Skip to main content
Top
Published in: Neurological Sciences 12/2019

01-12-2019 | Parkinson's Disease | Original Article

The association of low levels of nesfatin-1 and glucagon-like peptide-1 with oxidative stress in Parkinson’s disease

Authors: Gülser Karadaban Emir, Yasemin Ünal, Nigar Yılmaz, Kürsad Tosun, Gülnihal Kutlu

Published in: Neurological Sciences | Issue 12/2019

Login to get access

Abstract

Aim

In Parkinson’s disease (PD), oxidative stress plays a substantial role in degeneration of dopaminergic neurons at the substantia nigra. Recent reports describe nesfatin-1 and glucagon-like peptide-1 (GLP-1) as molecules with neuroprotective property that relieve oxidative stress. In this study, we aimed to determine the blood levels of nesfatin-1, GLP-1 and oxidative stress status in patients with PD.

Material and method

Forty patients with PD, followed-up at the Department of Neurology of Mugla Sitki Kocman University Training and Research Hospital, were enrolled, as well as 40 age- and sex-matched participants as a control group. We determined and compared nesfatin-1, GLP-1, total antioxidant status (TAS), and total oxidant status (TOS) levels in patients with PD and control group.

Results

The mean GLP-1 and nesfatin-1 values of patients with PD were lower than those of the control group, whereas their mean TOS value was higher. The mean TAS values, on the other hand, did not reveal any significant difference between the patient and the control groups.

Conclusion

The lower nesfatin-1 and GLP-1 levels, in addition to higher TOS levels, in patients with PD compared to those of control group suggest that the neuroprotective effects of these molecules might be related to the oxidative processes. Further studies are required to search for the impact of abovenamed molecules on the treatment option and the likelihood that they may slow down disease progression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Al Shahrani M, Heales S, Hargreaves I, Orford M (2017) Oxidative stress: mechanistic insights into inherited mitochondrial disorders and Parkinson’s disease. J Clin Med 27(11):6 Al Shahrani M, Heales S, Hargreaves I, Orford M (2017) Oxidative stress: mechanistic insights into inherited mitochondrial disorders and Parkinson’s disease. J Clin Med 27(11):6
2.
go back to reference Hauser DN, Hastings TG (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 51:35–42CrossRef Hauser DN, Hastings TG (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 51:35–42CrossRef
3.
go back to reference Subramaniam SR, Chesselet MF (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 106-107:17–32CrossRef Subramaniam SR, Chesselet MF (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 106-107:17–32CrossRef
4.
go back to reference Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111CrossRef Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111CrossRef
5.
go back to reference Ece A, Kelekçi S, Kocamaz H, Hekimoğlu A, Balik H, Yolbaş I, Erel O (2008) Antioxidant enzyme activities, lipid peroxidation, and total antioxidant status in children with Henoch-Schönlein purpura. Clin Rheumatol 27(2):163–169CrossRef Ece A, Kelekçi S, Kocamaz H, Hekimoğlu A, Balik H, Yolbaş I, Erel O (2008) Antioxidant enzyme activities, lipid peroxidation, and total antioxidant status in children with Henoch-Schönlein purpura. Clin Rheumatol 27(2):163–169CrossRef
6.
go back to reference Oh-I S, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K et al (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature. 443(7112):709–712CrossRef Oh-I S, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K et al (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature. 443(7112):709–712CrossRef
7.
go back to reference Stengel A, Taché Y (2011) Minireview: nesfatin-1--an emerging new player in the brain-gut, endocrine, and metabolic axis. Endocrinology. 152(11):4033–4038CrossRef Stengel A, Taché Y (2011) Minireview: nesfatin-1--an emerging new player in the brain-gut, endocrine, and metabolic axis. Endocrinology. 152(11):4033–4038CrossRef
8.
go back to reference Li C, Zhang F, Shi L, Zhang H, Tian Z, Xie J, Jiang H (2014) Nesfatin-1 decreases excitability of dopaminergic neurons in the substantia nigra. J Mol Neurosci 52(3):419–424CrossRef Li C, Zhang F, Shi L, Zhang H, Tian Z, Xie J, Jiang H (2014) Nesfatin-1 decreases excitability of dopaminergic neurons in the substantia nigra. J Mol Neurosci 52(3):419–424CrossRef
10.
go back to reference Xia Z, Wang G, Li H, Hu C, Wang Q, Li A, Zhao E, Shuai X, Wang J, Cai K, Tao K, Wang G (2015) Influence of bariatric surgery on the expression of nesfatin-1 in rats with type 2 diabetes mellitus. Curr Pharm Des 21(11):1464–1471CrossRef Xia Z, Wang G, Li H, Hu C, Wang Q, Li A, Zhao E, Shuai X, Wang J, Cai K, Tao K, Wang G (2015) Influence of bariatric surgery on the expression of nesfatin-1 in rats with type 2 diabetes mellitus. Curr Pharm Des 21(11):1464–1471CrossRef
12.
go back to reference Salcedo I, Tweedie D, Li Y, Greig NH (2012) Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br J Pharmacol 166(5):1586–1599CrossRef Salcedo I, Tweedie D, Li Y, Greig NH (2012) Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br J Pharmacol 166(5):1586–1599CrossRef
13.
go back to reference Darsalia V, Mansouri S, Ortsäter H, Olverling A, Nozadze N, Kappe C, Iverfeldt K, Tracy LM, Grankvist N, Sjöholm Å, Patrone C (2012) Glucagon-like peptide-1 receptor activation reduces ischaemic brain damage following stroke in type 2 diabetic rats. Clin Sci (Lond) 122(10):473–483CrossRef Darsalia V, Mansouri S, Ortsäter H, Olverling A, Nozadze N, Kappe C, Iverfeldt K, Tracy LM, Grankvist N, Sjöholm Å, Patrone C (2012) Glucagon-like peptide-1 receptor activation reduces ischaemic brain damage following stroke in type 2 diabetic rats. Clin Sci (Lond) 122(10):473–483CrossRef
14.
go back to reference Hölscher C (2014) Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J Endocrinol 221(1):T31–T41CrossRef Hölscher C (2014) Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J Endocrinol 221(1):T31–T41CrossRef
15.
go back to reference Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601CrossRef Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601CrossRef
16.
go back to reference Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25(15):2649–2653CrossRef Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25(15):2649–2653CrossRef
17.
go back to reference Tan Z, Xu H, Shen X, Jiang H (2015) Nesfatin-1 antagonized rotenone-induced neurotoxicity in MES23.5 dopaminergic cells. Peptides. 69:109–114CrossRef Tan Z, Xu H, Shen X, Jiang H (2015) Nesfatin-1 antagonized rotenone-induced neurotoxicity in MES23.5 dopaminergic cells. Peptides. 69:109–114CrossRef
18.
go back to reference Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109CrossRef Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109CrossRef
19.
go back to reference Beal MF (1998) Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann Neurol 44:110–114CrossRef Beal MF (1998) Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann Neurol 44:110–114CrossRef
20.
go back to reference Gash DM, Chen Y, Gerhardt G (2007) Neurotrophic factors and Parkinson’s disease. In: Koller WC, Melamed E (eds) Handbook of clinical neurology Vol.83 (part 1). Parkinson’s disease and related disorders. Elsevier, Amsterdam, pp 521–533 Gash DM, Chen Y, Gerhardt G (2007) Neurotrophic factors and Parkinson’s disease. In: Koller WC, Melamed E (eds) Handbook of clinical neurology Vol.83 (part 1). Parkinson’s disease and related disorders. Elsevier, Amsterdam, pp 521–533
23.
go back to reference Varçin M, Bentea E, Michotte Y, Sarre S (2012) Oxidative stress in genetic mouse models of Parkinson’s disease. Oxidative Med Cell Longev 2012:624925CrossRef Varçin M, Bentea E, Michotte Y, Sarre S (2012) Oxidative stress in genetic mouse models of Parkinson’s disease. Oxidative Med Cell Longev 2012:624925CrossRef
24.
go back to reference Kirbas A, Kirbas S, Cure MC, Tufekci A (2014) Paraoxonase and arylesterase activity and total oxidative/anti-oxidative status in patients with idiopathic Parkinson’s disease. J Clin Neurosci 21(3):451–455CrossRef Kirbas A, Kirbas S, Cure MC, Tufekci A (2014) Paraoxonase and arylesterase activity and total oxidative/anti-oxidative status in patients with idiopathic Parkinson’s disease. J Clin Neurosci 21(3):451–455CrossRef
25.
go back to reference Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism measurement and significance. Am J Clin Nut 57 (Suppl:715S–725SCrossRef Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism measurement and significance. Am J Clin Nut 57 (Suppl:715S–725SCrossRef
26.
go back to reference Diplock AT (1994) Antioxidants and disease prevention. Mol Asp Med 15(4):293–376CrossRef Diplock AT (1994) Antioxidants and disease prevention. Mol Asp Med 15(4):293–376CrossRef
27.
go back to reference Lotharius J, Brundin P (2002) Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson’s disease. Hum Mol Genet 11(20):2395–2407CrossRef Lotharius J, Brundin P (2002) Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson’s disease. Hum Mol Genet 11(20):2395–2407CrossRef
28.
go back to reference Schapira AH (2006) Etiology of Parkinson’s disease. Neurology 66(10):10 Suppl 4:10–23CrossRef Schapira AH (2006) Etiology of Parkinson’s disease. Neurology 66(10):10 Suppl 4:10–23CrossRef
29.
go back to reference Jenner P (2007) Oxidative stress and Parkinson’s disease. Handb Clin Neurol 83:507–520CrossRef Jenner P (2007) Oxidative stress and Parkinson’s disease. Handb Clin Neurol 83:507–520CrossRef
30.
go back to reference Venkateshappa C, Harish G, Mythri RB, Mahadevan A, Bharath MM, Shankar SK (2012) Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson’s disease. Neurochem Res 37(2):358–369CrossRef Venkateshappa C, Harish G, Mythri RB, Mahadevan A, Bharath MM, Shankar SK (2012) Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson’s disease. Neurochem Res 37(2):358–369CrossRef
31.
go back to reference Mythri RB, Venkateshappa C, Harish G, Mahadevan A, Muthane UB, Yasha TC, Srinivas Bharath MM, Shankar SK (2011) Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson’s disease brains. Neurochem Res 36(8):1452–1463CrossRef Mythri RB, Venkateshappa C, Harish G, Mahadevan A, Muthane UB, Yasha TC, Srinivas Bharath MM, Shankar SK (2011) Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson’s disease brains. Neurochem Res 36(8):1452–1463CrossRef
32.
go back to reference Sharma A, Kaur P, Kumar B, Prabhakar S, Gill KD (2008) Plasma lipid peroxidation and antioxidant status of Parkinson’s disease patients in the Indian population. Parkinsonism Relat Disord 14(1):52–57CrossRef Sharma A, Kaur P, Kumar B, Prabhakar S, Gill KD (2008) Plasma lipid peroxidation and antioxidant status of Parkinson’s disease patients in the Indian population. Parkinsonism Relat Disord 14(1):52–57CrossRef
33.
go back to reference Jiang G, Wang M, Wang L, Chen H, Chen Z, Guo J, Weng X, Liu X (2015) The protective effect of nesfatin-1 against renal ischemia-reperfusion injury in rats. Ren Fail 37(5):882–889CrossRef Jiang G, Wang M, Wang L, Chen H, Chen Z, Guo J, Weng X, Liu X (2015) The protective effect of nesfatin-1 against renal ischemia-reperfusion injury in rats. Ren Fail 37(5):882–889CrossRef
34.
go back to reference Ayada C, Toru Ü, Genç O, Akcılar R, Şahin S (2015) Balanced oxidative status by nesfatin-1 in intestinal ischemia-reperfusion. Int J Clin Exp Med 8(3):3318–3324PubMedPubMedCentral Ayada C, Toru Ü, Genç O, Akcılar R, Şahin S (2015) Balanced oxidative status by nesfatin-1 in intestinal ischemia-reperfusion. Int J Clin Exp Med 8(3):3318–3324PubMedPubMedCentral
35.
go back to reference Price TO, Samson WK, Niehoff ML, Banks WA (2007) Permeability of the blood-brain barrier to a novel satiety molecule nesfatin-1. Peptides. 28(12):2372–2381CrossRef Price TO, Samson WK, Niehoff ML, Banks WA (2007) Permeability of the blood-brain barrier to a novel satiety molecule nesfatin-1. Peptides. 28(12):2372–2381CrossRef
36.
go back to reference Tasatargil A, Kuscu N, Dalaklioglu S, Adiguzel D, Celik-Ozenci C, Ozdem S, Barutcigil A, Ozdem S (2017) Cardioprotective effect of nesfatin-1 against isoproterenol-induced myocardial infarction in rats: role of the Akt/GSK-3β pathway. Peptides. 95:1–9CrossRef Tasatargil A, Kuscu N, Dalaklioglu S, Adiguzel D, Celik-Ozenci C, Ozdem S, Barutcigil A, Ozdem S (2017) Cardioprotective effect of nesfatin-1 against isoproterenol-induced myocardial infarction in rats: role of the Akt/GSK-3β pathway. Peptides. 95:1–9CrossRef
37.
go back to reference Mossello E, Ballini E, Boncinelli M, Monami M, Lonetto G, Mello AM et al (2011) Glucagon-like peptide-1, diabetes, and cognitive decline: possible pathophysiological links and therapeutic opportunities. Exp Diabetes Res 2011:281674CrossRef Mossello E, Ballini E, Boncinelli M, Monami M, Lonetto G, Mello AM et al (2011) Glucagon-like peptide-1, diabetes, and cognitive decline: possible pathophysiological links and therapeutic opportunities. Exp Diabetes Res 2011:281674CrossRef
38.
go back to reference Fang Y, Jiang D, Wang Y, Wang Q, Lv D, Liu J, Liu C (2018) Neuroprotection of rhGLP-1 in diabetic rats with cerebral ischemia/reperfusion injury via regulation of oxidative stress, EAAT2, and apoptosis. Drug Rev Res 79:249–259CrossRef Fang Y, Jiang D, Wang Y, Wang Q, Lv D, Liu J, Liu C (2018) Neuroprotection of rhGLP-1 in diabetic rats with cerebral ischemia/reperfusion injury via regulation of oxidative stress, EAAT2, and apoptosis. Drug Rev Res 79:249–259CrossRef
39.
go back to reference Diz-Chaves Y, Toba L, Fandino J, Gonzales-Matias LC, Garcia-Segura LM, Mallo F (2018) The GLP-1 analog, liraglutide prevents the increase of proinflammatory mediators in the hippocampus of male rat pups submitted to maternal perinatal food restriction. J Neuroinflammation 15:337CrossRef Diz-Chaves Y, Toba L, Fandino J, Gonzales-Matias LC, Garcia-Segura LM, Mallo F (2018) The GLP-1 analog, liraglutide prevents the increase of proinflammatory mediators in the hippocampus of male rat pups submitted to maternal perinatal food restriction. J Neuroinflammation 15:337CrossRef
40.
go back to reference Tsang AH, Chung KK (2009) Oxidative and nitrosative stress in Parkinson’s disease. Biochim Biophys Acta 1792(7):643–650CrossRef Tsang AH, Chung KK (2009) Oxidative and nitrosative stress in Parkinson’s disease. Biochim Biophys Acta 1792(7):643–650CrossRef
41.
go back to reference Alberio T, Pippione AC, Comi C, Olgiati S, Cecconi D, Zibetti M, Lopiano L, Fasano M (2012) Dopaminergic therapies modulate the T-CELL proteome of patients with Parkinson’s disease. IUBMB Life 64(10):846–852CrossRef Alberio T, Pippione AC, Comi C, Olgiati S, Cecconi D, Zibetti M, Lopiano L, Fasano M (2012) Dopaminergic therapies modulate the T-CELL proteome of patients with Parkinson’s disease. IUBMB Life 64(10):846–852CrossRef
42.
go back to reference Jami MS, Pal R, Hoedt E, Neubert TA, Larsen JP, Møller SG (2014) Proteome analysis reveals roles of L-DOPA in response to oxidative stress in neurons. BMC Neurosci 15:93CrossRef Jami MS, Pal R, Hoedt E, Neubert TA, Larsen JP, Møller SG (2014) Proteome analysis reveals roles of L-DOPA in response to oxidative stress in neurons. BMC Neurosci 15:93CrossRef
Metadata
Title
The association of low levels of nesfatin-1 and glucagon-like peptide-1 with oxidative stress in Parkinson’s disease
Authors
Gülser Karadaban Emir
Yasemin Ünal
Nigar Yılmaz
Kürsad Tosun
Gülnihal Kutlu
Publication date
01-12-2019
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 12/2019
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-019-03975-4

Other articles of this Issue 12/2019

Neurological Sciences 12/2019 Go to the issue