Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2023

Open Access 01-12-2023 | Parkinson's Disease | Research

Neuroprotective effects of GSK-343 in an in vivo model of MPTP-induced nigrostriatal degeneration

Authors: Deborah Mannino, Sarah Adriana Scuderi, Giovanna Casili, Valentina Bova, Laura Cucinotta, Marika Lanza, Alessia Filippone, Emanuela Esposito, Irene Paterniti

Published in: Journal of Neuroinflammation | Issue 1/2023

Login to get access

Abstract

Parkinson’s disease (PD) is characterized by the degeneration of dopaminergic nigrostriatal neurons, which causes disabling motor disorders. Scientific findings support the role of epigenetics mechanism in the development and progression of many neurodegenerative diseases, including PD. In this field, some studies highlighted an upregulation of Enhancer of zeste homolog 2 (EZH2) in the brains of PD patients, indicating the possible pathogenic role of this methyltransferase in PD. The aim of this study was to evaluate the neuroprotective effects of GSK-343, an EZH2 inhibitor, in an in vivo model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic degeneration. Specifically, nigrostriatal degeneration was induced by MPTP intraperitoneal injection. GSK-343 was administered intraperitoneally daily at doses of 1 mg/kg, 5 mg/kg and 10 mg/kg, mice were killed 7 days after MPTP injection. Our results demonstrated that GSK-343 treatment significantly improved behavioral deficits and reduced the alteration of PD hallmarks. Furthermore, GSK-343 administration significantly attenuated the neuroinflammatory state through the modulation of canonical and non-canonical NF-κB/IκBα pathway as well as the cytokines expression and glia activation, also reducing the apoptosis process. In conclusion, the obtained results provide further evidence that epigenetic mechanisms play a pathogenic role in PD demonstrating that the inhibition of EZH2, mediated by GSK-343, could be considered a valuable pharmacological strategy for PD.
Literature
2.
go back to reference Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3(1):1–21.CrossRef Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3(1):1–21.CrossRef
3.
go back to reference Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H. The Lewy body in Parkinson’s disease and related neurodegenerative disorders. Mol Neurobiol. 2013;47(2):495–508.PubMedCrossRef Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H. The Lewy body in Parkinson’s disease and related neurodegenerative disorders. Mol Neurobiol. 2013;47(2):495–508.PubMedCrossRef
5.
go back to reference Liu Z, Qiu AW, Huang Y, Yang Y, Chen JN, Gu TT, et al. IL-17A exacerbates neuroinflammation and neurodegeneration by activating microglia in rodent models of Parkinson’s disease. Brain Behav Immun. 2019;81:630–45.PubMedCrossRef Liu Z, Qiu AW, Huang Y, Yang Y, Chen JN, Gu TT, et al. IL-17A exacerbates neuroinflammation and neurodegeneration by activating microglia in rodent models of Parkinson’s disease. Brain Behav Immun. 2019;81:630–45.PubMedCrossRef
6.
go back to reference Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009;8(4):382–97.PubMedCrossRef Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009;8(4):382–97.PubMedCrossRef
7.
go back to reference Neal M, Richardson JR. Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2018;1864(2):432–43.PubMedCrossRef Neal M, Richardson JR. Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2018;1864(2):432–43.PubMedCrossRef
8.
go back to reference Chatterjee P, Roy D, Bhattacharyya M, Bandyopadhyay S. Biological networks in Parkinson’s disease: an insight into the epigenetic mechanisms associated with this disease. BMC Genomics. 2017;18(1):1–17.CrossRef Chatterjee P, Roy D, Bhattacharyya M, Bandyopadhyay S. Biological networks in Parkinson’s disease: an insight into the epigenetic mechanisms associated with this disease. BMC Genomics. 2017;18(1):1–17.CrossRef
9.
go back to reference Feng Y, Jankovic J, Wu Y-C. Epigenetic mechanisms in Parkinson’s disease. J Neurol Sci. 2015;349(1–2):3–9.PubMedCrossRef Feng Y, Jankovic J, Wu Y-C. Epigenetic mechanisms in Parkinson’s disease. J Neurol Sci. 2015;349(1–2):3–9.PubMedCrossRef
10.
go back to reference Zhang X, Wang Y, Yuan J, Li N, Pei S, Xu J, et al. Macrophage/microglial Ezh2 facilitates autoimmune inflammation through inhibition of Socs3. J Exp Med. 2018;215(5):1365–82.PubMedPubMedCentralCrossRef Zhang X, Wang Y, Yuan J, Li N, Pei S, Xu J, et al. Macrophage/microglial Ezh2 facilitates autoimmune inflammation through inhibition of Socs3. J Exp Med. 2018;215(5):1365–82.PubMedPubMedCentralCrossRef
12.
go back to reference Penas C, Navarro X. Epigenetic modifications associated to neuroinflammation and neuropathic pain after neural trauma. Front Cell Neurosci. 2018;12:158.PubMedPubMedCentralCrossRef Penas C, Navarro X. Epigenetic modifications associated to neuroinflammation and neuropathic pain after neural trauma. Front Cell Neurosci. 2018;12:158.PubMedPubMedCentralCrossRef
13.
go back to reference Ying L, Yan F, Williams BR, Xu P, Li X, Zhao Y, et al. (−)-Epigallocatechin-3-gallate and EZH 2 inhibitor GSK 343 have similar inhibitory effects and mechanisms of action on colorectal cancer cells. Clin Exp Pharmacol Physiol. 2018;45(1):58–67.PubMedCrossRef Ying L, Yan F, Williams BR, Xu P, Li X, Zhao Y, et al. (−)-Epigallocatechin-3-gallate and EZH 2 inhibitor GSK 343 have similar inhibitory effects and mechanisms of action on colorectal cancer cells. Clin Exp Pharmacol Physiol. 2018;45(1):58–67.PubMedCrossRef
14.
go back to reference Xu H, Zhang L, Qian X, Zhou X, Yan Y, Zhou J, et al. GSK343 induces autophagy and downregulates the AKT/mTOR signaling pathway in pancreatic cancer cells. Exp Ther Med. 2019;18(4):2608–16.PubMedPubMedCentral Xu H, Zhang L, Qian X, Zhou X, Yan Y, Zhou J, et al. GSK343 induces autophagy and downregulates the AKT/mTOR signaling pathway in pancreatic cancer cells. Exp Ther Med. 2019;18(4):2608–16.PubMedPubMedCentral
15.
go back to reference Liu T-P, Hong Y-H, Tung K-Y, Yang P-M. In silico and experimental analyses predict the therapeutic value of an EZH2 inhibitor GSK343 against hepatocellular carcinoma through the induction of metallothionein genes. Oncoscience. 2016;3(1):9.PubMedPubMedCentralCrossRef Liu T-P, Hong Y-H, Tung K-Y, Yang P-M. In silico and experimental analyses predict the therapeutic value of an EZH2 inhibitor GSK343 against hepatocellular carcinoma through the induction of metallothionein genes. Oncoscience. 2016;3(1):9.PubMedPubMedCentralCrossRef
16.
go back to reference Scuderi SA, Filippone A, Basilotta R, Mannino D, Casili G, Capra AP, et al. GSK343, an Inhibitor of Enhancer of Zeste Homolog 2, Reduces Glioblastoma Progression through Inflammatory Process Modulation: focus on Canonical and Non-Canonical NF-kappaB/IkappaBalpha Pathways. Int J Mol Sci. 2022;23(22):13915.PubMedPubMedCentralCrossRef Scuderi SA, Filippone A, Basilotta R, Mannino D, Casili G, Capra AP, et al. GSK343, an Inhibitor of Enhancer of Zeste Homolog 2, Reduces Glioblastoma Progression through Inflammatory Process Modulation: focus on Canonical and Non-Canonical NF-kappaB/IkappaBalpha Pathways. Int J Mol Sci. 2022;23(22):13915.PubMedPubMedCentralCrossRef
17.
go back to reference Ratnam NM, Sonnemann HM, Frederico SC, Chen H, Hutchinson MND, Dowdy T, et al. Reversing epigenetic gene silencing to overcome immune evasion in CNS malignancies. Front Oncol. 2021;11: 719091.PubMedPubMedCentralCrossRef Ratnam NM, Sonnemann HM, Frederico SC, Chen H, Hutchinson MND, Dowdy T, et al. Reversing epigenetic gene silencing to overcome immune evasion in CNS malignancies. Front Oncol. 2021;11: 719091.PubMedPubMedCentralCrossRef
18.
go back to reference Yu T, Wang Y, Hu Q, Wu W, Wu Y, Wei W, et al. The EZH2 inhibitor GSK343 suppresses cancer stem-like phenotypes and reverses mesenchymal transition in glioma cells. Oncotarget. 2017;8(58):98348–59.PubMedPubMedCentralCrossRef Yu T, Wang Y, Hu Q, Wu W, Wu Y, Wei W, et al. The EZH2 inhibitor GSK343 suppresses cancer stem-like phenotypes and reverses mesenchymal transition in glioma cells. Oncotarget. 2017;8(58):98348–59.PubMedPubMedCentralCrossRef
19.
go back to reference Bownes LV, Williams AP, Marayati R, Stafman LL, Markert H, Quinn CH, et al. EZH2 inhibition decreases neuroblastoma proliferation and in vivo tumor growth. PLoS ONE. 2021;16(3): e0246244.PubMedPubMedCentralCrossRef Bownes LV, Williams AP, Marayati R, Stafman LL, Markert H, Quinn CH, et al. EZH2 inhibition decreases neuroblastoma proliferation and in vivo tumor growth. PLoS ONE. 2021;16(3): e0246244.PubMedPubMedCentralCrossRef
20.
go back to reference Campolo M, Filippone A, Biondo C, Mancuso G, Casili G, Lanza M, et al. TLR7/8 in the pathogenesis of Parkinson’s disease. Int J Mol Sci. 2020;21(24):9384.PubMedPubMedCentralCrossRef Campolo M, Filippone A, Biondo C, Mancuso G, Casili G, Lanza M, et al. TLR7/8 in the pathogenesis of Parkinson’s disease. Int J Mol Sci. 2020;21(24):9384.PubMedPubMedCentralCrossRef
21.
go back to reference Ardizzone A, Bova V, Casili G, Filippone A, Campolo M, Lanza M, et al. SUN11602, a bFGF mimetic, modulated neuroinflammation, apoptosis and calcium-binding proteins in an in vivo model of MPTP-induced nigrostriatal degeneration. J Neuroinflammation. 2022;19(1):107.PubMedPubMedCentralCrossRef Ardizzone A, Bova V, Casili G, Filippone A, Campolo M, Lanza M, et al. SUN11602, a bFGF mimetic, modulated neuroinflammation, apoptosis and calcium-binding proteins in an in vivo model of MPTP-induced nigrostriatal degeneration. J Neuroinflammation. 2022;19(1):107.PubMedPubMedCentralCrossRef
22.
go back to reference Campolo M, Casili G, Biundo F, Crupi R, Cordaro M, Cuzzocrea S, et al. The neuroprotective effect of dimethyl fumarate in an MPTP-mouse model of Parkinson’s disease: involvement of reactive oxygen species/nuclear factor-kappaB/nuclear transcription factor related to NF-E2. Antioxid Redox Signal. 2017;27(8):453–71.PubMedPubMedCentralCrossRef Campolo M, Casili G, Biundo F, Crupi R, Cordaro M, Cuzzocrea S, et al. The neuroprotective effect of dimethyl fumarate in an MPTP-mouse model of Parkinson’s disease: involvement of reactive oxygen species/nuclear factor-kappaB/nuclear transcription factor related to NF-E2. Antioxid Redox Signal. 2017;27(8):453–71.PubMedPubMedCentralCrossRef
23.
go back to reference Impellizzeri D, Campolo M, Bruschetta G, Crupi R, Cordaro M, Paterniti I, et al. Traumatic brain injury leads to development of Parkinson’s disease related pathology in mice. Front Neurosci. 2016;10:458.PubMedPubMedCentralCrossRef Impellizzeri D, Campolo M, Bruschetta G, Crupi R, Cordaro M, Paterniti I, et al. Traumatic brain injury leads to development of Parkinson’s disease related pathology in mice. Front Neurosci. 2016;10:458.PubMedPubMedCentralCrossRef
24.
go back to reference Scuderi SA, Casili G, Lanza M, Filippone A, Paterniti I, Esposito E, et al. Modulation of NLRP3 inflammasome attenuated inflammatory response associated to diarrhea-predominant irritable bowel syndrome. Biomedicines. 2020;8(11):519.PubMedPubMedCentralCrossRef Scuderi SA, Casili G, Lanza M, Filippone A, Paterniti I, Esposito E, et al. Modulation of NLRP3 inflammasome attenuated inflammatory response associated to diarrhea-predominant irritable bowel syndrome. Biomedicines. 2020;8(11):519.PubMedPubMedCentralCrossRef
25.
go back to reference Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med. 1999;5(12):1403–9.PubMedCrossRef Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med. 1999;5(12):1403–9.PubMedCrossRef
26.
go back to reference Lee KW, Zhao X, Im JY, Grosso H, Jang WH, Chan TW, et al. Apoptosis signal-regulating kinase 1 mediates MPTP toxicity and regulates glial activation. PLoS ONE. 2012;7(1): e29935.PubMedPubMedCentralCrossRef Lee KW, Zhao X, Im JY, Grosso H, Jang WH, Chan TW, et al. Apoptosis signal-regulating kinase 1 mediates MPTP toxicity and regulates glial activation. PLoS ONE. 2012;7(1): e29935.PubMedPubMedCentralCrossRef
27.
go back to reference Casili G, Scuderi SA, Lanza M, Filippone A, Basilotta R, Mannino D, et al. The protective role of prolyl oligopeptidase (POP) inhibition in acute lung injury induced by intestinal ischemia-reperfusion. Oncotarget. 2021;12(17):1663–76.PubMedPubMedCentralCrossRef Casili G, Scuderi SA, Lanza M, Filippone A, Basilotta R, Mannino D, et al. The protective role of prolyl oligopeptidase (POP) inhibition in acute lung injury induced by intestinal ischemia-reperfusion. Oncotarget. 2021;12(17):1663–76.PubMedPubMedCentralCrossRef
28.
go back to reference Nagatsu T, Nakashima A, Ichinose H, Kobayashi K. Human tyrosine hydroxylase in Parkinson’s disease and in related disorders. J Neural Transm. 2019;126(4):397–409.PubMedCrossRef Nagatsu T, Nakashima A, Ichinose H, Kobayashi K. Human tyrosine hydroxylase in Parkinson’s disease and in related disorders. J Neural Transm. 2019;126(4):397–409.PubMedCrossRef
29.
go back to reference Bieri G, Brahic M, Bousset L, Couthouis J, Kramer NJ, Ma R, et al. LRRK2 modifies α-syn pathology and spread in mouse models and human neurons. Acta Neuropathol. 2019;137(6):961–80.PubMedPubMedCentralCrossRef Bieri G, Brahic M, Bousset L, Couthouis J, Kramer NJ, Ma R, et al. LRRK2 modifies α-syn pathology and spread in mouse models and human neurons. Acta Neuropathol. 2019;137(6):961–80.PubMedPubMedCentralCrossRef
30.
go back to reference Dean DC III, Sojkova J, Hurley S, Kecskemeti S, Okonkwo O, Bendlin BB, et al. Alterations of myelin content in Parkinson’s disease: a cross-sectional neuroimaging study. PLoS ONE. 2016;11(10): e0163774.PubMedPubMedCentralCrossRef Dean DC III, Sojkova J, Hurley S, Kecskemeti S, Okonkwo O, Bendlin BB, et al. Alterations of myelin content in Parkinson’s disease: a cross-sectional neuroimaging study. PLoS ONE. 2016;11(10): e0163774.PubMedPubMedCentralCrossRef
31.
go back to reference Flood PM, Qian L, Peterson LJ, Zhang F, Shi J-S, Gao H-M, et al. Transcriptional Factor NF-ùúÖ B as a Target for Therapy in Parkinson’s Disease. Parkinson‚ Äôs Disease. 2011. Flood PM, Qian L, Peterson LJ, Zhang F, Shi J-S, Gao H-M, et al. Transcriptional Factor NF-ùúÖ B as a Target for Therapy in Parkinson’s Disease. Parkinson‚ Äôs Disease. 2011.
32.
go back to reference Aoki E, Yano R, Yokoyama H, Kato H, Araki T. Role of nuclear transcription factor kappa B (NF-kappaB) for MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine)-induced apoptosis in nigral neurons of mice. Exp Mol Pathol. 2009;86(1):57–64.PubMedCrossRef Aoki E, Yano R, Yokoyama H, Kato H, Araki T. Role of nuclear transcription factor kappa B (NF-kappaB) for MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine)-induced apoptosis in nigral neurons of mice. Exp Mol Pathol. 2009;86(1):57–64.PubMedCrossRef
33.
go back to reference Teismann P, Schulz JB. Cellular pathology of Parkinson’s disease: astrocytes, microglia and inflammation. Cell Tissue Res. 2004;318(1):149–61.PubMedCrossRef Teismann P, Schulz JB. Cellular pathology of Parkinson’s disease: astrocytes, microglia and inflammation. Cell Tissue Res. 2004;318(1):149–61.PubMedCrossRef
34.
go back to reference Ruan Z, Zhang D, Huang R, Sun W, Hou L, Zhao J, et al. Microglial activation damages dopaminergic neurons through MMP-2/-9-mediated increase of blood-brain barrier permeability in a Parkinson’s disease mouse model. Int J Mol Sci. 2022;23(5):2793.PubMedPubMedCentralCrossRef Ruan Z, Zhang D, Huang R, Sun W, Hou L, Zhao J, et al. Microglial activation damages dopaminergic neurons through MMP-2/-9-mediated increase of blood-brain barrier permeability in a Parkinson’s disease mouse model. Int J Mol Sci. 2022;23(5):2793.PubMedPubMedCentralCrossRef
35.
go back to reference Erekat NS. Apoptosis and its role in Parkinson’s disease. Exon Publications. 2018:65–82. Erekat NS. Apoptosis and its role in Parkinson’s disease. Exon Publications. 2018:65–82.
36.
go back to reference Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 2020;36(1):1–12.PubMedCrossRef Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 2020;36(1):1–12.PubMedCrossRef
37.
go back to reference Luo Y, Fang Y, Kang R, Lenahan C, Gamdzyk M, Zhang Z, et al. Inhibition of EZH2 (enhancer of zeste homolog 2) attenuates neuroinflammation via H3k27me3/SOCS3/TRAF6/NF-κB (trimethylation of histone 3 lysine 27/suppressor of cytokine signaling 3/tumor necrosis factor receptor family 6/nuclear factor-κB) in a rat model of subarachnoid hemorrhage. Stroke. 2020;51(11):3320–31.PubMedPubMedCentralCrossRef Luo Y, Fang Y, Kang R, Lenahan C, Gamdzyk M, Zhang Z, et al. Inhibition of EZH2 (enhancer of zeste homolog 2) attenuates neuroinflammation via H3k27me3/SOCS3/TRAF6/NF-κB (trimethylation of histone 3 lysine 27/suppressor of cytokine signaling 3/tumor necrosis factor receptor family 6/nuclear factor-κB) in a rat model of subarachnoid hemorrhage. Stroke. 2020;51(11):3320–31.PubMedPubMedCentralCrossRef
38.
go back to reference Luo Y, Fang Y, Kang R, Lenahan C, Gamdzyk M, Zhang Z, et al. Inhibition of EZH2 attenuates neuroinflammation via H3k27me3/SOCS3/TRAF6/NF-κB in a rat model of subarachnoid hemorrhage. Stroke. 2020;51(11):3320.PubMedPubMedCentralCrossRef Luo Y, Fang Y, Kang R, Lenahan C, Gamdzyk M, Zhang Z, et al. Inhibition of EZH2 attenuates neuroinflammation via H3k27me3/SOCS3/TRAF6/NF-κB in a rat model of subarachnoid hemorrhage. Stroke. 2020;51(11):3320.PubMedPubMedCentralCrossRef
39.
go back to reference Wang W, Qin X, Wang R, Xu J, Wu H, Khalid A, et al. EZH2 is involved in vulnerability to neuroinflammation and depression-like behaviors induced by chronic stress in different aged mice. J Affect Disord. 2020;272:452–64.PubMedCrossRef Wang W, Qin X, Wang R, Xu J, Wu H, Khalid A, et al. EZH2 is involved in vulnerability to neuroinflammation and depression-like behaviors induced by chronic stress in different aged mice. J Affect Disord. 2020;272:452–64.PubMedCrossRef
40.
go back to reference Chen J, Zhang Y-C, Huang C, Shen H, Sun B, Cheng X, et al. m6A regulates neurogenesis and neuronal development by modulating histone methyltransferase Ezh2. Genomics Proteomics Bioinformatics. 2019;17(2):154–68.PubMedPubMedCentralCrossRef Chen J, Zhang Y-C, Huang C, Shen H, Sun B, Cheng X, et al. m6A regulates neurogenesis and neuronal development by modulating histone methyltransferase Ezh2. Genomics Proteomics Bioinformatics. 2019;17(2):154–68.PubMedPubMedCentralCrossRef
41.
go back to reference Zhou J, Huang S, Wang Z, Huang J, Xu L, Tang X, et al. Targeting EZH2 histone methyltransferase activity alleviates experimental intestinal inflammation. Nat Commun. 2019;10(1):1–11.CrossRef Zhou J, Huang S, Wang Z, Huang J, Xu L, Tang X, et al. Targeting EZH2 histone methyltransferase activity alleviates experimental intestinal inflammation. Nat Commun. 2019;10(1):1–11.CrossRef
42.
go back to reference Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. J Hematol Oncol. 2020;13(1):1–12.CrossRef Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. J Hematol Oncol. 2020;13(1):1–12.CrossRef
43.
go back to reference Campolo M, Casili G, Biundo F, Crupi R, Cordaro M, Cuzzocrea S, et al. The neuroprotective effect of dimethyl fumarate in an MPTP-mouse model of Parkinson’s disease: involvement of reactive oxygen species/nuclear factor-κB/nuclear transcription factor related to NF-E2. Antioxid Redox Signal. 2017;27(8):453–71.PubMedPubMedCentralCrossRef Campolo M, Casili G, Biundo F, Crupi R, Cordaro M, Cuzzocrea S, et al. The neuroprotective effect of dimethyl fumarate in an MPTP-mouse model of Parkinson’s disease: involvement of reactive oxygen species/nuclear factor-κB/nuclear transcription factor related to NF-E2. Antioxid Redox Signal. 2017;27(8):453–71.PubMedPubMedCentralCrossRef
44.
go back to reference Vaughan RA, Foster JD. Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol Sci. 2013;34(9):489–96.PubMedCrossRef Vaughan RA, Foster JD. Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol Sci. 2013;34(9):489–96.PubMedCrossRef
45.
go back to reference Esposito E, Impellizzeri D, Mazzon E, Paterniti I, Cuzzocrea S. Neuroprotective activities of palmitoylethanolamide in an animal model of Parkinson’s disease. PLoS ONE. 2012;4:e41880.CrossRef Esposito E, Impellizzeri D, Mazzon E, Paterniti I, Cuzzocrea S. Neuroprotective activities of palmitoylethanolamide in an animal model of Parkinson’s disease. PLoS ONE. 2012;4:e41880.CrossRef
47.
go back to reference Yadav R, Weng H-R. EZH2 regulates spinal neuroinflammation in rats with neuropathic pain. Neuroscience. 2017;349:106–17.PubMedCrossRef Yadav R, Weng H-R. EZH2 regulates spinal neuroinflammation in rats with neuropathic pain. Neuroscience. 2017;349:106–17.PubMedCrossRef
48.
go back to reference Meng X-L, Fu P, Wang L, Yang X, Hong G, Zhao X, et al. Increased EZH2 levels in anterior cingulate cortex microglia aggravate neuropathic pain by inhibiting autophagy following brachial plexus avulsion in rats. Neurosci Bull. 2020;36(7):793–805.PubMedPubMedCentralCrossRef Meng X-L, Fu P, Wang L, Yang X, Hong G, Zhao X, et al. Increased EZH2 levels in anterior cingulate cortex microglia aggravate neuropathic pain by inhibiting autophagy following brachial plexus avulsion in rats. Neurosci Bull. 2020;36(7):793–805.PubMedPubMedCentralCrossRef
49.
go back to reference Luo Y, Fang Y, Kang R, Lenahan C, Gamdzyk M, Zhang Z, et al. Inhibition of EZH2 (Enhancer of Zeste Homolog 2) Attenuates Neuroinflammation via H3k27me3/SOCS3/TRAF6/NF-kappaB (Trimethylation of Histone 3 Lysine 27/Suppressor of Cytokine Signaling 3/Tumor Necrosis Factor Receptor Family 6/Nuclear Factor-kappaB) in a Rat Model of Subarachnoid Hemorrhage. Stroke. 2020;51(11):3320–31.PubMedPubMedCentralCrossRef Luo Y, Fang Y, Kang R, Lenahan C, Gamdzyk M, Zhang Z, et al. Inhibition of EZH2 (Enhancer of Zeste Homolog 2) Attenuates Neuroinflammation via H3k27me3/SOCS3/TRAF6/NF-kappaB (Trimethylation of Histone 3 Lysine 27/Suppressor of Cytokine Signaling 3/Tumor Necrosis Factor Receptor Family 6/Nuclear Factor-kappaB) in a Rat Model of Subarachnoid Hemorrhage. Stroke. 2020;51(11):3320–31.PubMedPubMedCentralCrossRef
50.
51.
go back to reference Li D-W, Li G-R, Zhang B-L, Feng J-J, Zhao H. Damage to dopaminergic neurons is mediated by proliferating cell nuclear antigen through the p53 pathway under conditions of oxidative stress in a cell model of Parkinson’s disease. Int J Mol Med. 2016;37(2):429–35.PubMedCrossRef Li D-W, Li G-R, Zhang B-L, Feng J-J, Zhao H. Damage to dopaminergic neurons is mediated by proliferating cell nuclear antigen through the p53 pathway under conditions of oxidative stress in a cell model of Parkinson’s disease. Int J Mol Med. 2016;37(2):429–35.PubMedCrossRef
52.
go back to reference Kwon HS, Koh S-H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegeneration. 2020;9(1):1–12.CrossRef Kwon HS, Koh S-H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegeneration. 2020;9(1):1–12.CrossRef
53.
go back to reference Arifuzzaman S, Das A, Kim SH, Yoon T, Lee YS, Jung KH, et al. Selective inhibition of EZH2 by a small molecule inhibitor regulates microglial gene expression essential for inflammation. Biochem Pharmacol. 2017;137:61–80.PubMedCrossRef Arifuzzaman S, Das A, Kim SH, Yoon T, Lee YS, Jung KH, et al. Selective inhibition of EZH2 by a small molecule inhibitor regulates microglial gene expression essential for inflammation. Biochem Pharmacol. 2017;137:61–80.PubMedCrossRef
Metadata
Title
Neuroprotective effects of GSK-343 in an in vivo model of MPTP-induced nigrostriatal degeneration
Authors
Deborah Mannino
Sarah Adriana Scuderi
Giovanna Casili
Valentina Bova
Laura Cucinotta
Marika Lanza
Alessia Filippone
Emanuela Esposito
Irene Paterniti
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2023
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-023-02842-6

Other articles of this Issue 1/2023

Journal of Neuroinflammation 1/2023 Go to the issue