Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2024

Open Access 01-12-2024 | Parkinson's Disease | Research

Freezing of gait assessment with inertial measurement units and deep learning: effect of tasks, medication states, and stops

Authors: Po-Kai Yang, Benjamin Filtjens, Pieter Ginis, Maaike Goris, Alice Nieuwboer, Moran Gilat, Peter Slaets, Bart Vanrumste

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2024

Login to get access

Abstract

Background

Freezing of gait (FOG) is an episodic and highly disabling symptom of Parkinson’s Disease (PD). Traditionally, FOG assessment relies on time-consuming visual inspection of camera footage. Therefore, previous studies have proposed portable and automated solutions to annotate FOG. However, automated FOG assessment is challenging due to gait variability caused by medication effects and varying FOG-provoking tasks. Moreover, whether automated approaches can differentiate FOG from typical everyday movements, such as volitional stops, remains to be determined. To address these questions, we evaluated an automated FOG assessment model with deep learning (DL) based on inertial measurement units (IMUs). We assessed its performance trained on all standardized FOG-provoking tasks and medication states, as well as on specific tasks and medication states. Furthermore, we examined the effect of adding stopping periods on FOG detection performance.

Methods

Twelve PD patients with self-reported FOG (mean age 69.33 ± 6.02 years) completed a FOG-provoking protocol, including timed-up-and-go and 360-degree turning-in-place tasks in On/Off dopaminergic medication states with/without volitional stopping. IMUs were attached to the pelvis and both sides of the tibia and talus. A temporal convolutional network (TCN) was used to detect FOG episodes. FOG severity was quantified by the percentage of time frozen (%TF) and the number of freezing episodes (#FOG). The agreement between the model-generated outcomes and the gold standard experts’ video annotation was assessed by the intra-class correlation coefficient (ICC).

Results

For FOG assessment in trials without stopping, the agreement of our model was strong (ICC (%TF) = 0.92 [0.68, 0.98]; ICC(#FOG) = 0.95 [0.72, 0.99]). Models trained on a specific FOG-provoking task could not generalize to unseen tasks, while models trained on a specific medication state could generalize to unseen states. For assessment in trials with stopping, the agreement of our model was moderately strong (ICC (%TF) = 0.95 [0.73, 0.99]; ICC (#FOG) = 0.79 [0.46, 0.94]), but only when stopping was included in the training data.

Conclusion

A TCN trained on IMU signals allows valid FOG assessment in trials with/without stops containing different medication states and FOG-provoking tasks. These results are encouraging and enable future work investigating automated FOG assessment during everyday life.
Appendix
Available only for authorised users
Literature
16.
go back to reference Mancini M, Priest KC, Nutt JG, Horak FB. Quantifying freezing of gait in Parkinson’s disease during the instrumented timed up and go test. In: Annual international conference of the IEEE engineering in medicine and biology society. IEEE Engineering in Medicine and Biology Society. Annual international conference 2012, 2012. p. 1198–201. https://doi.org/10.1109/EMBC.2012.6346151. Mancini M, Priest KC, Nutt JG, Horak FB. Quantifying freezing of gait in Parkinson’s disease during the instrumented timed up and go test. In: Annual international conference of the IEEE engineering in medicine and biology society. IEEE Engineering in Medicine and Biology Society. Annual international conference 2012, 2012. p. 1198–201. https://​doi.​org/​10.​1109/​EMBC.​2012.​6346151.
29.
go back to reference Cockx H, Nonnekes J, Bloem BR, van Wezel R, Cameron I, Wang Y. Dealing with the heterogeneous presentations of freezing of gait: how reliable are the freezing index and heart rate for freezing detection? J Neuroeng Rehabil. 2023;20(1):53.CrossRefPubMedPubMedCentral Cockx H, Nonnekes J, Bloem BR, van Wezel R, Cameron I, Wang Y. Dealing with the heterogeneous presentations of freezing of gait: how reliable are the freezing index and heart rate for freezing detection? J Neuroeng Rehabil. 2023;20(1):53.CrossRefPubMedPubMedCentral
30.
go back to reference Filtjens B, Ginis P, Nieuwboer A, Afzal MR, Spildooren J, Vanrumste B, Slaets P. Modelling and identification of characteristic kinematic features preceding freezing of gait with convolutional neural networks and layer-wise relevance propagation. BMC Med Inform Decis Mak. 2021;21(1):341.CrossRefPubMedPubMedCentral Filtjens B, Ginis P, Nieuwboer A, Afzal MR, Spildooren J, Vanrumste B, Slaets P. Modelling and identification of characteristic kinematic features preceding freezing of gait with convolutional neural networks and layer-wise relevance propagation. BMC Med Inform Decis Mak. 2021;21(1):341.CrossRefPubMedPubMedCentral
48.
go back to reference Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N, Agarwal P, Athar S, Bordelan Y, Bronte-Stewart HM, Camicioli R, Chou K, Cole W, Dalvi A, Delgado H, Diamond A, Dick JP, Duda J, Elble RJ, Evans C, Evidente VG, Fernandez HH, Fox S, Friedman JH, Fross RD, Gallagher D, Goetz CG, Hall D, Hermanowicz N, Hinson V, Horn S, Hurtig H, Kang UJ, Kleiner-Fisman G, Klepitskaya O, Kompoliti K, Lai EC, Leehey ML, Leroi I, Lyons KE, McClain T, Metzer SW, Miyasaki J, Morgan JC, Nance M, Nemeth J, Pahwa R, Parashos SA, Schneider JS, Sethi K, Shulman LM, Siderowf A, Silverdale M, Simuni T, Stacy M, Stern MB, Stewart RM, Sullivan K, Swope DM, Wadia PM, Walker RW, Walker R, Weiner WJ, Wiener J, Wilkinson J, Wojcieszek JM, Wolfrath S, Wooten F, Wu A, Zesiewicz TA, Zweig RM. Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23:2129–70. https://doi.org/10.1002/MDS.22340.CrossRefPubMed Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N, Agarwal P, Athar S, Bordelan Y, Bronte-Stewart HM, Camicioli R, Chou K, Cole W, Dalvi A, Delgado H, Diamond A, Dick JP, Duda J, Elble RJ, Evans C, Evidente VG, Fernandez HH, Fox S, Friedman JH, Fross RD, Gallagher D, Goetz CG, Hall D, Hermanowicz N, Hinson V, Horn S, Hurtig H, Kang UJ, Kleiner-Fisman G, Klepitskaya O, Kompoliti K, Lai EC, Leehey ML, Leroi I, Lyons KE, McClain T, Metzer SW, Miyasaki J, Morgan JC, Nance M, Nemeth J, Pahwa R, Parashos SA, Schneider JS, Sethi K, Shulman LM, Siderowf A, Silverdale M, Simuni T, Stacy M, Stern MB, Stewart RM, Sullivan K, Swope DM, Wadia PM, Walker RW, Walker R, Weiner WJ, Wiener J, Wilkinson J, Wojcieszek JM, Wolfrath S, Wooten F, Wu A, Zesiewicz TA, Zweig RM. Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23:2129–70. https://​doi.​org/​10.​1002/​MDS.​22340.CrossRefPubMed
51.
go back to reference Shalin G, Pardoel S, Lemaire ED, Nantel J, Kofman J. Prediction and detection of freezing of gait in Parkinson’s disease from plantar pressure data using long short-term memory neural-networks. J Neuroeng Rehabil. 2021;18(1):1–15.CrossRef Shalin G, Pardoel S, Lemaire ED, Nantel J, Kofman J. Prediction and detection of freezing of gait in Parkinson’s disease from plantar pressure data using long short-term memory neural-networks. J Neuroeng Rehabil. 2021;18(1):1–15.CrossRef
52.
go back to reference Pavllo D, Feichtenhofer C, Grangier D, Auli M. 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition 2019-June, 2018. p. 7745–54. https://doi.org/10.48550/arxiv.1811.11742. Pavllo D, Feichtenhofer C, Grangier D, Auli M. 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition 2019-June, 2018. p. 7745–54. https://​doi.​org/​10.​48550/​arxiv.​1811.​11742.
55.
go back to reference Chan YH. Biostatistics 104: correlational analysis. Singap Med J. 2003;44:614–9. Chan YH. Biostatistics 104: correlational analysis. Singap Med J. 2003;44:614–9.
62.
63.
go back to reference Walton CC, Mowszowski L, Gilat M, Hall JM, O’Callaghan C, Muller AJ, Georgiades M, Szeto JYY, Martens KAE, Shine JM, Naismith SL, Lewis SJG. Cognitive training for freezing of gait in Parkinson’s disease: a randomized controlled trial. NPJ Parkinson’s Dis. 2018. https://doi.org/10.1038/S41531-018-0052-6.CrossRef Walton CC, Mowszowski L, Gilat M, Hall JM, O’Callaghan C, Muller AJ, Georgiades M, Szeto JYY, Martens KAE, Shine JM, Naismith SL, Lewis SJG. Cognitive training for freezing of gait in Parkinson’s disease: a randomized controlled trial. NPJ Parkinson’s Dis. 2018. https://​doi.​org/​10.​1038/​S41531-018-0052-6.CrossRef
65.
go back to reference Naghavi N, Miller A, Wade E. Towards real-time prediction of freezing of gait in patients with Parkinson’s disease: addressing the class imbalance problem. Sensors. 2019;19(18):3898.CrossRefPubMedPubMedCentralADS Naghavi N, Miller A, Wade E. Towards real-time prediction of freezing of gait in patients with Parkinson’s disease: addressing the class imbalance problem. Sensors. 2019;19(18):3898.CrossRefPubMedPubMedCentralADS
66.
go back to reference Mazilu S, Hardegger M, Zhu Z, Roggen D, Tröster G, Plotnik M, Hausdorff JM. Online detection of freezing of gait with smartphones and machine learning techniques. In: 2012 6th international conference on pervasive computing technologies for healthcare (PervasiveHealth) and workshops. IEEE; 2012. p. 123–30. Mazilu S, Hardegger M, Zhu Z, Roggen D, Tröster G, Plotnik M, Hausdorff JM. Online detection of freezing of gait with smartphones and machine learning techniques. In: 2012 6th international conference on pervasive computing technologies for healthcare (PervasiveHealth) and workshops. IEEE; 2012. p. 123–30.
70.
72.
go back to reference Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S. PyTorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst. 2019;32:8026. https://doi.org/10.48550/arxiv.1912.01703.CrossRef Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S. PyTorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst. 2019;32:8026. https://​doi.​org/​10.​48550/​arxiv.​1912.​01703.CrossRef
Metadata
Title
Freezing of gait assessment with inertial measurement units and deep learning: effect of tasks, medication states, and stops
Authors
Po-Kai Yang
Benjamin Filtjens
Pieter Ginis
Maaike Goris
Alice Nieuwboer
Moran Gilat
Peter Slaets
Bart Vanrumste
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2024
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-024-01320-1

Other articles of this Issue 1/2024

Journal of NeuroEngineering and Rehabilitation 1/2024 Go to the issue