Skip to main content
Top
Published in: BMC Public Health 1/2021

Open Access 01-12-2021 | Research

Particulate matter (PM10) prediction based on multiple linear regression: a case study in Chiang Rai Province, Thailand

Authors: Wissanupong Kliengchuay, Rachodbun Srimanus, Wechapraan Srimanus, Sarima Niampradit, Nopadol Preecha, Rachaneekorn Mingkhwan, Suwalee Worakhunpiset, Yanin Limpanont, Kamontat Moonsri, Kraichat Tantrakarnapa

Published in: BMC Public Health | Issue 1/2021

Login to get access

Abstract

Background

The northern regions of Thailand have been facing haze episodes and transboundary air pollution every year in which particulate matter, particularly PM10, accumulates in the air, detrimentally affecting human health. Chiang Rai province is one of the country’s most popular tourist destinations as well as an important economic hub. This study aims to develop and compare the best-fitted model for PM10 prediction for different seasons using meteorological factors.

Method

The air pollution and weather data acquired from the Pollution Control Department (PCD) spanned from the years 2011 until 2018 at two stations on an hourly basis. Four different stepwise Multiple Linear Regression (MLR) models for predicting the PM10 concentration were then developed, namely annual, summer, rainy, and winter seasons.

Results

The maximum daily PM10 concentration was observed in the summer season for both stations. The minimum daily concentration was detected in the rainy season. The seasonal variation of PM10 was significantly different for both stations. CO was moderately related to PM10 in the summer season. The PM10 summer model was the best MLR model to predict PM10 during haze episodes. In both stations, it revealed an R2 of 0.73 and 0.61 in stations 65 and 71, respectively. Relative humidity and atmospheric pressure display negative relationships, although temperature is positively correlated with PM10 concentrations in summer and rainy seasons. Whereas pressure plays a positive relationship with PM10 in the winter season.

Conclusions

In conclusion, the MLR models are effective at estimating PM10 concentrations at the local level for each seasonal. The annual MLR model at both stations indicates a good prediction with an R2 of 0.61 and 0.52 for stations 65 and 73, respectively.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tian G, Qiao Z, Xu X. Characteristics of particulate matter (PM10) and its relationship with meteorological factors during 2001-2012 in Beijing. Env Pollut. 2014;192:266–74.CrossRef Tian G, Qiao Z, Xu X. Characteristics of particulate matter (PM10) and its relationship with meteorological factors during 2001-2012 in Beijing. Env Pollut. 2014;192:266–74.CrossRef
2.
go back to reference Bigi A, Ghermandi G, Harrison RM. Analysis of the air pollution climate at a background site in the Po valley. J Environ Monit. 2012;14:552–63.CrossRef Bigi A, Ghermandi G, Harrison RM. Analysis of the air pollution climate at a background site in the Po valley. J Environ Monit. 2012;14:552–63.CrossRef
3.
go back to reference Juneng L, Latif MT, Tangang F. Factors influencing the variations of PM10 aerosol dust in Klang Valley, Malaysia during the summer. Atmos Environ. 2011;45:4370–8.CrossRef Juneng L, Latif MT, Tangang F. Factors influencing the variations of PM10 aerosol dust in Klang Valley, Malaysia during the summer. Atmos Environ. 2011;45:4370–8.CrossRef
6.
go back to reference González-duque CM, Cortés-araujo J, Helena B. Influence of meteorology and source variation on airborne PM10 levels in a high relief tropical Andean city. Rev Fac Ing Univ Antioquia. 2015;200–12. González-duque CM, Cortés-araujo J, Helena B. Influence of meteorology and source variation on airborne PM10 levels in a high relief tropical Andean city. Rev Fac Ing Univ Antioquia. 2015;200–12.
7.
go back to reference Li X, Chen X, Yuan X, Zeng G, León T, Liang J, et al. Characteristics of Particulate Pollution (PM2.5 and PM10) and Their Spacescale-Dependent Relationships with Meteorological Elements in China. Sustainability. 2017;9:2330. https://doi.org/10.3390/su9122330. Li X, Chen X, Yuan X, Zeng G, León T, Liang J, et al. Characteristics of Particulate Pollution (PM2.5 and PM10) and Their Spacescale-Dependent Relationships with Meteorological Elements in China. Sustainability. 2017;9:2330. https://​doi.​org/​10.​3390/​su9122330.
8.
go back to reference Mueller W, Loh M, Vardoulakis S, Johnston HJ, Steinle S, Precha N, et al. Ambient particulate matter and biomass burning: an ecological time series study of respiratory and cardiovascular hospital visits in northern Thailand. Environ Heal. 2020;19:77. https://doi.org/10.1186/s12940-020-00629-3. Mueller W, Loh M, Vardoulakis S, Johnston HJ, Steinle S, Precha N, et al. Ambient particulate matter and biomass burning: an ecological time series study of respiratory and cardiovascular hospital visits in northern Thailand. Environ Heal. 2020;19:77. https://​doi.​org/​10.​1186/​s12940-020-00629-3.
12.
go back to reference Abdullah S, Napi NNLM, Ahmed AN, Mansor WNW, Mansor AA, Ismail M, et al. Development of multiple linear regression for particulate matter (PM10) forecasting during episodic transboundary haze event in Malaysia. Atmosphere (Basel). 2020;11:289.CrossRef Abdullah S, Napi NNLM, Ahmed AN, Mansor WNW, Mansor AA, Ismail M, et al. Development of multiple linear regression for particulate matter (PM10) forecasting during episodic transboundary haze event in Malaysia. Atmosphere (Basel). 2020;11:289.CrossRef
17.
go back to reference Amnuaylojaroen T, Inkom J, Janta R, Surapipith V. Long range transport of southeast asian pm2.5 pollution to northern Thailand during high biomass burning episodes. Sustain. 2020;12:1–14. Amnuaylojaroen T, Inkom J, Janta R, Surapipith V. Long range transport of southeast asian pm2.5 pollution to northern Thailand during high biomass burning episodes. Sustain. 2020;12:1–14.
18.
go back to reference Janta R, Minoura H, Chantara S. Influence of long-range transport on air quality in northern part of Southeast Asia during open burning season. EANET Sci Bull. 2016;4:109–226. Janta R, Minoura H, Chantara S. Influence of long-range transport on air quality in northern part of Southeast Asia during open burning season. EANET Sci Bull. 2016;4:109–226.
19.
go back to reference Manju A, Kalaiselvi K, Dhananjayan V, Palanivel M, Banupriya GS, Vidhya MH, et al. Spatio-seasonal variation in ambient air pollutants and influence of meteorological factors in Coimbatore, Southern India. Air Qual Atmos Heal. 2018;11:1179–89.CrossRef Manju A, Kalaiselvi K, Dhananjayan V, Palanivel M, Banupriya GS, Vidhya MH, et al. Spatio-seasonal variation in ambient air pollutants and influence of meteorological factors in Coimbatore, Southern India. Air Qual Atmos Heal. 2018;11:1179–89.CrossRef
21.
go back to reference Ali Z, Shahzadi K, Sidra S, Zona Z, Zainab I, Aziz K, et al. Seasonal variation of particulate matter in the ambient conditions of Khanspur, Pakistan. J Anim Plant Sci. 2015;25:700–5. Ali Z, Shahzadi K, Sidra S, Zona Z, Zainab I, Aziz K, et al. Seasonal variation of particulate matter in the ambient conditions of Khanspur, Pakistan. J Anim Plant Sci. 2015;25:700–5.
23.
go back to reference Elminir HK. Dependence of urban air pollutants on meteorology. Sci Total Environ. 2005;350:225–37.CrossRef Elminir HK. Dependence of urban air pollutants on meteorology. Sci Total Environ. 2005;350:225–37.CrossRef
Metadata
Title
Particulate matter (PM10) prediction based on multiple linear regression: a case study in Chiang Rai Province, Thailand
Authors
Wissanupong Kliengchuay
Rachodbun Srimanus
Wechapraan Srimanus
Sarima Niampradit
Nopadol Preecha
Rachaneekorn Mingkhwan
Suwalee Worakhunpiset
Yanin Limpanont
Kamontat Moonsri
Kraichat Tantrakarnapa
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2021
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-021-12217-2

Other articles of this Issue 1/2021

BMC Public Health 1/2021 Go to the issue