Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 9/2020

01-08-2020 | Parkinson's Disease | Original Article

Preservation of brain metabolism in recently diagnosed Parkinson’s impulse control disorders

Authors: Juan Marín-Lahoz, Frederic Sampedro, Andrea Horta-Barba, Saül Martínez-Horta, Ignacio Aracil-Bolaños, Valle Camacho, Helena Bejr-kasem, Berta Pascual-Sedano, Jesús Pérez-Pérez, Alexandre Gironell, Javier Pagonabarraga, Ignasi Carrió, Jaime Kulisevsky

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 9/2020

Login to get access

Abstract

Background

Impulse control disorders (ICD) are a common and disrupting complication of Parkinson’s disease (PD) treatment. Although their relationship with dopaminergic activity is well studied, their brain metabolic correlates are mostly unknown.

Methods

In this work we studied brain metabolism using brain 18F-FDG-PET. We performed a case-control study nested within a cohort of PD patients free of ICD at baseline to compare ICD patients right after ICD diagnosis and prior to any treatment modification with matched ICD-free patients. We also compared both PD groups with healthy controls.

Results

When compared with ICD-free PD patients, PD patients with recently diagnosed ICD showed higher glucose metabolism in widespread areas comprising prefrontal cortices, both amygdalae and default mode network hubs (p < 0.05, corrected). When compared to healthy controls, they did not show hypermetabolism, and the only hypometabolic region was the right caudate. In turn, ICD-free patients showed diffuse hypometabolism when compared to healthy controls.

Conclusion

Our results suggest brain metabolism is more preserved in PD patients with ICD than patients without ICD. This metabolic preservation could be related to ICD development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Maloney EM, Djamshidian A, O’Sullivan SS. Phenomenology and epidemiology of impulsive-compulsive behaviours in Parkinson’s disease, atypical Parkinsonian disorders and non-Parkinsonian populations. J Neurol Sci. 2017;374:47–52.PubMed Maloney EM, Djamshidian A, O’Sullivan SS. Phenomenology and epidemiology of impulsive-compulsive behaviours in Parkinson’s disease, atypical Parkinsonian disorders and non-Parkinsonian populations. J Neurol Sci. 2017;374:47–52.PubMed
2.
go back to reference Berger C, Mehrhoff FW, Beier KM, Meinck H-M. Sexuelle Delinquenz und Morbus Parkinson [sexual delinquency and Parkinson’s disease]. Nervenarzt. 2003;74:370–5.PubMed Berger C, Mehrhoff FW, Beier KM, Meinck H-M. Sexuelle Delinquenz und Morbus Parkinson [sexual delinquency and Parkinson’s disease]. Nervenarzt. 2003;74:370–5.PubMed
3.
go back to reference Sobrido MJ, Dias-Silva JJ, Quintáns B. Behavioral disorders in Parkinson’s disease. Genetic, pharmacological and medico-legal aspects. Rev Neurol. 2009;48(Suppl 1):S43–8.PubMed Sobrido MJ, Dias-Silva JJ, Quintáns B. Behavioral disorders in Parkinson’s disease. Genetic, pharmacological and medico-legal aspects. Rev Neurol. 2009;48(Suppl 1):S43–8.PubMed
4.
go back to reference Weintraub D, Siderowf AD, Potenza MN, Goveas J, Morales KH, Duda JE, et al. Dopamine agonist use is associated with impulse control disorders in Parkinson’s disease. Arch Neurol. 2006;63:969–73.PubMedPubMedCentral Weintraub D, Siderowf AD, Potenza MN, Goveas J, Morales KH, Duda JE, et al. Dopamine agonist use is associated with impulse control disorders in Parkinson’s disease. Arch Neurol. 2006;63:969–73.PubMedPubMedCentral
5.
go back to reference Weintraub D, Koester J, Potenza MN, Siderowf AD, Stacy M, Voon V, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67:589–95.PubMed Weintraub D, Koester J, Potenza MN, Siderowf AD, Stacy M, Voon V, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67:589–95.PubMed
6.
go back to reference Bastiaens J, Dorfman BJ, Christos PJ, Nirenberg MJ. Prospective cohort study of impulse control disorders in Parkinson’s disease. Mov Disord. 2013;28:327–33.PubMedPubMedCentral Bastiaens J, Dorfman BJ, Christos PJ, Nirenberg MJ. Prospective cohort study of impulse control disorders in Parkinson’s disease. Mov Disord. 2013;28:327–33.PubMedPubMedCentral
7.
go back to reference Marinus J, Zhu K, Marras C, Aarsland D, van Hilten JJ. Risk factors for non-motor symptoms in Parkinson’s disease. Lancet Neurol. 2018;17:559–68.PubMed Marinus J, Zhu K, Marras C, Aarsland D, van Hilten JJ. Risk factors for non-motor symptoms in Parkinson’s disease. Lancet Neurol. 2018;17:559–68.PubMed
8.
go back to reference Isaias IU, Siri C, Cilia R, De Gaspari D, Pezzoli G, Antonini A. The relationship between impulsivity and impulse control disorders in Parkinson’s disease. Mov Disord. 2008;23:411–5.PubMed Isaias IU, Siri C, Cilia R, De Gaspari D, Pezzoli G, Antonini A. The relationship between impulsivity and impulse control disorders in Parkinson’s disease. Mov Disord. 2008;23:411–5.PubMed
9.
go back to reference Marín-Lahoz J, Pagonabarraga J, Martinez-Horta S, Fernandez de Bobadilla R, Pascual-Sedano B, Pérez-Pérez J, et al. Parkinson’s Disease: Impulsivity Does Not Cause Impulse Control Disorders but Boosts Their Severity. Front Psychiatry. 2018;9:465.PubMedPubMedCentral Marín-Lahoz J, Pagonabarraga J, Martinez-Horta S, Fernandez de Bobadilla R, Pascual-Sedano B, Pérez-Pérez J, et al. Parkinson’s Disease: Impulsivity Does Not Cause Impulse Control Disorders but Boosts Their Severity. Front Psychiatry. 2018;9:465.PubMedPubMedCentral
10.
go back to reference Djamshidian A, O’Sullivan SS, Sanotsky Y, Sharman S, Matviyenko Y, Foltynie T, et al. Decision-making, impulsivity and addictions: do Parkinson’s disease patients jump to conclusions? Mov Disord. 2012;27:1137–45.PubMedPubMedCentral Djamshidian A, O’Sullivan SS, Sanotsky Y, Sharman S, Matviyenko Y, Foltynie T, et al. Decision-making, impulsivity and addictions: do Parkinson’s disease patients jump to conclusions? Mov Disord. 2012;27:1137–45.PubMedPubMedCentral
11.
go back to reference Joutsa J, Martikainen K, Vahlberg T, Voon V, Kaasinen V. Impulse control disorders and depression in Finnish patients with Parkinson’s disease. Parkinsonism Relat Disord. 2012;18:155–60.PubMed Joutsa J, Martikainen K, Vahlberg T, Voon V, Kaasinen V. Impulse control disorders and depression in Finnish patients with Parkinson’s disease. Parkinsonism Relat Disord. 2012;18:155–60.PubMed
12.
go back to reference Callesen MB, Weintraub D, Damholdt MF, Møller A. Impulsive and compulsive behaviors among Danish patients with Parkinson’s disease: prevalence, depression, and personality. Parkinsonism Relat Disord. 2014;20:22–6.PubMed Callesen MB, Weintraub D, Damholdt MF, Møller A. Impulsive and compulsive behaviors among Danish patients with Parkinson’s disease: prevalence, depression, and personality. Parkinsonism Relat Disord. 2014;20:22–6.PubMed
14.
go back to reference Kraemmer J, Smith K, Weintraub D, Guillemot V, Nalls MA, Cormier-Dequaire F, et al. Clinical-genetic model predicts incident impulse control disorders in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2016;87:1106–11.PubMed Kraemmer J, Smith K, Weintraub D, Guillemot V, Nalls MA, Cormier-Dequaire F, et al. Clinical-genetic model predicts incident impulse control disorders in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2016;87:1106–11.PubMed
15.
go back to reference Aracil-Bolaños I, Strafella AP. Molecular imaging and neural networks in impulse control disorders in Parkinson’s disease. Parkinsonism Relat Disord. 2016;22:S101–5.PubMed Aracil-Bolaños I, Strafella AP. Molecular imaging and neural networks in impulse control disorders in Parkinson’s disease. Parkinsonism Relat Disord. 2016;22:S101–5.PubMed
17.
go back to reference Biundo R, Formento-Dojot P, Facchini S, Vallelunga A, Ghezzo L, Foscolo L, et al. Brain volume changes in Parkinson’s disease and their relationship with cognitive and behavioural abnormalities. J Neurol Sci. 2011;310:64–9.PubMed Biundo R, Formento-Dojot P, Facchini S, Vallelunga A, Ghezzo L, Foscolo L, et al. Brain volume changes in Parkinson’s disease and their relationship with cognitive and behavioural abnormalities. J Neurol Sci. 2011;310:64–9.PubMed
18.
go back to reference Pellicano C, Niccolini F, Wu K, O’Sullivan SS, Lawrence AD, Lees AJ, et al. Morphometric changes in the reward system of Parkinson’s disease patients with impulse control disorders. J Neurol. 2015;262:2653–61.PubMed Pellicano C, Niccolini F, Wu K, O’Sullivan SS, Lawrence AD, Lees AJ, et al. Morphometric changes in the reward system of Parkinson’s disease patients with impulse control disorders. J Neurol. 2015;262:2653–61.PubMed
19.
go back to reference Biundo R, Weis L, Facchini S, Formento-Dojot P, Vallelunga A, Pilleri M, et al. Patterns of cortical thickness associated with impulse control disorders in Parkinson’s disease. Mov Disord. 2015;30:688–95.PubMed Biundo R, Weis L, Facchini S, Formento-Dojot P, Vallelunga A, Pilleri M, et al. Patterns of cortical thickness associated with impulse control disorders in Parkinson’s disease. Mov Disord. 2015;30:688–95.PubMed
20.
go back to reference Imperiale F, Agosta F, Canu E, Markovic V, Inuggi A, Jecmenica-Lukic M, et al. Brain structural and functional signatures of impulsive–compulsive behaviours in Parkinson’s disease. Mol Psychiatry. 2018;23:459–66.PubMed Imperiale F, Agosta F, Canu E, Markovic V, Inuggi A, Jecmenica-Lukic M, et al. Brain structural and functional signatures of impulsive–compulsive behaviours in Parkinson’s disease. Mol Psychiatry. 2018;23:459–66.PubMed
21.
go back to reference Tessitore A, De Micco R, Giordano A, di Nardo F, Caiazzo G, Siciliano M, et al. Intrinsic brain connectivity predicts impulse control disorders in patients with Parkinson’s disease. Mov Disord. 2017;32:1710–9.PubMed Tessitore A, De Micco R, Giordano A, di Nardo F, Caiazzo G, Siciliano M, et al. Intrinsic brain connectivity predicts impulse control disorders in patients with Parkinson’s disease. Mov Disord. 2017;32:1710–9.PubMed
22.
go back to reference Tessitore A, Santangelo G, De Micco R, Giordano A, Raimo S, Amboni M, et al. Resting-state brain networks in patients with Parkinson’s disease and impulse control disorders. Cortex. 2017;94:63–72.PubMed Tessitore A, Santangelo G, De Micco R, Giordano A, Raimo S, Amboni M, et al. Resting-state brain networks in patients with Parkinson’s disease and impulse control disorders. Cortex. 2017;94:63–72.PubMed
23.
go back to reference Verger A, Klesse E, Chawki MB, Witjas T, Azulay J-P, Eusebio A, et al. Brain PET substrate of impulse control disorders in Parkinson’s disease: a metabolic connectivity study. Hum Brain Mapp. 2018;39:3178–86.PubMedPubMedCentral Verger A, Klesse E, Chawki MB, Witjas T, Azulay J-P, Eusebio A, et al. Brain PET substrate of impulse control disorders in Parkinson’s disease: a metabolic connectivity study. Hum Brain Mapp. 2018;39:3178–86.PubMedPubMedCentral
24.
go back to reference Navalpotro-Gomez I, Dacosta-Aguayo R, Molinet-Dronda F, Martin-Bastida A, Botas-Peñin A, Jimenez-Urbieta H, et al. Nigrostriatal dopamine transporter availability, and its metabolic and clinical correlates in Parkinson’s disease patients with impulse control disorders. Eur J Nucl Med Mol Imaging. 2019;46:2065–76.PubMed Navalpotro-Gomez I, Dacosta-Aguayo R, Molinet-Dronda F, Martin-Bastida A, Botas-Peñin A, Jimenez-Urbieta H, et al. Nigrostriatal dopamine transporter availability, and its metabolic and clinical correlates in Parkinson’s disease patients with impulse control disorders. Eur J Nucl Med Mol Imaging. 2019;46:2065–76.PubMed
25.
go back to reference Vriend C, Nordbeck AH, Booij J, van der Werf YD, Pattij T, Voorn P, et al. Reduced dopamine transporter binding predates impulse control disorders in Parkinson’s disease: reduced DaT BR predates ICD in PD. Mov Disord. 2014;29:904–11.PubMed Vriend C, Nordbeck AH, Booij J, van der Werf YD, Pattij T, Voorn P, et al. Reduced dopamine transporter binding predates impulse control disorders in Parkinson’s disease: reduced DaT BR predates ICD in PD. Mov Disord. 2014;29:904–11.PubMed
26.
go back to reference Berti V, Mosconi L, Pupi A. Brain: normal variations and benign findings in FDG PET/CT imaging. PET Clin. 2014;9:129–40.PubMed Berti V, Mosconi L, Pupi A. Brain: normal variations and benign findings in FDG PET/CT imaging. PET Clin. 2014;9:129–40.PubMed
27.
go back to reference Hirano S, Asanuma K, Ma Y, Tang C, Feigin A, Dhawan V, et al. Dissociation of metabolic and neurovascular responses to levodopa in the treatment of Parkinson’s disease. J Neurosci. 2008;28:4201–9.PubMedPubMedCentral Hirano S, Asanuma K, Ma Y, Tang C, Feigin A, Dhawan V, et al. Dissociation of metabolic and neurovascular responses to levodopa in the treatment of Parkinson’s disease. J Neurosci. 2008;28:4201–9.PubMedPubMedCentral
28.
go back to reference Mah L, Zarate CA, Nugent AC, Singh JB, Manji HK, Drevets WC. Neural mechanisms of antidepressant efficacy of the dopamine receptor agonist pramipexole in treatment of bipolar depression. Int J Neuropsychopharmacol. 2011;14:545–51.PubMed Mah L, Zarate CA, Nugent AC, Singh JB, Manji HK, Drevets WC. Neural mechanisms of antidepressant efficacy of the dopamine receptor agonist pramipexole in treatment of bipolar depression. Int J Neuropsychopharmacol. 2011;14:545–51.PubMed
29.
go back to reference Kim E, Howes OD, Turkheimer FE, Kim B-H, Jeong JM, Kim JW, et al. The relationship between antipsychotic D2 occupancy and change in frontal metabolism and working memory : a dual [(11)C] raclopride and [(18) F] FDG imaging study with aripiprazole. Psychopharmacology. 2013;227:221–9.PubMed Kim E, Howes OD, Turkheimer FE, Kim B-H, Jeong JM, Kim JW, et al. The relationship between antipsychotic D2 occupancy and change in frontal metabolism and working memory : a dual [(11)C] raclopride and [(18) F] FDG imaging study with aripiprazole. Psychopharmacology. 2013;227:221–9.PubMed
30.
go back to reference Ko JH, Lerner RP, Eidelberg D. Effects of levodopa on regional cerebral metabolism and blood flow. Mov Disord. 2015;30:54–63.PubMed Ko JH, Lerner RP, Eidelberg D. Effects of levodopa on regional cerebral metabolism and blood flow. Mov Disord. 2015;30:54–63.PubMed
31.
go back to reference Yakushev I, Drzezga A, Habeck C. Metabolic connectivity: methods and applications. Curr Opin Neurol. 2017;30:677–85.PubMed Yakushev I, Drzezga A, Habeck C. Metabolic connectivity: methods and applications. Curr Opin Neurol. 2017;30:677–85.PubMed
32.
go back to reference Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease: MDS-PD Clinical Diagnostic Criteria. Mov Disord. 2015;30:1591–601.PubMed Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease: MDS-PD Clinical Diagnostic Criteria. Mov Disord. 2015;30:1591–601.PubMed
33.
go back to reference Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22:1689–707 quiz 1837.PubMed Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22:1689–707 quiz 1837.PubMed
34.
go back to reference Weintraub D, Hoops S, Shea JA, Lyons KE, Pahwa R, Driver-Dunckley ED, et al. Validation of the questionnaire for impulsive-compulsive disorders in Parkinson’s disease. Mov Disord. 2009;24:1461–7.PubMedPubMedCentral Weintraub D, Hoops S, Shea JA, Lyons KE, Pahwa R, Driver-Dunckley ED, et al. Validation of the questionnaire for impulsive-compulsive disorders in Parkinson’s disease. Mov Disord. 2009;24:1461–7.PubMedPubMedCentral
35.
go back to reference Brown RIF. Some contributions of the study of gambling to the study of other addictions. In: Eadington WR, Cornelius JA, editors. Gambling behavior and problem gambling. 1st ed. Reno: Univ of Nevada Pr; 1993. Brown RIF. Some contributions of the study of gambling to the study of other addictions. In: Eadington WR, Cornelius JA, editors. Gambling behavior and problem gambling. 1st ed. Reno: Univ of Nevada Pr; 1993.
36.
go back to reference Griffiths M. A ‘components’ model of addiction within a biopsychosocial framework. J Subst Abus. 2005;10:191–7. Griffiths M. A ‘components’ model of addiction within a biopsychosocial framework. J Subst Abus. 2005;10:191–7.
37.
go back to reference Weintraub D, Mamikonyan E, Papay K, Shea JA, Xie SX, Siderowf A. Questionnaire for impulsive-compulsive disorders in Parkinson’s disease-rating scale. Mov Disord. 2012;27:242–7.PubMed Weintraub D, Mamikonyan E, Papay K, Shea JA, Xie SX, Siderowf A. Questionnaire for impulsive-compulsive disorders in Parkinson’s disease-rating scale. Mov Disord. 2012;27:242–7.PubMed
38.
go back to reference Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23:2129–70.PubMed Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23:2129–70.PubMed
39.
go back to reference Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord. 2010;25:2649–53.PubMed Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord. 2010;25:2649–53.PubMed
40.
go back to reference Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67:361–70.PubMed Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67:361–70.PubMed
41.
go back to reference Marinus J, Leentjens AF, Visser M, Stiggelbout AM, van Hilten JJ. Evaluation of the hospital anxiety and depression scale in patients with Parkinson’s disease. Clin Neuropharmacol. 2002;25:318–24.PubMed Marinus J, Leentjens AF, Visser M, Stiggelbout AM, van Hilten JJ. Evaluation of the hospital anxiety and depression scale in patients with Parkinson’s disease. Clin Neuropharmacol. 2002;25:318–24.PubMed
42.
go back to reference Starkstein SE, Mayberg HS, Preziosi TJ, Andrezejewski P, Leiguarda R, Robinson RG. Reliability, validity, and clinical correlates of apathy in Parkinson’s disease. J Neuropsychiatry Clin Neurosci. 1992;4:134–9.PubMed Starkstein SE, Mayberg HS, Preziosi TJ, Andrezejewski P, Leiguarda R, Robinson RG. Reliability, validity, and clinical correlates of apathy in Parkinson’s disease. J Neuropsychiatry Clin Neurosci. 1992;4:134–9.PubMed
43.
go back to reference Patton JH, Stanford MS, Barratt ES. Factor structure of the Barratt impulsiveness scale. J Clin Psychol. 1995;51:768–74.PubMed Patton JH, Stanford MS, Barratt ES. Factor structure of the Barratt impulsiveness scale. J Clin Psychol. 1995;51:768–74.PubMed
44.
go back to reference Pagonabarraga J, Kulisevsky J, Llebaria G, García-Sánchez C, Pascual-Sedano B, Gironell A. Parkinson’s disease-cognitive rating scale: a new cognitive scale specific for Parkinson’s disease. Mov Disord. 2008;23:998–1005.PubMed Pagonabarraga J, Kulisevsky J, Llebaria G, García-Sánchez C, Pascual-Sedano B, Gironell A. Parkinson’s disease-cognitive rating scale: a new cognitive scale specific for Parkinson’s disease. Mov Disord. 2008;23:998–1005.PubMed
45.
go back to reference de Bobadilla RF, Pagonabarraga J, Martínez-Horta S, Pascual-Sedano B, Campolongo A, Kulisevsky J. Parkinson’s disease-cognitive rating scale: Psychometrics for mild cognitive impairment. Mov Disord. 2013;28:1376–83. de Bobadilla RF, Pagonabarraga J, Martínez-Horta S, Pascual-Sedano B, Campolongo A, Kulisevsky J. Parkinson’s disease-cognitive rating scale: Psychometrics for mild cognitive impairment. Mov Disord. 2013;28:1376–83.
46.
go back to reference Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F] FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2103–10.PubMed Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F] FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2103–10.PubMed
47.
go back to reference Martínez-Horta S, Moreu A, Perez-Perez J, Sampedro F, Horta-Barba A, Pagonabarraga J, et al. The impact of bilingualism on brain structure and function in Huntington’s disease. Parkinsonism Relat Disord. 2019;60:92–7. Martínez-Horta S, Moreu A, Perez-Perez J, Sampedro F, Horta-Barba A, Pagonabarraga J, et al. The impact of bilingualism on brain structure and function in Huntington’s disease. Parkinsonism Relat Disord. 2019;60:92–7.
48.
go back to reference Chen J, Swope D, Dashtipour K. Comprehensive review of rasagiline, a second-generation monoamine oxidase inhibitor, for the treatment of Parkinson’s disease. Clin Ther. 2007;29:1825–49.PubMed Chen J, Swope D, Dashtipour K. Comprehensive review of rasagiline, a second-generation monoamine oxidase inhibitor, for the treatment of Parkinson’s disease. Clin Ther. 2007;29:1825–49.PubMed
49.
go back to reference Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000;97:11050–5.PubMedPubMedCentral Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000;97:11050–5.PubMedPubMedCentral
50.
go back to reference Greve DN, Svarer C, Fisher PM, Feng L, Hansen AE, Baare W, et al. Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data. Neuroimage. 2014;92:225–36.PubMed Greve DN, Svarer C, Fisher PM, Feng L, Hansen AE, Baare W, et al. Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data. Neuroimage. 2014;92:225–36.PubMed
51.
go back to reference Greve DN, Salat DH, Bowen SL, Izquierdo-Garcia D, Schultz AP, Catana C, et al. Different partial volume correction methods lead to different conclusions: an (18)F-FDG-PET study of aging. Neuroimage. 2016;132:334–43.PubMed Greve DN, Salat DH, Bowen SL, Izquierdo-Garcia D, Schultz AP, Catana C, et al. Different partial volume correction methods lead to different conclusions: an (18)F-FDG-PET study of aging. Neuroimage. 2016;132:334–43.PubMed
52.
go back to reference Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. Neuroimage. 2014;92:381–97.PubMed Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. Neuroimage. 2014;92:381–97.PubMed
53.
go back to reference Rao H, Mamikonyan E, Detre JA, Siderowf AD, Stern MB, Potenza MN, et al. Decreased ventral striatal activity with impulse control disorders in Parkinson’s disease. Mov Disord. 2010;25:1660–9.PubMedPubMedCentral Rao H, Mamikonyan E, Detre JA, Siderowf AD, Stern MB, Potenza MN, et al. Decreased ventral striatal activity with impulse control disorders in Parkinson’s disease. Mov Disord. 2010;25:1660–9.PubMedPubMedCentral
54.
go back to reference Balodis IM, Kober H, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN. Diminished fronto-striatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry. 2012;71:749–57.PubMedPubMedCentral Balodis IM, Kober H, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN. Diminished fronto-striatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry. 2012;71:749–57.PubMedPubMedCentral
55.
go back to reference Sampedro F, Vilaplana E, de Leon MJ, Alcolea D, Pegueroles J, Montal V, et al. APOE-by-sex interactions on brain structure and metabolism in healthy elderly controls. Oncotarget [Internet]. 2015 [cited 2019 Nov 26];6. Available from: http://www.oncotarget.com/fulltext/5185. Sampedro F, Vilaplana E, de Leon MJ, Alcolea D, Pegueroles J, Montal V, et al. APOE-by-sex interactions on brain structure and metabolism in healthy elderly controls. Oncotarget [Internet]. 2015 [cited 2019 Nov 26];6. Available from: http://​www.​oncotarget.​com/​fulltext/​5185.
57.
go back to reference Ye Z, Hammer A, Camara E, Münte TF. Pramipexole modulates the neural network of reward anticipation. Hum Brain Mapp. 2011;32:800–11.PubMedPubMedCentral Ye Z, Hammer A, Camara E, Münte TF. Pramipexole modulates the neural network of reward anticipation. Hum Brain Mapp. 2011;32:800–11.PubMedPubMedCentral
58.
go back to reference Dragogna F, Mauri MC, Marotta G, Armao FT, Brambilla P, Altamura AC. Brain metabolism in substance-induced psychosis and schizophrenia: a preliminary PET study. Neuropsychobiology. 2014;70:195–202.PubMed Dragogna F, Mauri MC, Marotta G, Armao FT, Brambilla P, Altamura AC. Brain metabolism in substance-induced psychosis and schizophrenia: a preliminary PET study. Neuropsychobiology. 2014;70:195–202.PubMed
59.
go back to reference Siri C, Cilia R, Reali E, Pozzi B, Cereda E, Colombo A, et al. Long-term cognitive follow-up of Parkinson’s disease patients with impulse control disorders. Mov Disord. 2015;30:696–704.PubMed Siri C, Cilia R, Reali E, Pozzi B, Cereda E, Colombo A, et al. Long-term cognitive follow-up of Parkinson’s disease patients with impulse control disorders. Mov Disord. 2015;30:696–704.PubMed
61.
go back to reference Schindlbeck KA, Eidelberg D. Network imaging biomarkers: insights and clinical applications in Parkinson’s disease. Lancet Neurol. 2018;17:629–40.PubMed Schindlbeck KA, Eidelberg D. Network imaging biomarkers: insights and clinical applications in Parkinson’s disease. Lancet Neurol. 2018;17:629–40.PubMed
62.
go back to reference Pagonabarraga J, Kulisevsky J. Cognitive impairment and dementia in Parkinson’s disease. Neurobiol Dis. 2012;46:590–6.PubMed Pagonabarraga J, Kulisevsky J. Cognitive impairment and dementia in Parkinson’s disease. Neurobiol Dis. 2012;46:590–6.PubMed
63.
go back to reference Sampedro F, Marín-Lahoz J, Martínez-Horta S, Pagonabarraga J, Kulisevsky J. Dopaminergic degeneration induces early posterior cortical thinning in Parkinson’s disease. Neurobiol Dis. 2019;124:29–35.PubMed Sampedro F, Marín-Lahoz J, Martínez-Horta S, Pagonabarraga J, Kulisevsky J. Dopaminergic degeneration induces early posterior cortical thinning in Parkinson’s disease. Neurobiol Dis. 2019;124:29–35.PubMed
64.
go back to reference Firbank MJ, Yarnall AJ, Lawson RA, Duncan GW, Khoo TK, Petrides GS, et al. Cerebral glucose metabolism and cognition in newly diagnosed Parkinson’s disease: ICICLE-PD study. J Neurol Neurosurg Psychiatry. 2017;88:310–6.PubMed Firbank MJ, Yarnall AJ, Lawson RA, Duncan GW, Khoo TK, Petrides GS, et al. Cerebral glucose metabolism and cognition in newly diagnosed Parkinson’s disease: ICICLE-PD study. J Neurol Neurosurg Psychiatry. 2017;88:310–6.PubMed
65.
go back to reference Tan H, Li X, Wei K, Guan Y. Study on brain glucose metabolic networks in Parkinson’s disease patients with visual spatial dysfunction by 18F-FDG PET imaging. Tradit Med Mod Med. 2018;01:27–31. Tan H, Li X, Wei K, Guan Y. Study on brain glucose metabolic networks in Parkinson’s disease patients with visual spatial dysfunction by 18F-FDG PET imaging. Tradit Med Mod Med. 2018;01:27–31.
66.
go back to reference Matthews DC, Lerman H, Lukic A, Andrews RD, Mirelman A, Wernick MN, et al. FDG PET Parkinson’s disease-related pattern as a biomarker for clinical trials in early stage disease. NeuroImage Clin. 2018;20:572–9.PubMedPubMedCentral Matthews DC, Lerman H, Lukic A, Andrews RD, Mirelman A, Wernick MN, et al. FDG PET Parkinson’s disease-related pattern as a biomarker for clinical trials in early stage disease. NeuroImage Clin. 2018;20:572–9.PubMedPubMedCentral
67.
go back to reference Martinez-Horta S, Sampedro F, Pagonabarraga J, Fernandez-Bobadilla R, Marin-Lahoz J, Riba J, et al. Non-demented Parkinson’s disease patients with apathy show decreased grey matter volume in key executive and reward-related nodes. Brain Imaging Behav. 2017;11:1334–42.PubMed Martinez-Horta S, Sampedro F, Pagonabarraga J, Fernandez-Bobadilla R, Marin-Lahoz J, Riba J, et al. Non-demented Parkinson’s disease patients with apathy show decreased grey matter volume in key executive and reward-related nodes. Brain Imaging Behav. 2017;11:1334–42.PubMed
68.
go back to reference Dujardin K, Sockeel P, Delliaux M, Destée A, Defebvre L. Apathy may herald cognitive decline and dementia in Parkinson’s disease. Mov Disord. 2009;24:2391–7.PubMed Dujardin K, Sockeel P, Delliaux M, Destée A, Defebvre L. Apathy may herald cognitive decline and dementia in Parkinson’s disease. Mov Disord. 2009;24:2391–7.PubMed
69.
go back to reference Martínez-Horta S, Riba J, de Bobadilla RF, Pagonabarraga J, Pascual-Sedano B, Antonijoan RM, et al. Apathy in Parkinson’s disease: neurophysiological evidence of impaired incentive processing. J Neurosci. 2014;34:5918–26.PubMedPubMedCentral Martínez-Horta S, Riba J, de Bobadilla RF, Pagonabarraga J, Pascual-Sedano B, Antonijoan RM, et al. Apathy in Parkinson’s disease: neurophysiological evidence of impaired incentive processing. J Neurosci. 2014;34:5918–26.PubMedPubMedCentral
70.
go back to reference Leroi I, Andrews M, McDonald K, Harbishettar V, Elliott R, Byrne EJ, et al. Apathy and impulse control disorders in Parkinson’s disease: a direct comparison. Parkinsonism Relat Disord. 2012;18:198–203.PubMed Leroi I, Andrews M, McDonald K, Harbishettar V, Elliott R, Byrne EJ, et al. Apathy and impulse control disorders in Parkinson’s disease: a direct comparison. Parkinsonism Relat Disord. 2012;18:198–203.PubMed
71.
go back to reference Delrieu J, Desmidt T, Camus V, Sourdet S, Boutoleau-Bretonnière C, Mullin E, et al. Apathy as a feature of prodromal Alzheimer’s disease: an FDG-PET ADNI study. Int J Geriatr Psychiatry. 2015;30:470–7.PubMed Delrieu J, Desmidt T, Camus V, Sourdet S, Boutoleau-Bretonnière C, Mullin E, et al. Apathy as a feature of prodromal Alzheimer’s disease: an FDG-PET ADNI study. Int J Geriatr Psychiatry. 2015;30:470–7.PubMed
72.
go back to reference Gatchel JR, Donovan NJ, Locascio JJ, Becker JA, Rentz DM, Sperling RA, et al. Regional 18F-Fluorodeoxyglucose hypometabolism is associated with higher apathy scores over time in early Alzheimer disease. Am J Geriatr Psychiatry. 2017;25:683–93.PubMedPubMedCentral Gatchel JR, Donovan NJ, Locascio JJ, Becker JA, Rentz DM, Sperling RA, et al. Regional 18F-Fluorodeoxyglucose hypometabolism is associated with higher apathy scores over time in early Alzheimer disease. Am J Geriatr Psychiatry. 2017;25:683–93.PubMedPubMedCentral
73.
go back to reference Martínez-Horta S, Perez-Perez J, Sampedro F, Pagonabarraga J, Horta-Barba A, Carceller-Sindreu M, et al. Structural and metabolic brain correlates of apathy in Huntington’s disease. Mov Disord. 2018;33:1151–9.PubMed Martínez-Horta S, Perez-Perez J, Sampedro F, Pagonabarraga J, Horta-Barba A, Carceller-Sindreu M, et al. Structural and metabolic brain correlates of apathy in Huntington’s disease. Mov Disord. 2018;33:1151–9.PubMed
Metadata
Title
Preservation of brain metabolism in recently diagnosed Parkinson’s impulse control disorders
Authors
Juan Marín-Lahoz
Frederic Sampedro
Andrea Horta-Barba
Saül Martínez-Horta
Ignacio Aracil-Bolaños
Valle Camacho
Helena Bejr-kasem
Berta Pascual-Sedano
Jesús Pérez-Pérez
Alexandre Gironell
Javier Pagonabarraga
Ignasi Carrió
Jaime Kulisevsky
Publication date
01-08-2020
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 9/2020
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-019-04664-2

Other articles of this Issue 9/2020

European Journal of Nuclear Medicine and Molecular Imaging 9/2020 Go to the issue