Skip to main content
Top
Published in: BMC Neurology 1/2023

Open Access 01-12-2023 | Parkinson's Disease | Research

An investigation of neuromelanin distribution in substantia nigra and locus coeruleus in patients with Parkinson’s disease using neuromelanin-sensitive MRI

Authors: Qiang Liu, Pan Wang, Chenghe Liu, Feng Xue, Qian Wang, Yuqing Chen, Ruihua Hou, Teng Chen

Published in: BMC Neurology | Issue 1/2023

Login to get access

Abstract

Loss of neuromelanin in the midbrain is known in Parkinson’s disease(PD), which can now be directly detected by neuromelanin-sensitive MRI(NM-MRI). This case-control study was to investigate the distribution of neuromelanin in the substantia nigra(SN) and the locus coeruleus(LC) using NM-MRI technique and evaluate its potential as a diagnostic marker for PD. 10 early PD patients(H&Y stage I, II), 11 progressive PD patients(H&Y stage III-V), and 10 healthy controls matched in age and gender were recruited. All participants completed clinical and psychometric assessments as well as NM-MRI scans. Neuromelanin signal intensities in SN and LC were measured by contrast-to-noise ratios(CNRs) derived from NM-MRI scans. There were significant decreases of CNRs in SNpc(including anterior, central, and posterior) and LC in PD patients compared to controls. There were also significant differences of CNR between the left and right sides. CNR in LC had a negative correlation with the Non-Motor Symptoms Scale(NMSS) score in PD patients(|R|=0.49), whereas CNR in SNpc did not correlate with Unified Parkinson Disease Rating Scale(UPDRS) score(|R|<0.3). The receiver operating characteristic(ROC) curves revealed that the CNR in LC had a high diagnostic specificity of 90.1% in progressive patients. This study provides new evidence for the asymmetric distribution of neuromelanin in SN and the LC of patients with PD. The neuromelanin loss is bilateral and more predominately in LC than that in SN. This distinct neuromelanin distribution pattern may offer a potential diagnostic marker and a potential neuropharmacological intervention target for PD patients.
Literature
1.
go back to reference Global regional. National burden of Parkinson’s disease, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet Neurol. 2018;17(11):939–53.CrossRef Global regional. National burden of Parkinson’s disease, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet Neurol. 2018;17(11):939–53.CrossRef
2.
go back to reference Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795–808.CrossRefPubMed Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795–808.CrossRefPubMed
3.
go back to reference Kakeda S, Korogi Y, Yoneda T, Watanabe K, Moriya J, Murakami Y, Sato T, Hiai Y, Ohnari N, Ide S, et al. Parkinson’s disease: diagnostic potential of high-resolution phase difference enhanced MR imaging at 3 T. Eur Radiol. 2013;23(4):1102–11.CrossRefPubMed Kakeda S, Korogi Y, Yoneda T, Watanabe K, Moriya J, Murakami Y, Sato T, Hiai Y, Ohnari N, Ide S, et al. Parkinson’s disease: diagnostic potential of high-resolution phase difference enhanced MR imaging at 3 T. Eur Radiol. 2013;23(4):1102–11.CrossRefPubMed
4.
go back to reference Sulzer D, Zecca L. Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res. 2000;1(3):181–95.CrossRefPubMed Sulzer D, Zecca L. Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res. 2000;1(3):181–95.CrossRefPubMed
5.
go back to reference Zecca L, Bellei C, Costi P, Albertini A, Monzani E, Casella L, Gallorini M, Bergamaschi L, Moscatelli A, Turro NJ, et al. New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals. Proc Natl Acad Sci U S A. 2008;105(45):17567–72.CrossRefPubMedPubMedCentral Zecca L, Bellei C, Costi P, Albertini A, Monzani E, Casella L, Gallorini M, Bergamaschi L, Moscatelli A, Turro NJ, et al. New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals. Proc Natl Acad Sci U S A. 2008;105(45):17567–72.CrossRefPubMedPubMedCentral
6.
go back to reference Sulzer D, Mosharov E, Talloczy Z, Zucca FA, Simon JD, Zecca L. Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. J Neurochem. 2008;106(1):24–36.CrossRefPubMedPubMedCentral Sulzer D, Mosharov E, Talloczy Z, Zucca FA, Simon JD, Zecca L. Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. J Neurochem. 2008;106(1):24–36.CrossRefPubMedPubMedCentral
7.
go back to reference Engelen M, Vanna R, Bellei C, Zucca FA, Wakamatsu K, Monzani E, Ito S, Casella L, Zecca L. Neuromelanins of human brain have soluble and insoluble components with dolichols attached to the melanic structure. PLoS ONE. 2012;7(11):e48490.CrossRefPubMedPubMedCentral Engelen M, Vanna R, Bellei C, Zucca FA, Wakamatsu K, Monzani E, Ito S, Casella L, Zecca L. Neuromelanins of human brain have soluble and insoluble components with dolichols attached to the melanic structure. PLoS ONE. 2012;7(11):e48490.CrossRefPubMedPubMedCentral
9.
go back to reference Zecca L, Pietra R, Goj C, Mecacci C, Radice D, Sabbioni E. Iron and other metals in neuromelanin, substantia nigra, and putamen of human brain. J Neurochem. 1994;62(3):1097–101.CrossRefPubMed Zecca L, Pietra R, Goj C, Mecacci C, Radice D, Sabbioni E. Iron and other metals in neuromelanin, substantia nigra, and putamen of human brain. J Neurochem. 1994;62(3):1097–101.CrossRefPubMed
10.
go back to reference Zecca L, Shima T, Stroppolo A, Goj C, Battiston GA, Gerbasi R, Sarna T, Swartz HM. Interaction of neuromelanin and iron in substantia nigra and other areas of human brain. Neuroscience. 1996;73(2):407–15.CrossRefPubMed Zecca L, Shima T, Stroppolo A, Goj C, Battiston GA, Gerbasi R, Sarna T, Swartz HM. Interaction of neuromelanin and iron in substantia nigra and other areas of human brain. Neuroscience. 1996;73(2):407–15.CrossRefPubMed
11.
go back to reference Matsuura K, Maeda M, Yata K, Ichiba Y, Yamaguchi T, Kanamaru K, Tomimoto H. Neuromelanin magnetic resonance imaging in Parkinson’s disease and multiple system atrophy. Eur Neurol. 2013;70(1–2):70–7.CrossRefPubMed Matsuura K, Maeda M, Yata K, Ichiba Y, Yamaguchi T, Kanamaru K, Tomimoto H. Neuromelanin magnetic resonance imaging in Parkinson’s disease and multiple system atrophy. Eur Neurol. 2013;70(1–2):70–7.CrossRefPubMed
12.
go back to reference Sasaki M, Shibata E, Tohyama K, Takahashi J, Otsuka K, Tsuchiya K, Takahashi S, Ehara S, Terayama Y, Sakai A. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. NeuroReport. 2006;17(11):1215–8.CrossRefPubMed Sasaki M, Shibata E, Tohyama K, Takahashi J, Otsuka K, Tsuchiya K, Takahashi S, Ehara S, Terayama Y, Sakai A. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. NeuroReport. 2006;17(11):1215–8.CrossRefPubMed
13.
go back to reference Sasaki M, Shibata E, Kudo K, Tohyama K. Neuromelanin-sensitive MRI basics, technique, and clinical applications. Clin Neuroradiol. 2008;18(3):147–53.CrossRef Sasaki M, Shibata E, Kudo K, Tohyama K. Neuromelanin-sensitive MRI basics, technique, and clinical applications. Clin Neuroradiol. 2008;18(3):147–53.CrossRef
14.
go back to reference Ohtsuka C, Sasaki M, Konno K, Koide M, Kato K, Takahashi J, Takahashi S, Kudo K, Yamashita F, Terayama Y. Changes in substantia nigra and locus coeruleus in patients with early-stage Parkinson’s disease using neuromelanin-sensitive MR imaging. Neurosci Lett. 2013;541:93–8.CrossRefPubMed Ohtsuka C, Sasaki M, Konno K, Koide M, Kato K, Takahashi J, Takahashi S, Kudo K, Yamashita F, Terayama Y. Changes in substantia nigra and locus coeruleus in patients with early-stage Parkinson’s disease using neuromelanin-sensitive MR imaging. Neurosci Lett. 2013;541:93–8.CrossRefPubMed
15.
go back to reference Okuzumi A, Hatano T, Kamagata K, Hori M, Mori A, Oji Y, Taniguchi D, Daida K, Shimo Y, Yanagisawa N, et al. Neuromelanin or DaT-SPECT: which is the better marker for discriminating advanced Parkinson’s disease? Eur J Neurol. 2019;26(11):1408–16.CrossRefPubMedPubMedCentral Okuzumi A, Hatano T, Kamagata K, Hori M, Mori A, Oji Y, Taniguchi D, Daida K, Shimo Y, Yanagisawa N, et al. Neuromelanin or DaT-SPECT: which is the better marker for discriminating advanced Parkinson’s disease? Eur J Neurol. 2019;26(11):1408–16.CrossRefPubMedPubMedCentral
16.
go back to reference Takahashi H, Watanabe Y, Tanaka H, Mihara M, Mochizuki H, Liu T, Wang Y, Tomiyama N. Quantifying changes in nigrosomes using quantitative susceptibility mapping and neuromelanin imaging for the diagnosis of early-stage Parkinson’s disease. Br J Radiol. 2018;91(1086):20180037.CrossRefPubMedPubMedCentral Takahashi H, Watanabe Y, Tanaka H, Mihara M, Mochizuki H, Liu T, Wang Y, Tomiyama N. Quantifying changes in nigrosomes using quantitative susceptibility mapping and neuromelanin imaging for the diagnosis of early-stage Parkinson’s disease. Br J Radiol. 2018;91(1086):20180037.CrossRefPubMedPubMedCentral
17.
go back to reference Barone P, Antonini A, Colosimo C, Marconi R, Morgante L, Avarello TP, Bottacchi E, Cannas A, Ceravolo G, Ceravolo R, et al. The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord. 2009;24(11):1641–9.CrossRefPubMed Barone P, Antonini A, Colosimo C, Marconi R, Morgante L, Avarello TP, Bottacchi E, Cannas A, Ceravolo G, Ceravolo R, et al. The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord. 2009;24(11):1641–9.CrossRefPubMed
18.
go back to reference Wang J, Li Y, Huang Z, Wan W, Zhang Y, Wang C, Cheng X, Ye F, Liu K, Fei G, et al. Neuromelanin-sensitive magnetic resonance imaging features of the substantia nigra and locus coeruleus in de novo Parkinson’s disease and its phenotypes. Eur J Neurol. 2018;25(7):949–e973.CrossRefPubMed Wang J, Li Y, Huang Z, Wan W, Zhang Y, Wang C, Cheng X, Ye F, Liu K, Fei G, et al. Neuromelanin-sensitive magnetic resonance imaging features of the substantia nigra and locus coeruleus in de novo Parkinson’s disease and its phenotypes. Eur J Neurol. 2018;25(7):949–e973.CrossRefPubMed
19.
go back to reference Sasaki M, Yamashita F, Kudo K. Neuromelanin Imaging in Parkinson Disease. In: Neuroimaging of Movement Disorders edn.; 2013: 159–164. Sasaki M, Yamashita F, Kudo K. Neuromelanin Imaging in Parkinson Disease. In: Neuroimaging of Movement Disorders edn.; 2013: 159–164.
20.
go back to reference Simões RM, Castro Caldas A, Grilo J, Correia D, Guerreiro C, Pita Lobo P, Valadas A, Fabbri M, Correia Guedes L, Coelho M, et al. A distinct neuromelanin magnetic resonance imaging pattern in parkinsonian multiple system atrophy. BMC Neurol. 2020;20(1):432.CrossRefPubMedPubMedCentral Simões RM, Castro Caldas A, Grilo J, Correia D, Guerreiro C, Pita Lobo P, Valadas A, Fabbri M, Correia Guedes L, Coelho M, et al. A distinct neuromelanin magnetic resonance imaging pattern in parkinsonian multiple system atrophy. BMC Neurol. 2020;20(1):432.CrossRefPubMedPubMedCentral
21.
go back to reference Ehrminger M, Latimier A, Pyatigorskaya N, Garcia-Lorenzo D, Leu-Semenescu S, Vidailhet M, Lehericy S, Arnulf I. The coeruleus/subcoeruleus complex in idiopathic rapid eye movement sleep behaviour disorder. Brain. 2016;139(Pt 4):1180–8.CrossRefPubMed Ehrminger M, Latimier A, Pyatigorskaya N, Garcia-Lorenzo D, Leu-Semenescu S, Vidailhet M, Lehericy S, Arnulf I. The coeruleus/subcoeruleus complex in idiopathic rapid eye movement sleep behaviour disorder. Brain. 2016;139(Pt 4):1180–8.CrossRefPubMed
22.
go back to reference Clewett DV, Lee TH, Greening S, Ponzio A, Margalit E, Mather M. Neuromelanin marks the spot: identifying a locus coeruleus biomarker of cognitive reserve in healthy aging. Neurobiol Aging. 2016;37:117–26.CrossRefPubMed Clewett DV, Lee TH, Greening S, Ponzio A, Margalit E, Mather M. Neuromelanin marks the spot: identifying a locus coeruleus biomarker of cognitive reserve in healthy aging. Neurobiol Aging. 2016;37:117–26.CrossRefPubMed
23.
go back to reference Liu XL, Yang LQ, Liu FT, Wu P-Y, Zhang Y, Zhuang H, Shi YH, Wang J, Geng DY, Li YX. Short-echo-time magnitude image derived from quantitative susceptibility mapping could resemble neuromelanin-sensitive MRI image in substantia nigra. BMC Neurol 2020, 20(1). Liu XL, Yang LQ, Liu FT, Wu P-Y, Zhang Y, Zhuang H, Shi YH, Wang J, Geng DY, Li YX. Short-echo-time magnitude image derived from quantitative susceptibility mapping could resemble neuromelanin-sensitive MRI image in substantia nigra. BMC Neurol 2020, 20(1).
24.
go back to reference Safai A, Prasad S, Chougule T, Saini J, Pal PK, Ingalhalikar M. Microstructural abnormalities of substantia nigra in Parkinson’s disease: a neuromelanin sensitive MRI atlas based study. Hum Brain Mapp. 2020;41(5):1323–33.CrossRefPubMed Safai A, Prasad S, Chougule T, Saini J, Pal PK, Ingalhalikar M. Microstructural abnormalities of substantia nigra in Parkinson’s disease: a neuromelanin sensitive MRI atlas based study. Hum Brain Mapp. 2020;41(5):1323–33.CrossRefPubMed
25.
go back to reference Hatano T, Okuzumi A, Kamagata K, Daida K, Taniguchi D, Hori M, Yoshino H, Aoki S, Hattori N. Neuromelanin MRI is useful for monitoring motor complications in Parkinson’s and PARK2 disease. J Neural Transm (Vienna). 2017;124(4):407–15.CrossRefPubMed Hatano T, Okuzumi A, Kamagata K, Daida K, Taniguchi D, Hori M, Yoshino H, Aoki S, Hattori N. Neuromelanin MRI is useful for monitoring motor complications in Parkinson’s and PARK2 disease. J Neural Transm (Vienna). 2017;124(4):407–15.CrossRefPubMed
26.
go back to reference Castellanos G, Fernandez-Seara MA, Lorenzo-Betancor O, Ortega-Cubero S, Puigvert M, Uranga J, Vidorreta M, Irigoyen J, Lorenzo E, Munoz-Barrutia A, et al. Automated neuromelanin imaging as a diagnostic biomarker for Parkinson’s disease. Mov Disord. 2015;30(7):945–52.CrossRefPubMed Castellanos G, Fernandez-Seara MA, Lorenzo-Betancor O, Ortega-Cubero S, Puigvert M, Uranga J, Vidorreta M, Irigoyen J, Lorenzo E, Munoz-Barrutia A, et al. Automated neuromelanin imaging as a diagnostic biomarker for Parkinson’s disease. Mov Disord. 2015;30(7):945–52.CrossRefPubMed
27.
go back to reference Bezard E, Gross CE, Brotchie JM. Presymptomatic compensation in Parkinson’s disease is not dopamine-mediated. Trends Neurosci. 2003;26(4):215–21.CrossRefPubMed Bezard E, Gross CE, Brotchie JM. Presymptomatic compensation in Parkinson’s disease is not dopamine-mediated. Trends Neurosci. 2003;26(4):215–21.CrossRefPubMed
28.
go back to reference Rommelfanger KS, Weinshenker D. Norepinephrine: the redheaded stepchild of Parkinson’s disease. Biochem Pharmacol. 2007;74(2):177–90.CrossRefPubMed Rommelfanger KS, Weinshenker D. Norepinephrine: the redheaded stepchild of Parkinson’s disease. Biochem Pharmacol. 2007;74(2):177–90.CrossRefPubMed
29.
go back to reference Mantri S, Morley JF, Siderowf AD. The importance of preclinical diagnostics in Parkinson disease. Parkinsonism Relat Disord. 2019;64:20–8.CrossRefPubMed Mantri S, Morley JF, Siderowf AD. The importance of preclinical diagnostics in Parkinson disease. Parkinsonism Relat Disord. 2019;64:20–8.CrossRefPubMed
30.
go back to reference Kalia LV, Brotchie JM, Fox SH. Novel nondopaminergic targets for motor features of Parkinson’s disease: review of recent trials. Mov Disord. 2013;28(2):131–44.CrossRefPubMed Kalia LV, Brotchie JM, Fox SH. Novel nondopaminergic targets for motor features of Parkinson’s disease: review of recent trials. Mov Disord. 2013;28(2):131–44.CrossRefPubMed
31.
go back to reference McMillan PJ, White SS, Franklin A, Greenup JL, Leverenz JB, Raskind MA, Szot P. Differential response of the central noradrenergic nervous system to the loss of locus coeruleus neurons in Parkinson’s disease and Alzheimer’s disease. Brain Res. 2011;1373:240–52.CrossRefPubMed McMillan PJ, White SS, Franklin A, Greenup JL, Leverenz JB, Raskind MA, Szot P. Differential response of the central noradrenergic nervous system to the loss of locus coeruleus neurons in Parkinson’s disease and Alzheimer’s disease. Brain Res. 2011;1373:240–52.CrossRefPubMed
32.
go back to reference German DC, Manaye KF, White CL 3rd, Woodward DJ, McIntire DD, Smith WK, Kalaria RN, Mann DM. Disease-specific patterns of locus coeruleus cell loss. Ann Neurol. 1992;32(5):667–76. German DC, Manaye KF, White CL 3rd, Woodward DJ, McIntire DD, Smith WK, Kalaria RN, Mann DM. Disease-specific patterns of locus coeruleus cell loss. Ann Neurol. 1992;32(5):667–76.
33.
go back to reference Wang L, Yan Y, Zhang L, Liu Y, Luo R, Chang Y. Substantia nigra neuromelanin magnetic resonance imaging in patients with different subtypes of Parkinson disease. J Neural Transm (Vienna). 2021;128(2):171–9.CrossRefPubMed Wang L, Yan Y, Zhang L, Liu Y, Luo R, Chang Y. Substantia nigra neuromelanin magnetic resonance imaging in patients with different subtypes of Parkinson disease. J Neural Transm (Vienna). 2021;128(2):171–9.CrossRefPubMed
34.
go back to reference Pavese N, Rivero-Bosch M, Lewis SJ, Whone AL, Brooks DJ. Progression of monoaminergic dysfunction in Parkinson’s disease: a longitudinal 18F-dopa PET study. NeuroImage. 2011;56(3):1463–8.CrossRefPubMed Pavese N, Rivero-Bosch M, Lewis SJ, Whone AL, Brooks DJ. Progression of monoaminergic dysfunction in Parkinson’s disease: a longitudinal 18F-dopa PET study. NeuroImage. 2011;56(3):1463–8.CrossRefPubMed
35.
go back to reference Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.CrossRefPubMed Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.CrossRefPubMed
36.
37.
go back to reference Jellinger KA. Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov Disord. 2012;27(1):8–30.CrossRefPubMed Jellinger KA. Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov Disord. 2012;27(1):8–30.CrossRefPubMed
38.
go back to reference Politis M, Wu K, Molloy S, Chaudhuri PGB, Piccini KR. Parkinson’s disease symptoms: the patient’s perspective. Mov Disord. 2010;25(11):1646–51.CrossRefPubMed Politis M, Wu K, Molloy S, Chaudhuri PGB, Piccini KR. Parkinson’s disease symptoms: the patient’s perspective. Mov Disord. 2010;25(11):1646–51.CrossRefPubMed
39.
go back to reference Poletti M, Frosini D, Pagni C, Baldacci F, Nicoletti V, Tognoni G, Lucetti C, Del Dotto P, Ceravolo R, Bonuccelli U. Mild cognitive impairment and cognitive-motor relationships in newly diagnosed drug-naive patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2012;83(6):601–6.CrossRefPubMed Poletti M, Frosini D, Pagni C, Baldacci F, Nicoletti V, Tognoni G, Lucetti C, Del Dotto P, Ceravolo R, Bonuccelli U. Mild cognitive impairment and cognitive-motor relationships in newly diagnosed drug-naive patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2012;83(6):601–6.CrossRefPubMed
40.
go back to reference Sotiriou E, Vassilatis DK, Vila M, Stefanis L. Selective noradrenergic vulnerability in α-synuclein transgenic mice. Neurobiol Aging. 2010;31(12):2103–14.CrossRefPubMed Sotiriou E, Vassilatis DK, Vila M, Stefanis L. Selective noradrenergic vulnerability in α-synuclein transgenic mice. Neurobiol Aging. 2010;31(12):2103–14.CrossRefPubMed
41.
go back to reference Luppi PH, Clément O, Valencia Garcia S, Brischoux F, Fort P. New aspects in the pathophysiology of rapid eye movement sleep behavior disorder: the potential role of glutamate, gamma-aminobutyric acid, and glycine. Sleep Med. 2013;14(8):714–8.CrossRefPubMed Luppi PH, Clément O, Valencia Garcia S, Brischoux F, Fort P. New aspects in the pathophysiology of rapid eye movement sleep behavior disorder: the potential role of glutamate, gamma-aminobutyric acid, and glycine. Sleep Med. 2013;14(8):714–8.CrossRefPubMed
Metadata
Title
An investigation of neuromelanin distribution in substantia nigra and locus coeruleus in patients with Parkinson’s disease using neuromelanin-sensitive MRI
Authors
Qiang Liu
Pan Wang
Chenghe Liu
Feng Xue
Qian Wang
Yuqing Chen
Ruihua Hou
Teng Chen
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2023
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-023-03350-z

Other articles of this Issue 1/2023

BMC Neurology 1/2023 Go to the issue