Vladimir Betz and a new era of neuroscience. Brain 135:285–300CrossRefPubMed
39.
go back to reference Kuypers HGJM (1981) Anatomy of the descending pathways. In: Brookhart JM, Mountcastle VB (eds) Handbook of Physiology, Neurophysiology, vol 2. American Physiological Society, Bethesda, pp 597–666 Kuypers HGJM (1981) Anatomy of the descending pathways. In: Brookhart JM, Mountcastle VB (eds) Handbook of Physiology, Neurophysiology, vol 2. American Physiological Society, Bethesda, pp 597–666
40.
go back to reference Lam HT, Graber MC, Gentry KA, Bieschke J (2016) Stabilization of & #x03B1;-synuclein fibril clusters prevents fragmentation and reduces seeding activity and toxicity. Biochemistry 55:675–685CrossRefPubMed Lam HT, Graber MC, Gentry KA, Bieschke J (2016) Stabilization of & #x03B1;-synuclein fibril clusters prevents fragmentation and reduces seeding activity and toxicity. Biochemistry 55:675–685CrossRefPubMed
41.
go back to reference Lee EB, Lee VM, Trojanowski JQ (2012) Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13:38–50 Lee EB, Lee VM, Trojanowski JQ (2012) Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13:38–50
42.
go back to reference Lee S, Kim HJ (2015) Prion-like mechanism in amyotrophic lateral sclerosis: are protein aggregates the key? Exp Neurobiol 24:1–7CrossRefPubMed Lee S, Kim HJ (2015) Prion-like mechanism in amyotrophic lateral sclerosis: are protein aggregates the key? Exp Neurobiol 24:1–7CrossRefPubMed
43.
45.
go back to reference Lemon RN (2010) What drives corticospinal output? Biol Rep 2:51 Lemon RN (2010) What drives corticospinal output? Biol Rep 2:51
46.
go back to reference Lemon RN, Kirkwood PA, Maier MA, Nakajima K, Nathan P (2004) Direct and indirect pathways for corticospinal control of upper limb motoneurons in the primate. Prog Brain Res 143:263–279CrossRefPubMed Lemon RN, Kirkwood PA, Maier MA, Nakajima K, Nathan P (2004) Direct and indirect pathways for corticospinal control of upper limb motoneurons in the primate. Prog Brain Res 143:263–279CrossRefPubMed
47.
go back to reference Lokesh C, Wijsekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4:3CrossRef Lokesh C, Wijsekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4:3CrossRef
48.
go back to reference Ludolph A, Drory V, Hardiman O, Nakano I, Ravits J, Robberecht W et al (2015) A revision of the El Escorial criteria––2015. Amyotroph Lateral Scler Frontotemporal Degener 16:291–292CrossRefPubMed Ludolph A, Drory V, Hardiman O, Nakano I, Ravits J, Robberecht W et al (2015) A revision of the El Escorial criteria––2015. Amyotroph Lateral Scler Frontotemporal Degener 16:291–292CrossRefPubMed
49.
go back to reference Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns N et al (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61:427–434CrossRefPubMed Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns N et al (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61:427–434CrossRefPubMed
50.
go back to reference Maniecka Z, Polymenidou M (2015) From nucleation to widespread propagation: a prion-like concept for ALS. Virus Res 2:94–105CrossRef Maniecka Z, Polymenidou M (2015) From nucleation to widespread propagation: a prion-like concept for ALS. Virus Res 2:94–105CrossRef
51.
go back to reference Mihevc SP, Darovic S, Kovanda A, Česnik AB, Župunski V, Rogelj B (2016) Nuclear trafficking in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Brain. doi:10.1093/brain/aww1971-14 Mihevc SP, Darovic S, Kovanda A, Česnik AB, Župunski V, Rogelj B (2016) Nuclear trafficking in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Brain. doi:10.​1093/​brain/​aww1971-14
52.
go back to reference Mori F, Tanji K, Zhang HX, Hishihara Y, Tan CF, Takahashi H et al (2008) Maturation process of TDP-43-positive neuronal cytoplasmic inclusions in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol 116:193–203CrossRefPubMed Mori F, Tanji K, Zhang HX, Hishihara Y, Tan CF, Takahashi H et al (2008) Maturation process of TDP-43-positive neuronal cytoplasmic inclusions in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol 116:193–203CrossRefPubMed
53.
go back to reference Müller HP, Turner MR, Grosskreutz J, Abrahmas S, Bede P, Govind V et al (2016) A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 87:570–579CrossRefPubMed Müller HP, Turner MR, Grosskreutz J, Abrahmas S, Bede P, Govind V et al (2016) A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 87:570–579CrossRefPubMed
54.
go back to reference Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133CrossRefPubMed Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133CrossRefPubMed
55.
go back to reference Neumann M, Kwong LK, Lee EB, Kremmer E, Flatley A, Xu Y et al (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117:137–149CrossRefPubMedPubMedCentral Neumann M, Kwong LK, Lee EB, Kremmer E, Flatley A, Xu Y et al (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117:137–149CrossRefPubMedPubMedCentral
56.
go back to reference Nihei K, McKee AC, Kowall NW (1993) Patterns of neuronal degeneration in the motor cortex of amyotrophic lateral sclerosis. Acta Neuropathol 86:55–64CrossRefPubMed Nihei K, McKee AC, Kowall NW (1993) Patterns of neuronal degeneration in the motor cortex of amyotrophic lateral sclerosis. Acta Neuropathol 86:55–64CrossRefPubMed
57.
go back to reference Nishihira Y, Tan CF, Hoshi Y, Iwanaga K, Yamada M, Kawachi I et al (2009) Sporadic amyotrophic lateral sclerosis of long duration is associated with relatively mild TDP-43 pathology. Acta Neuropathol 117:45–53CrossRefPubMed Nishihira Y, Tan CF, Hoshi Y, Iwanaga K, Yamada M, Kawachi I et al (2009) Sporadic amyotrophic lateral sclerosis of long duration is associated with relatively mild TDP-43 pathology. Acta Neuropathol 117:45–53CrossRefPubMed
58.
go back to reference Okamoto K, Hirai S, Amari M, Iizuka T, Watanabe M, Murakami N et al (1993) Oculomotor nuclear pathology in amyotrophic lateral sclerosis. Acta Neuropathol 85:458–462CrossRefPubMed Okamoto K, Hirai S, Amari M, Iizuka T, Watanabe M, Murakami N et al (1993) Oculomotor nuclear pathology in amyotrophic lateral sclerosis. Acta Neuropathol 85:458–462CrossRefPubMed
59.
go back to reference Pasquali L, Lenzi P, Biagioni F, Siciliano G, Fornai F (2014) Cell to cell spreading of misfolded proteins as a therapeutic target in motor neuron disease. Curr Med Chem 21:3508–3534CrossRefPubMed Pasquali L, Lenzi P, Biagioni F, Siciliano G, Fornai F (2014) Cell to cell spreading of misfolded proteins as a therapeutic target in motor neuron disease. Curr Med Chem 21:3508–3534CrossRefPubMed
60.
go back to reference Piao YS, Wakabayashi K, Kakita A, Yamada M, Hayashi S, Morita T et al (2003) Neuropathology with clinical correlations of sporadic amyotrophic lateral sclerosis: 102 autopsy cases examined between 1962 and 2000. Brain Pathol 13:10–22CrossRefPubMed Piao YS, Wakabayashi K, Kakita A, Yamada M, Hayashi S, Morita T et al (2003) Neuropathology with clinical correlations of sporadic amyotrophic lateral sclerosis: 102 autopsy cases examined between 1962 and 2000. Brain Pathol 13:10–22CrossRefPubMed
61.
go back to reference Pikkarainen M, Martikainen P, Alafuzoff I (2010) The effect of prolonged fixation time on immunohistochemical staining of common neurodegenerative disease markers. J Neuropathol Exp Neurol 69:40–52CrossRefPubMed Pikkarainen M, Martikainen P, Alafuzoff I (2010) The effect of prolonged fixation time on immunohistochemical staining of common neurodegenerative disease markers. J Neuropathol Exp Neurol 69:40–52CrossRefPubMed
64.
go back to reference Ratti A, Buratti E (2016) Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J Neurochem 138(Suppl 1):95–111CrossRefPubMed Ratti A, Buratti E (2016) Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J Neurochem 138(Suppl 1):95–111CrossRefPubMed
65.
go back to reference Ravits JM, La Spada AR (2009) ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73:805–811CrossRefPubMedPubMedCentral Ravits JM, La Spada AR (2009) ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73:805–811CrossRefPubMedPubMedCentral
66.
67.
go back to reference Schmidt R, de Reus MA, Scholtens LH, van den Berg LH, van den Heuvel MP (2016) Simulating disease propagation across white matter connectome reveals anatomical substrate for neuropathology staging in amyotrophic lateral sclerosis. NeuroImage 124:762–769CrossRefPubMed Schmidt R, de Reus MA, Scholtens LH, van den Berg LH, van den Heuvel MP (2016) Simulating disease propagation across white matter connectome reveals anatomical substrate for neuropathology staging in amyotrophic lateral sclerosis. NeuroImage 124:762–769CrossRefPubMed
68.
go back to reference Sharma R, Hicks S, Berna CM, Kennard C, Talbot K, Turner MR (2011) Oculomotor dysfunction in amyotrophic lateral sclerosis: a comprehensive review. Arch Neurol 68:857–861CrossRefPubMed Sharma R, Hicks S, Berna CM, Kennard C, Talbot K, Turner MR (2011) Oculomotor dysfunction in amyotrophic lateral sclerosis: a comprehensive review. Arch Neurol 68:857–861CrossRefPubMed
69.
go back to reference Smethurst P, Sidle KCL, Hardy J (2015) Review: prion-like mechanisms of transactive response DNA binding protein of 43 kDa (TDP-43) in amyotrophic lateral sclerosis (ALS). Neuropathol Appl Neurobiol 41:578–597CrossRefPubMed Smethurst P, Sidle KCL, Hardy J (2015) Review: prion-like mechanisms of transactive response DNA binding protein of 43 kDa (TDP-43) in amyotrophic lateral sclerosis (ALS). Neuropathol Appl Neurobiol 41:578–597CrossRefPubMed
70.
go back to reference Tan RH, Shepherd CE, Kril JJ, McCann H, McGeachie A, McGinley C et al (2013) Classification of FTLD-TDP cases into pathological subtypes using antibodies against phosphorylated and non-phosphorylated TDP43. Acta Neuropathol Commun 1:33CrossRefPubMedPubMedCentral Tan RH, Shepherd CE, Kril JJ, McCann H, McGeachie A, McGinley C et al (2013) Classification of FTLD-TDP cases into pathological subtypes using antibodies against phosphorylated and non-phosphorylated TDP43. Acta Neuropathol Commun 1:33CrossRefPubMedPubMedCentral
71.
go back to reference Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800CrossRefPubMed Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800CrossRefPubMed
72.
go back to reference Trueta C, De-Miguel FF (2012) Extrasynaptic exocytosis and its mechanisms: a source of molecular mediating volume transmission in the nervous system. Front Physiol 3:319PubMedPubMedCentral Trueta C, De-Miguel FF (2012) Extrasynaptic exocytosis and its mechanisms: a source of molecular mediating volume transmission in the nervous system. Front Physiol 3:319PubMedPubMedCentral
73.
go back to reference Zhang H, Tan CF, Mori F et al (2008) TDP-43 immunoreactive neuronal and glial inclusions in the neostriatum in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol 115:115–122CrossRefPubMed Zhang H, Tan CF, Mori F et al (2008) TDP-43 immunoreactive neuronal and glial inclusions in the neostriatum in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol 115:115–122CrossRefPubMed
Metadata
Title
Pathological TDP-43 changes in Betz cells differ from those in bulbar and spinal α-motoneurons in sporadic amyotrophic lateral sclerosis
Authors
Heiko Braak
Albert C. Ludolph
Manuela Neumann
John Ravits
Kelly Del Tredici
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Acta Neuropathologica / Issue 1/2017
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-016-1633-2

Other articles of this Issue 1/2017

Acta Neuropathologica 1/2017 Go to the issue