Skip to main content
Top
Published in: Neurological Sciences 3/2024

10-11-2023 | Parkinson's Disease | Review Article

Progress in direct reprogramming of dopaminergic cell replacement therapy

Authors: Yuan Yuan Zheng, Hui Xu, Yue Si Wang

Published in: Neurological Sciences | Issue 3/2024

Login to get access

Abstract

Parkinson’s disease (PD) is a gradual neurodegenerative disease. While drug therapy and surgical treatments have been the primary means of addressing PD, they do not offer a cure, and the risks associated with surgical treatment are high. Recent advances in cell reprogramming have given rise to new prospects for the treatment of Parkinson’s disease (PD), with induced pluripotent stem cells (iPSCs), induced dopamine neurons (iDNs), and induced neural stem cells (iNSCs) being created. These cells can potentially be used in the treatment of Parkinson’s disease. On the other hand, this article emphasizes the limits of iPSCs and iNSCs in the context of Parkinson’s disease treatment, as well as approaches for direct reprogramming of somatic cells into iDNs. The paper will examine the benefits and drawbacks of directly converting somatic cells into iDNs.
Literature
2.
go back to reference Aquino CC, Fox SH (2015) Clinical spectrum of levodopa-induced complications. Mov Disord 30(1):80–89PubMedCrossRef Aquino CC, Fox SH (2015) Clinical spectrum of levodopa-induced complications. Mov Disord 30(1):80–89PubMedCrossRef
3.
go back to reference Antonini A, Moro E, Godeiro C, Reichmann H (2018) Medical and surgical management of advanced Parkinson’s disease. Mov Disord 33(6):900–908PubMedCrossRef Antonini A, Moro E, Godeiro C, Reichmann H (2018) Medical and surgical management of advanced Parkinson’s disease. Mov Disord 33(6):900–908PubMedCrossRef
4.
go back to reference Han F, Liu Y, Huang J, Zhang X, Wei C (2021) Current approaches and molecular mechanisms for directly reprogramming fibroblasts into neurons and dopamine neurons. Front Aging Neurosci 13:738529PubMedPubMedCentralCrossRef Han F, Liu Y, Huang J, Zhang X, Wei C (2021) Current approaches and molecular mechanisms for directly reprogramming fibroblasts into neurons and dopamine neurons. Front Aging Neurosci 13:738529PubMedPubMedCentralCrossRef
5.
go back to reference Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRef Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRef
6.
go back to reference Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedCrossRef Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedCrossRef
7.
go back to reference Han F, Baremberg D, Gao J, Duan J, Lu X, Zhang N, Chen Q (2015) Development of stem cell-based therapy for Parkinson’s disease. Transl Neurodegener 4:16PubMedPubMedCentralCrossRef Han F, Baremberg D, Gao J, Duan J, Lu X, Zhang N, Chen Q (2015) Development of stem cell-based therapy for Parkinson’s disease. Transl Neurodegener 4:16PubMedPubMedCentralCrossRef
8.
go back to reference Yamanaka S (2020) Pluripotent stem cell-based cell therapy-promise and challenges. Cell stem cell 27(4):523–531PubMedCrossRef Yamanaka S (2020) Pluripotent stem cell-based cell therapy-promise and challenges. Cell stem cell 27(4):523–531PubMedCrossRef
9.
go back to reference Hou S, Lu P (2016) Direct reprogramming of somatic cells into neural stem cells or neurons for neurological disorders. Neural Re-gen Res 11(1):28–31CrossRef Hou S, Lu P (2016) Direct reprogramming of somatic cells into neural stem cells or neurons for neurological disorders. Neural Re-gen Res 11(1):28–31CrossRef
10.
go back to reference Ford E, Pearlman J, Ruan T, Manion J, Waller M, Neely GG, Caron L (2020) Human pluripotent stem cells-based therapies for neurodegenerative diseases: current status and challenges. Cells 9(11):2517 Ford E, Pearlman J, Ruan T, Manion J, Waller M, Neely GG, Caron L (2020) Human pluripotent stem cells-based therapies for neurodegenerative diseases: current status and challenges. Cells 9(11):2517
11.
go back to reference Cai CY, Meng FL, Rao L, Liu YY, Zhao XL (2020) Induced pluripotent stem cell technology and its application in disease research. Yi Chuan 42(11):1042–1061PubMed Cai CY, Meng FL, Rao L, Liu YY, Zhao XL (2020) Induced pluripotent stem cell technology and its application in disease research. Yi Chuan 42(11):1042–1061PubMed
12.
go back to reference Reddy AP, Ravichandran J (1866) Carkaci-Salli N (2020) Neural regeneration therapies for Alzheimer’s and Parkinson’s disease-related disorders. Biochim Biophys Acta Mol Basis Dis 4:165506 Reddy AP, Ravichandran J (1866) Carkaci-Salli N (2020) Neural regeneration therapies for Alzheimer’s and Parkinson’s disease-related disorders. Biochim Biophys Acta Mol Basis Dis 4:165506
13.
go back to reference Hayashi Y, Ohnuma K, Furue MK (2019) Pluripotent stem cell heterogeneity. Adv Exp Med Biol 1123:71–94PubMedCrossRef Hayashi Y, Ohnuma K, Furue MK (2019) Pluripotent stem cell heterogeneity. Adv Exp Med Biol 1123:71–94PubMedCrossRef
14.
go back to reference Chang CY, Ting HC, Liu CA, Su HL, Chiou TW, Lin SZ, Harn HJ, Ho TJ (2020) Induced pluripotent stem cell (iPSC)-based neurodegenerative disease models for phenotype recapitulation and drug screening. Molecules 25(8):2000 Chang CY, Ting HC, Liu CA, Su HL, Chiou TW, Lin SZ, Harn HJ, Ho TJ (2020) Induced pluripotent stem cell (iPSC)-based neurodegenerative disease models for phenotype recapitulation and drug screening. Molecules 25(8):2000
15.
go back to reference Parmar M (2018) Towards stem cell based therapies for Parkinson’s disease. Development 145(1):dev156117 Parmar M (2018) Towards stem cell based therapies for Parkinson’s disease. Development 145(1):dev156117
16.
go back to reference Xu X, Huang J, Li J, Liu L, Han C, Shen Y, Zhang G, Jiang H, Lin Z, Xiong N et al (2016) Induced pluripotent stem cells and Parkinson’s disease: modelling and treatment. Cell Prolif 49(1):14–26PubMedPubMedCentralCrossRef Xu X, Huang J, Li J, Liu L, Han C, Shen Y, Zhang G, Jiang H, Lin Z, Xiong N et al (2016) Induced pluripotent stem cells and Parkinson’s disease: modelling and treatment. Cell Prolif 49(1):14–26PubMedPubMedCentralCrossRef
17.
go back to reference Shahbazi E, Mirakhori F, Ezzatizadeh V, Baharvand H (2018) Reprogramming of somatic cells to induced neural stem cells. Methods 133:21–28PubMedCrossRef Shahbazi E, Mirakhori F, Ezzatizadeh V, Baharvand H (2018) Reprogramming of somatic cells to induced neural stem cells. Methods 133:21–28PubMedCrossRef
18.
go back to reference Monni E, Cusulin C, Cavallaro M, Lindvall O, Kokaia Z (2014) Human fetal striatum-derived neural stem (NS) cells differentiate to mature neurons in vitro and in vivo. Curr Stem Cell Res Ther 9(4):338–346PubMedCrossRef Monni E, Cusulin C, Cavallaro M, Lindvall O, Kokaia Z (2014) Human fetal striatum-derived neural stem (NS) cells differentiate to mature neurons in vitro and in vivo. Curr Stem Cell Res Ther 9(4):338–346PubMedCrossRef
19.
go back to reference Choi DH, Kim JH, Kim SM, Kang K, Han DW, Lee J (2017) Therapeutic potential of induced neural stem cells for Parkinson’s disease. Int J Mol Sci 18(1):224PubMedPubMedCentralCrossRef Choi DH, Kim JH, Kim SM, Kang K, Han DW, Lee J (2017) Therapeutic potential of induced neural stem cells for Parkinson’s disease. Int J Mol Sci 18(1):224PubMedPubMedCentralCrossRef
22.
go back to reference Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Björklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci 108(25):10343–10348ADSPubMedPubMedCentralCrossRef Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Björklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci 108(25):10343–10348ADSPubMedPubMedCentralCrossRef
23.
go back to reference Caiazzo M, Dell'Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G et al (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476(7359):224–227ADSPubMedCrossRef Caiazzo M, Dell'Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G et al (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476(7359):224–227ADSPubMedCrossRef
24.
go back to reference Kim J, Su SC, Wang H, Cheng AW, Cassady JP, Lodato MA, Lengner CJ, Chung CY, Dawlaty MM, Tsai LH et al (2011) Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell 9(5):413–419PubMedPubMedCentralCrossRef Kim J, Su SC, Wang H, Cheng AW, Cassady JP, Lodato MA, Lengner CJ, Chung CY, Dawlaty MM, Tsai LH et al (2011) Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell 9(5):413–419PubMedPubMedCentralCrossRef
25.
go back to reference Dell'Anno MT, Caiazzo M, Leo D, Dvoretskova E, Medrihan L, Colasante G, Giannelli S, Theka I, Russo G, Mus L et al (2014) Remote control of induced dopaminergic neurons in parkinsonian rats. J Clin Invest 124(7):3215–3229PubMedPubMedCentralCrossRef Dell'Anno MT, Caiazzo M, Leo D, Dvoretskova E, Medrihan L, Colasante G, Giannelli S, Theka I, Russo G, Mus L et al (2014) Remote control of induced dopaminergic neurons in parkinsonian rats. J Clin Invest 124(7):3215–3229PubMedPubMedCentralCrossRef
26.
go back to reference Oh SI, Park HS, Hwang I, Park HK, Choi KA, Jeong H, Kim SW, Hong S (2014) Efficient reprogramming of mouse fibroblasts to neuronal cells including dopaminergic neurons. Sci World J 2014:957548CrossRef Oh SI, Park HS, Hwang I, Park HK, Choi KA, Jeong H, Kim SW, Hong S (2014) Efficient reprogramming of mouse fibroblasts to neuronal cells including dopaminergic neurons. Sci World J 2014:957548CrossRef
27.
go back to reference Tian C, Li Y, Huang Y, Wang Y, Chen D, Liu J, Deng X, Sun L, Anderson K, Qi X et al (2015) Selective generation of dopaminergic precursors from mouse fibroblasts by direct lineage conversion. Sci Rep 5:12622ADSPubMedPubMedCentralCrossRef Tian C, Li Y, Huang Y, Wang Y, Chen D, Liu J, Deng X, Sun L, Anderson K, Qi X et al (2015) Selective generation of dopaminergic precursors from mouse fibroblasts by direct lineage conversion. Sci Rep 5:12622ADSPubMedPubMedCentralCrossRef
28.
go back to reference Wang Y, Yang H, Yang Q, Yang J, Wang H, Xu H, Gao WQ (2016) Chemical conversion of mouse fibroblasts into functional dopaminergic neurons. Exp Cell Res 347(2):283–292PubMedCrossRef Wang Y, Yang H, Yang Q, Yang J, Wang H, Xu H, Gao WQ (2016) Chemical conversion of mouse fibroblasts into functional dopaminergic neurons. Exp Cell Res 347(2):283–292PubMedCrossRef
29.
go back to reference Qin H, Zhao AD, Sun ML, Ma K, Fu XB (2020) Direct conversion of human fibroblasts into dopaminergic neuron-like cells using small molecules and protein factors. Mil Med Res 7(1):52PubMedPubMedCentral Qin H, Zhao AD, Sun ML, Ma K, Fu XB (2020) Direct conversion of human fibroblasts into dopaminergic neuron-like cells using small molecules and protein factors. Mil Med Res 7(1):52PubMedPubMedCentral
30.
go back to reference Pereira M, Pfisterer U, Rylander D, Torper O, Lau S, Lundblad M, Grealish S, Parmar M (2014) Highly efficient generation of induced neurons from human fibroblasts that survive transplantation into the adult rat brain. Sci Rep 4:6330ADSPubMedPubMedCentralCrossRef Pereira M, Pfisterer U, Rylander D, Torper O, Lau S, Lundblad M, Grealish S, Parmar M (2014) Highly efficient generation of induced neurons from human fibroblasts that survive transplantation into the adult rat brain. Sci Rep 4:6330ADSPubMedPubMedCentralCrossRef
31.
go back to reference Jiang H, Xu Z, Zhong P, Ren Y, Liang G, Schilling HA, Hu Z, Zhang Y, Wang X, Chen S et al (2015) Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons. Nat Commun 6:10100ADSPubMedCrossRef Jiang H, Xu Z, Zhong P, Ren Y, Liang G, Schilling HA, Hu Z, Zhang Y, Wang X, Chen S et al (2015) Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons. Nat Commun 6:10100ADSPubMedCrossRef
32.
go back to reference di Val R, Cervo P, Romanov RA, Spigolon G, Masini D, Martín-Montañez E, Toledo EM, La Manno G, Feyder M, Pifl C, Ng YH et al (2017) Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. Nat Biotechnolo 35(5):444–452CrossRef di Val R, Cervo P, Romanov RA, Spigolon G, Masini D, Martín-Montañez E, Toledo EM, La Manno G, Feyder M, Pifl C, Ng YH et al (2017) Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. Nat Biotechnolo 35(5):444–452CrossRef
33.
go back to reference De Gregorio R, Pulcrano S, De Sanctis C, Volpicelli F, Guatteo E, von Oerthel L, Latagliata EC, Esposito R, Piscitelli RM, Perrone-Capano C et al (2018) miR-34b/c regulates Wnt1 and enhances mesencephalic dopaminergic neuron differentiation. Stem Cell Rep 10(4):1237–1250CrossRef De Gregorio R, Pulcrano S, De Sanctis C, Volpicelli F, Guatteo E, von Oerthel L, Latagliata EC, Esposito R, Piscitelli RM, Perrone-Capano C et al (2018) miR-34b/c regulates Wnt1 and enhances mesencephalic dopaminergic neuron differentiation. Stem Cell Rep 10(4):1237–1250CrossRef
34.
go back to reference Pu J, Gao T, Zheng R, Fang Y, Ruan Y, Jin C, Shen T, Tian J, Zhang B (2020) Parkin mutation decreases neurite complexity and maturation in neurons derived from human fibroblasts. Brain Res Bull 159:9–15PubMedCrossRef Pu J, Gao T, Zheng R, Fang Y, Ruan Y, Jin C, Shen T, Tian J, Zhang B (2020) Parkin mutation decreases neurite complexity and maturation in neurons derived from human fibroblasts. Brain Res Bull 159:9–15PubMedCrossRef
35.
go back to reference Zhou H, Su J, Hu X, Zhou C, Li H, Chen Z, Xiao Q, Wang B, Wu W, Sun Y et al (2020) Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell 181(3):590–603.e516PubMedCrossRef Zhou H, Su J, Hu X, Zhou C, Li H, Chen Z, Xiao Q, Wang B, Wu W, Sun Y et al (2020) Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell 181(3):590–603.e516PubMedCrossRef
36.
go back to reference Qian H, Kang X, Hu J, Zhang D, Liang Z, Meng F, Zhang X, Xue Y, Maimon R, Dowdy SF et al (2020) Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature 582(7813):550–556ADSPubMedPubMedCentralCrossRef Qian H, Kang X, Hu J, Zhang D, Liang Z, Meng F, Zhang X, Xue Y, Maimon R, Dowdy SF et al (2020) Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature 582(7813):550–556ADSPubMedPubMedCentralCrossRef
37.
go back to reference Yoo J, Noh M, Kim H, Jeon NL, Kim BS, Kim J (2015) Nanogrooved substrate promotes direct lineage reprogramming of fibroblasts to functional induced dopaminergic neurons. Biomaterials 45:36–45PubMedCrossRef Yoo J, Noh M, Kim H, Jeon NL, Kim BS, Kim J (2015) Nanogrooved substrate promotes direct lineage reprogramming of fibroblasts to functional induced dopaminergic neurons. Biomaterials 45:36–45PubMedCrossRef
38.
go back to reference Yoo J, Lee E, Kim HY, Youn DH, Jung J, Kim H, Chang Y, Lee W, Shin J, Baek S et al (2017) Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson’s disease therapy. Nat Nanotechnolo 12(10):1006–1014ADSCrossRef Yoo J, Lee E, Kim HY, Youn DH, Jung J, Kim H, Chang Y, Lee W, Shin J, Baek S et al (2017) Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson’s disease therapy. Nat Nanotechnolo 12(10):1006–1014ADSCrossRef
39.
go back to reference Chang JH, Tsai PH, Wang KY, Wei YT, Chiou SH, Mou CY (2018) Generation of functional dopaminergic neurons from reprogramming fibroblasts by nonviral-based mesoporous silica nanoparticles. Sci Rep 8(1):11ADSPubMedPubMedCentralCrossRef Chang JH, Tsai PH, Wang KY, Wei YT, Chiou SH, Mou CY (2018) Generation of functional dopaminergic neurons from reprogramming fibroblasts by nonviral-based mesoporous silica nanoparticles. Sci Rep 8(1):11ADSPubMedPubMedCentralCrossRef
40.
go back to reference Chen Y, Pu J, Zhang B (2016) Progress and challenges of cell replacement therapy for neurodegenerative diseases based on direct neural reprogramming. Hum Gene ther 27(12):962–970PubMedCrossRef Chen Y, Pu J, Zhang B (2016) Progress and challenges of cell replacement therapy for neurodegenerative diseases based on direct neural reprogramming. Hum Gene ther 27(12):962–970PubMedCrossRef
41.
go back to reference Diener C, Keller A, Meese E (2022) Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet 38(6):613–626PubMedCrossRef Diener C, Keller A, Meese E (2022) Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet 38(6):613–626PubMedCrossRef
42.
go back to reference Titze-de-Almeida SS, Soto-Sánchez C, Fernandez E, Koprich JB, Brotchie JM, Titze-de-Almeida R (2020) The promise and challenges of developing miRNA-based therapeutics for Parkinson’s disease. Cells 9(4):841PubMedPubMedCentralCrossRef Titze-de-Almeida SS, Soto-Sánchez C, Fernandez E, Koprich JB, Brotchie JM, Titze-de-Almeida R (2020) The promise and challenges of developing miRNA-based therapeutics for Parkinson’s disease. Cells 9(4):841PubMedPubMedCentralCrossRef
43.
go back to reference Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, Ding S (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9(2):113–118PubMedPubMedCentralCrossRef Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, Ding S (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9(2):113–118PubMedPubMedCentralCrossRef
44.
go back to reference Grealish S, Drouin-Ouellet J, Parmar M (2016) Brain repair and reprogramming: the route to clinical translation. J Intern Med 280(3):265–275PubMedCrossRef Grealish S, Drouin-Ouellet J, Parmar M (2016) Brain repair and reprogramming: the route to clinical translation. J Intern Med 280(3):265–275PubMedCrossRef
45.
go back to reference Wang Q, Liu Y, Han C, Yang M, Huang F, Duan X, Wang S, Yu Y, Liu J, Yang H et al (2021) Efficient RNA virus targeting via CRISPR/CasRx in fish. J Virol 95(19):e0046121PubMedCrossRef Wang Q, Liu Y, Han C, Yang M, Huang F, Duan X, Wang S, Yu Y, Liu J, Yang H et al (2021) Efficient RNA virus targeting via CRISPR/CasRx in fish. J Virol 95(19):e0046121PubMedCrossRef
46.
47.
go back to reference Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD (2018) Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173(3):665–676.e614PubMedPubMedCentralCrossRef Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD (2018) Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173(3):665–676.e614PubMedPubMedCentralCrossRef
48.
go back to reference Wang LL, Serrano C, Zhong X, Ma S, Zou Y, Zhang CL (2021) Revisiting astrocyte to neuron conversion with lineage tracing in vivo. Cell 184(21):5465–5481.e5416PubMedPubMedCentralCrossRef Wang LL, Serrano C, Zhong X, Ma S, Zou Y, Zhang CL (2021) Revisiting astrocyte to neuron conversion with lineage tracing in vivo. Cell 184(21):5465–5481.e5416PubMedPubMedCentralCrossRef
49.
go back to reference Mertens J, Marchetto MC, Bardy C, Gage FH (2016) Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat Rev Neurosci 17(7):424–437PubMedPubMedCentralCrossRef Mertens J, Marchetto MC, Bardy C, Gage FH (2016) Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat Rev Neurosci 17(7):424–437PubMedPubMedCentralCrossRef
50.
go back to reference Arenas E, Denham M, Villaescusa JC (2015) How to make a midbrain dopaminergic neuron. Development 142(11):1918–1936PubMedCrossRef Arenas E, Denham M, Villaescusa JC (2015) How to make a midbrain dopaminergic neuron. Development 142(11):1918–1936PubMedCrossRef
51.
go back to reference Playne R, Connor B (2017) Understanding Parkinson’s disease through the use of cell reprogramming. Stem Cell Rev Rep 13(2):151–169PubMedCrossRef Playne R, Connor B (2017) Understanding Parkinson’s disease through the use of cell reprogramming. Stem Cell Rev Rep 13(2):151–169PubMedCrossRef
Metadata
Title
Progress in direct reprogramming of dopaminergic cell replacement therapy
Authors
Yuan Yuan Zheng
Hui Xu
Yue Si Wang
Publication date
10-11-2023
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 3/2024
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-023-07175-z

Other articles of this Issue 3/2024

Neurological Sciences 3/2024 Go to the issue