Skip to main content
Top
Published in: Diagnostic Pathology 1/2012

Open Access 01-12-2012 | Research

Pathological and immunohistochemical study of lethal primary brain stem injuries

Authors: Sun Rongchao, Yang Shudong, Zhou Zhiyi

Published in: Diagnostic Pathology | Issue 1/2012

Login to get access

Abstract

Background

Many of the deaths that occur shortly after injury or in hospitals are caused by mild trauma. Slight morphological changes are often found in the brain stems of these patients during autopsy. The purpose of this study is to investigate the histopathological changes involved in primary brain stem injuries (PBSI) and their diagnostic significance.

Methods

A total of 65 patients who had died of PBSI and other conditions were randomly selected. They were divided into 2 groups, an injury group (25 cases) and a control group (20 cases). Slides of each patient’s midbrain, pons, and medulla oblongata were prepared and stained with HE, argentaffin, and immunohistochemical agents (GFAP, NF, amyloid-ß, MBP). Under low power (×100) and NF staining, the diameter of the thickest longitudinal axon was measured at its widest point. Ten such diameters were collected for each part of the brain (midbrain, pons, and medulla oblongata). Data were recorded and analyzed statistically.

Results

Brain stem contusions, astrocyte activity, edema, and pathological changes in the neurons were visibly different in the injury and control groups (P < 0.05). Characteristic changes occurred in the neural axons, axon diameter varied from axon to axon and even over different segments of one axon, and several pathological phenomena were observed. These included segmental thickening and curving, wave-like processing, disarrangement, and irregular swelling. A few axons ruptured and intumesced into retraction balls. Immunohistochemical MBP staining showed enlargement and curving of spaces between the myelin sheaths and axons in certain areas. The myelin sheaths lining the surfaces of the axons were in some cases incomplete and even exfoliated, and segmentation disappeared. These pathological changes increased in severity over time (P < 0.05).

Conclusions

These histopathological changes may prove beneficial to the pathological diagnosis of PBSI during autopsy. The measurement of axon diameters provides a referent quantitative index for the diagnosis of the specific causes of death involved in PBSI.

Virtual Slides

The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1345298818712204
Appendix
Available only for authorised users
Literature
1.
go back to reference Wong CW: The MRI and CT evidence of primary brain stem injury. Surg Neurol. 1993, 39 (1): 37-40. 10.1016/0090-3019(93)90107-C.CrossRefPubMed Wong CW: The MRI and CT evidence of primary brain stem injury. Surg Neurol. 1993, 39 (1): 37-40. 10.1016/0090-3019(93)90107-C.CrossRefPubMed
2.
go back to reference Jing S, Ju Y, He Y, He M, Mao B: Clinical features of diffuse axonal injury. Chin J Traumatol. 2001, 4 (4): 204-207.PubMed Jing S, Ju Y, He Y, He M, Mao B: Clinical features of diffuse axonal injury. Chin J Traumatol. 2001, 4 (4): 204-207.PubMed
3.
go back to reference Smith DH, Meaney DF, Shull WH: Diffuse axonal injury in head trauma. J Head Trauma Rehabil. 2003, 18 (4): 307-316. 10.1097/00001199-200307000-00003.CrossRefPubMed Smith DH, Meaney DF, Shull WH: Diffuse axonal injury in head trauma. J Head Trauma Rehabil. 2003, 18 (4): 307-316. 10.1097/00001199-200307000-00003.CrossRefPubMed
4.
go back to reference Li XY, Feng DF: Diffuse axonal injury: novel insights into detection and treatment. J Clin Neurosci. 2009, 16 (5): 614-619. 10.1016/j.jocn.2008.08.005.CrossRefPubMed Li XY, Feng DF: Diffuse axonal injury: novel insights into detection and treatment. J Clin Neurosci. 2009, 16 (5): 614-619. 10.1016/j.jocn.2008.08.005.CrossRefPubMed
5.
go back to reference Al-Sarraj S, Fegan-Earl A, Ugbade A, Bodi I, Chapman R, Poole S, Swift B, Jerreat P, Cary N: Focal traumatic brain stem injury is a rare type of head injury resulting from assault: a forensic neuropathological study. J Forensic Leg Med. 2012, 19 (3): 144-151. 10.1016/j.jflm.2011.12.015.CrossRefPubMed Al-Sarraj S, Fegan-Earl A, Ugbade A, Bodi I, Chapman R, Poole S, Swift B, Jerreat P, Cary N: Focal traumatic brain stem injury is a rare type of head injury resulting from assault: a forensic neuropathological study. J Forensic Leg Med. 2012, 19 (3): 144-151. 10.1016/j.jflm.2011.12.015.CrossRefPubMed
6.
go back to reference Shukla D, Mahadevan A, Sastry KV, Shankar SK: Pathology of post traumatic brainstem and hypothalamic injuries. Clin Neuropathol. 2007, 26 (5): 197-209.CrossRefPubMed Shukla D, Mahadevan A, Sastry KV, Shankar SK: Pathology of post traumatic brainstem and hypothalamic injuries. Clin Neuropathol. 2007, 26 (5): 197-209.CrossRefPubMed
7.
go back to reference Hurley RA, McGowan JC, Arfanakis K, Taber KH: Traumatic Axonal Injury: Novel Insights into Evolution and Identification. J Neuropsychiatry Clin Neurosci. 2004, 16 (2): 1-7.CrossRefPubMed Hurley RA, McGowan JC, Arfanakis K, Taber KH: Traumatic Axonal Injury: Novel Insights into Evolution and Identification. J Neuropsychiatry Clin Neurosci. 2004, 16 (2): 1-7.CrossRefPubMed
8.
go back to reference Meythaler JM, Peduzzi JD, Eleftheriou E, Novack TA: Current concepts: diffuse axonal injury-associated traumatic brain injury. Arch Phys Med Rehabil. 2001, 82 (10): 1461-1471. 10.1053/apmr.2001.25137.CrossRefPubMed Meythaler JM, Peduzzi JD, Eleftheriou E, Novack TA: Current concepts: diffuse axonal injury-associated traumatic brain injury. Arch Phys Med Rehabil. 2001, 82 (10): 1461-1471. 10.1053/apmr.2001.25137.CrossRefPubMed
9.
go back to reference Choo AM, Liu J, Dvorak M, Tetzlaff W, Oxland TR: Secondary pathology following contusion, dislocation, and distraction spinal cord injuries. Exp Neurol. 2008, 212 (2): 490-506. 10.1016/j.expneurol.2008.04.038.CrossRefPubMed Choo AM, Liu J, Dvorak M, Tetzlaff W, Oxland TR: Secondary pathology following contusion, dislocation, and distraction spinal cord injuries. Exp Neurol. 2008, 212 (2): 490-506. 10.1016/j.expneurol.2008.04.038.CrossRefPubMed
10.
go back to reference Hinkle DA, Baldwin SA, Scheff SW, Wise PM: GFAP and S100beta expression in the cortex and hippocampus in response to mild cortical contusion. J Neurotrauma. 1997, 14 (10): 729-738. 10.1089/neu.1997.14.729.CrossRefPubMed Hinkle DA, Baldwin SA, Scheff SW, Wise PM: GFAP and S100beta expression in the cortex and hippocampus in response to mild cortical contusion. J Neurotrauma. 1997, 14 (10): 729-738. 10.1089/neu.1997.14.729.CrossRefPubMed
11.
go back to reference Li R, Fujitani N, Jia JT, Kimura H: Immunohistochemical indicators of early brain injury: an experimental study using the fluid-percussion model in cats. Am J Forensic Med Pathol. 1998, 19 (2): 129-136. 10.1097/00000433-199806000-00006.CrossRefPubMed Li R, Fujitani N, Jia JT, Kimura H: Immunohistochemical indicators of early brain injury: an experimental study using the fluid-percussion model in cats. Am J Forensic Med Pathol. 1998, 19 (2): 129-136. 10.1097/00000433-199806000-00006.CrossRefPubMed
12.
go back to reference Hausmann R, Riess R, Fieguth A, Betz P: Immunohistochemical investigations on the course of astroglial GFAP expression following human brain injury. Int J Legal Med. 2000, 113 (2): 70-75. 10.1007/PL00007711.CrossRefPubMed Hausmann R, Riess R, Fieguth A, Betz P: Immunohistochemical investigations on the course of astroglial GFAP expression following human brain injury. Int J Legal Med. 2000, 113 (2): 70-75. 10.1007/PL00007711.CrossRefPubMed
13.
go back to reference Pál J, Tóth Z, Farkas O, Kellényi L, Dóczi T, Gallyas F: Selective induction of ultrastructural (neurofilament) compaction in axons by means of a new head-injury apparatus. Neurosci Methods. 2006, 153 (2): 283-289. 10.1016/j.jneumeth.2005.11.004.CrossRef Pál J, Tóth Z, Farkas O, Kellényi L, Dóczi T, Gallyas F: Selective induction of ultrastructural (neurofilament) compaction in axons by means of a new head-injury apparatus. Neurosci Methods. 2006, 153 (2): 283-289. 10.1016/j.jneumeth.2005.11.004.CrossRef
14.
go back to reference Ackerley S, Grierson AJ, Brownlees J, Thornhill P, Anderton BH, Leigh PN, Shaw CE, Miller CC: Glutamate slows axonal transport of neurofilaments in transfected neurons. J Cell Biol. 2000, 150 (1): 165-176. 10.1083/jcb.150.1.165.PubMedCentralCrossRefPubMed Ackerley S, Grierson AJ, Brownlees J, Thornhill P, Anderton BH, Leigh PN, Shaw CE, Miller CC: Glutamate slows axonal transport of neurofilaments in transfected neurons. J Cell Biol. 2000, 150 (1): 165-176. 10.1083/jcb.150.1.165.PubMedCentralCrossRefPubMed
15.
go back to reference Hamberger A, Huang YL, Zhu H, Bao F, Ding M, Blennow K, Olsson A, Hansson HA, Viano D, Haglid KG: Redistribution of neurofilaments and accumulation of beta-amyloid protein after brain injury by rotational acceleration of the head. J Neurotrauma. 2003, 20 (2): 169-178. 10.1089/08977150360547080.CrossRefPubMed Hamberger A, Huang YL, Zhu H, Bao F, Ding M, Blennow K, Olsson A, Hansson HA, Viano D, Haglid KG: Redistribution of neurofilaments and accumulation of beta-amyloid protein after brain injury by rotational acceleration of the head. J Neurotrauma. 2003, 20 (2): 169-178. 10.1089/08977150360547080.CrossRefPubMed
16.
go back to reference Hoshino S, Kobayashi S, Furukawa T, Asakura T, Teramoto A: Multiple immunostaining methods to detect traumatic axonal injury in the rat fluid-percussion brain injury model. Neurol Med Chir (Tokyo). 2003, 43 (4): 165-173. 10.2176/nmc.43.165.CrossRef Hoshino S, Kobayashi S, Furukawa T, Asakura T, Teramoto A: Multiple immunostaining methods to detect traumatic axonal injury in the rat fluid-percussion brain injury model. Neurol Med Chir (Tokyo). 2003, 43 (4): 165-173. 10.2176/nmc.43.165.CrossRef
17.
go back to reference Pittella JE, Gusmão SN: The conformation of the brain plays an important role in the distribution of diffuse axonal injury in fatal road traffic accident. Arq Neuropsiquiatr. 2004, 62 (2B): 406-412. 10.1590/S0004-282X2004000300007.CrossRefPubMed Pittella JE, Gusmão SN: The conformation of the brain plays an important role in the distribution of diffuse axonal injury in fatal road traffic accident. Arq Neuropsiquiatr. 2004, 62 (2B): 406-412. 10.1590/S0004-282X2004000300007.CrossRefPubMed
18.
go back to reference Lima RR, Guimaraes-Silva J, Oliveira JL, Costa AM, Souza-Rodrigues RD, Dos Santos CD, Picanço-Diniz CW, Gomes-Leal W: Diffuse axonal damage, myelin impairment, astrocytosis and inflammatory response following microinjections of NMDA into the rat striatum. Inflammation. 2008, 31 (1): 24v35-CrossRef Lima RR, Guimaraes-Silva J, Oliveira JL, Costa AM, Souza-Rodrigues RD, Dos Santos CD, Picanço-Diniz CW, Gomes-Leal W: Diffuse axonal damage, myelin impairment, astrocytosis and inflammatory response following microinjections of NMDA into the rat striatum. Inflammation. 2008, 31 (1): 24v35-CrossRef
19.
go back to reference Lee J, Ryu H: Epigenetic modification is linked to Alzheimer’s disease: is it a maker or a marker?. BMB Rep. 2010, 43 (10): 649-655. 10.5483/BMBRep.2010.43.10.649.CrossRefPubMed Lee J, Ryu H: Epigenetic modification is linked to Alzheimer’s disease: is it a maker or a marker?. BMB Rep. 2010, 43 (10): 649-655. 10.5483/BMBRep.2010.43.10.649.CrossRefPubMed
20.
go back to reference Smith DH, Uryu K, Saatman KE, Trojanowski JQ, McIntosh TK: Protein accumulation in traumatic brain injury. Neuromolecular Med. 2003, 4 (1–2): 59-72.CrossRefPubMed Smith DH, Uryu K, Saatman KE, Trojanowski JQ, McIntosh TK: Protein accumulation in traumatic brain injury. Neuromolecular Med. 2003, 4 (1–2): 59-72.CrossRefPubMed
21.
go back to reference Mochizuki K, Ochi H, Ogura Y, Iino M, Kuroki H, Matoba R: A case of diffuse axonal injury in violent death. Leg Med (Tokyo). 2009, 11 (Suppl 1): S518-S519.CrossRef Mochizuki K, Ochi H, Ogura Y, Iino M, Kuroki H, Matoba R: A case of diffuse axonal injury in violent death. Leg Med (Tokyo). 2009, 11 (Suppl 1): S518-S519.CrossRef
22.
go back to reference Kallakuri S, Cavanaugh JM, Ozaktay AC, Takebayashi T: The effect of varying impact energy on diffuse axonal injury in the rat brain: a preliminary study. Exp Brain Res. 2003, 148 (4): 419-424.PubMed Kallakuri S, Cavanaugh JM, Ozaktay AC, Takebayashi T: The effect of varying impact energy on diffuse axonal injury in the rat brain: a preliminary study. Exp Brain Res. 2003, 148 (4): 419-424.PubMed
Metadata
Title
Pathological and immunohistochemical study of lethal primary brain stem injuries
Authors
Sun Rongchao
Yang Shudong
Zhou Zhiyi
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2012
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/1746-1596-7-54

Other articles of this Issue 1/2012

Diagnostic Pathology 1/2012 Go to the issue