Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2019

Open Access 01-12-2019 | Patella Fracture | Research article

Where should Kirschner wires be placed when fixing patella fracture with modified tension-band wiring? A finite element analysis

Authors: Ming Ling, Shi Zhan, Dajun Jiang, Hai Hu, Changqing Zhang

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2019

Login to get access

Abstract

Background

The position of Kirschner wires (K-wires) has an influence on the outcome of modified tension-band wiring (MTBW) in fixing patella fractures. However, the instruction for K-wires positioning is not clear enough. This study tried to clarify the effect of K-wires positioning and provide evidence for a more definite instruction.

Methods

The sagittal position (SP) suitable for placing K-wires was evenly divided into SP 1–5 from anterior to posterior, and the finite element models of midpatella transverse fractures fixed by the figure-of-eight or figure-of-zero MTBW were built up at each SP. Separating displacement of the fracture, stress of the fracture, and stress of the internal fixations were measured at 45° knee flexion by using finite element analysis.

Results

The separating displacement of the fracture was smaller at SP 3–5 (23% smaller than SP 1–2). From SP 1 to 5, the compression of the fracture surfaces increased (R = 0.99, P = 0.001); the improper stress area of the fracture surfaces decreased (R = − 0.96, P = 0.01), and so was the stress of K-wires (R = − 0.93, P = 0.02). However, the stress of stainless steel wires showed a stable trend.

Conclusions

The SP of K-wires plays a role in the function of MTBW in the surgical management of transverse patella fracture. At 45° knee flexion, posteriorly placed (close to the articular surface) K-wires enable optimal stability and stress for the fracture, which provides basis for the positioning of K-wires in clinical practice.
Literature
1.
go back to reference Nummi J. Fracture of the patella. A clinical study of 707 patellar fractures. Ann Chir Gynaecol Fenn Suppl. 1971;179:1–85.PubMed Nummi J. Fracture of the patella. A clinical study of 707 patellar fractures. Ann Chir Gynaecol Fenn Suppl. 1971;179:1–85.PubMed
2.
go back to reference Smith ST, Cramer KE, Karges DE, Watson JT, Moed BR. Early complications in the operative treatment of patella fractures. J Orthop Trauma. 1997;11:183–7.CrossRef Smith ST, Cramer KE, Karges DE, Watson JT, Moed BR. Early complications in the operative treatment of patella fractures. J Orthop Trauma. 1997;11:183–7.CrossRef
3.
go back to reference Scolaro J, Bernstein J, Ahn J. Patellar fractures. Clin Orthop Relat Res. 2011;469:1213–5.CrossRef Scolaro J, Bernstein J, Ahn J. Patellar fractures. Clin Orthop Relat Res. 2011;469:1213–5.CrossRef
4.
go back to reference Bucholz RW, Heckman JD, Court-Brown CM. Fractures of the patella and injuries to the extensor mechanism. In: Harris RM, editor. Rockwood & Green’s fractures in adults. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 1969–97. Bucholz RW, Heckman JD, Court-Brown CM. Fractures of the patella and injuries to the extensor mechanism. In: Harris RM, editor. Rockwood & Green’s fractures in adults. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 1969–97.
5.
go back to reference Rüedi TP, Buckley RE, Moran CG. AO principles of fracture management. Stuttgart: Thieme; 2007. Rüedi TP, Buckley RE, Moran CG. AO principles of fracture management. Stuttgart: Thieme; 2007.
6.
go back to reference Melvin JS, Mehta S. Patellar fractures in adults. J Am Acad Orthop Surg. 2011;19:198–207.CrossRef Melvin JS, Mehta S. Patellar fractures in adults. J Am Acad Orthop Surg. 2011;19:198–207.CrossRef
7.
go back to reference Rüedi TP, Murphy WM. AO principles of fracture management. Stuttgart: Thieme; 2000. Rüedi TP, Murphy WM. AO principles of fracture management. Stuttgart: Thieme; 2000.
8.
go back to reference Hsu KL, Chang WL, Yang CY, Yeh ML, Chang CW. Factors affecting the outcomes of modified tension band wiring techniques in transverse patellar fractures. Injury. 2017;48:2800–6.CrossRef Hsu KL, Chang WL, Yang CY, Yeh ML, Chang CW. Factors affecting the outcomes of modified tension band wiring techniques in transverse patellar fractures. Injury. 2017;48:2800–6.CrossRef
9.
go back to reference Yang TY, Huang TW, Chuang PY, Huang KC. Treatment of displaced transverse fractures of the patella: modified tension band wiring technique with or without augmented circumferential cerclage wire fixation. BMC Musculoskelet Disord. 2018;19:167.CrossRef Yang TY, Huang TW, Chuang PY, Huang KC. Treatment of displaced transverse fractures of the patella: modified tension band wiring technique with or without augmented circumferential cerclage wire fixation. BMC Musculoskelet Disord. 2018;19:167.CrossRef
10.
go back to reference Heegaard J, Leyvraz PF, Curnier A, Rakotomanana L, Huiskes R. The biomechanics of the human patella during passive knee flexion. J Biomech. 1995;28:1265–79.CrossRef Heegaard J, Leyvraz PF, Curnier A, Rakotomanana L, Huiskes R. The biomechanics of the human patella during passive knee flexion. J Biomech. 1995;28:1265–79.CrossRef
11.
go back to reference Nunley RM, Wright D, Renner JB, BY PD, Jr WEG. Gender comparison of patellar tendon tibial shaft angle with weight bearing. Res Sports Med. 2003;11:173–85.CrossRef Nunley RM, Wright D, Renner JB, BY PD, Jr WEG. Gender comparison of patellar tendon tibial shaft angle with weight bearing. Res Sports Med. 2003;11:173–85.CrossRef
12.
go back to reference Zderic I, Stoffel K, Sommer C, Hontzsch D, Gueorguiev B. Biomechanical evaluation of the tension band wiring principle. A comparison between two different techniques for transverse patella fracture fixation. Injury. 2017;48:1749–57.CrossRef Zderic I, Stoffel K, Sommer C, Hontzsch D, Gueorguiev B. Biomechanical evaluation of the tension band wiring principle. A comparison between two different techniques for transverse patella fracture fixation. Injury. 2017;48:1749–57.CrossRef
13.
go back to reference Zhang GD, Liao WJ, Tao SX, Mao WY, Chen JQ, Zheng XH. Methods for material assignment of finite element analysis with femurs. J Clin Rehabil Tis Eng Res. 2009;13:8436–41. Zhang GD, Liao WJ, Tao SX, Mao WY, Chen JQ, Zheng XH. Methods for material assignment of finite element analysis with femurs. J Clin Rehabil Tis Eng Res. 2009;13:8436–41.
14.
go back to reference Ledbetter H, Frederick N, Austin M. Elastic-constant variability in stainless-steel 304. J Appl Phys. 1980;51:305–9.CrossRef Ledbetter H, Frederick N, Austin M. Elastic-constant variability in stainless-steel 304. J Appl Phys. 1980;51:305–9.CrossRef
15.
go back to reference Guo Y, Dornfeld D. Finite element modeling of burr formation process in drilling 304 stainless steel. J Manuf Sci Eng. 2000;122:612–9.CrossRef Guo Y, Dornfeld D. Finite element modeling of burr formation process in drilling 304 stainless steel. J Manuf Sci Eng. 2000;122:612–9.CrossRef
16.
go back to reference Besier TF, Gold GE, Delp SL, Fredericson M, Beaupre GS. The influence of femoral internal and external rotation on cartilage stresses within the patellofemoral joint. J Orthop Res. 2008;26:1627–35.CrossRef Besier TF, Gold GE, Delp SL, Fredericson M, Beaupre GS. The influence of femoral internal and external rotation on cartilage stresses within the patellofemoral joint. J Orthop Res. 2008;26:1627–35.CrossRef
17.
go back to reference Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, et al. Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res. 1998;355:S132–47.CrossRef Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, et al. Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res. 1998;355:S132–47.CrossRef
18.
go back to reference Claes LE, Heigele CA. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech. 1999;32:255–66.CrossRef Claes LE, Heigele CA. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech. 1999;32:255–66.CrossRef
19.
go back to reference Huberti HH, Hayes WC, Stone JL, Shybut GT. Force ratios in the quadriceps tendon and ligamentum patellae. J Orthop Res. 1984;2:49–54.CrossRef Huberti HH, Hayes WC, Stone JL, Shybut GT. Force ratios in the quadriceps tendon and ligamentum patellae. J Orthop Res. 1984;2:49–54.CrossRef
20.
go back to reference Burvant JG, Thomas KA, Alexander R, Harris MB. Evaluation of methods of internal fixation of transverse patella fractures: a biomechanical study. J Orthop Trauma. 1994;8:147–53.CrossRef Burvant JG, Thomas KA, Alexander R, Harris MB. Evaluation of methods of internal fixation of transverse patella fractures: a biomechanical study. J Orthop Trauma. 1994;8:147–53.CrossRef
21.
go back to reference Baran O, Manisali M, Cecen B. Anatomical and biomechanical evaluation of the tension band technique in patellar fractures. Int Orthop. 2009;33:1113–7.CrossRef Baran O, Manisali M, Cecen B. Anatomical and biomechanical evaluation of the tension band technique in patellar fractures. Int Orthop. 2009;33:1113–7.CrossRef
Metadata
Title
Where should Kirschner wires be placed when fixing patella fracture with modified tension-band wiring? A finite element analysis
Authors
Ming Ling
Shi Zhan
Dajun Jiang
Hai Hu
Changqing Zhang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2019
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-019-1060-x

Other articles of this Issue 1/2019

Journal of Orthopaedic Surgery and Research 1/2019 Go to the issue