Skip to main content
Top
Published in: Molecular Brain 1/2021

Open Access 01-12-2021 | Parkinson's Disease | Micro report

Loss of park7 activity has differential effects on expression of iron responsive element (IRE) gene sets in the brain transcriptome in a zebrafish model of Parkinson’s disease

Authors: Hui Yung Chin, Michael Lardelli, Lyndsey Collins-Praino, Karissa Barthelson

Published in: Molecular Brain | Issue 1/2021

Login to get access

Abstract

Mutation of the gene PARK7 (DJ1) causes monogenic autosomal recessive Parkinson’s disease (PD) in humans. Subsequent alterations of PARK7 protein function lead to mitochondrial dysfunction, a major element in PD pathology. Homozygous mutants for the PARK7-orthologous genes in zebrafish, park7, show changes to gene expression in the oxidative phosphorylation pathway, supporting that disruption of energy production is a key feature of neurodegeneration in PD. Iron is critical for normal mitochondrial function, and we have previously used bioinformatic analysis of IRE-bearing transcripts in brain transcriptomes to find evidence supporting the existence of iron dyshomeostasis in Alzheimer’s disease. Here, we analysed IRE-bearing transcripts in the transcriptome data from homozygous park7−/− mutant zebrafish brains. We found that the set of genes with “high quality” IREs in their 5′ untranslated regions (UTRs, the HQ5′IRE gene set) was significantly altered in these 4-month-old park7−/− brains. However, sets of genes with IREs in their 3′ UTRs appeared unaffected. The effects on HQ5′IRE genes are possibly driven by iron dyshomeostasis and/or oxidative stress, but illuminate the existence of currently unknown mechanisms with differential overall effects on 5′ and 3′ IREs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lee JH, Han J-h, Kim H, Park SM, Joe E-h, Jou I. Parkinson’s disease-associated LRRK2-G2019S mutant acts through regulation of SERCA activity to control ER stress in astrocytes. Acta Neuropathol Commun. 2019;7(1):68.CrossRef Lee JH, Han J-h, Kim H, Park SM, Joe E-h, Jou I. Parkinson’s disease-associated LRRK2-G2019S mutant acts through regulation of SERCA activity to control ER stress in astrocytes. Acta Neuropathol Commun. 2019;7(1):68.CrossRef
2.
go back to reference Andreeva A, Bekkhozhin Z, Omertassova N, Baizhumanov T, Yeltay G, Akhmetali M, et al. The apparent deglycase activity of DJ-1 results from the conversion of free methylglyoxal present in fast equilibrium with hemithioacetals and hemiaminals. J Biol Chem. 2019;294(49):18863–72.CrossRef Andreeva A, Bekkhozhin Z, Omertassova N, Baizhumanov T, Yeltay G, Akhmetali M, et al. The apparent deglycase activity of DJ-1 results from the conversion of free methylglyoxal present in fast equilibrium with hemithioacetals and hemiaminals. J Biol Chem. 2019;294(49):18863–72.CrossRef
3.
go back to reference Dolgacheva LP, Berezhnov AV, Fedotova EI, Zinchenko VP, Abramov AY. Role of DJ-1 in the mechanism of pathogenesis of Parkinson’s disease. J Bioenerg Biomembr. 2019;51(3):175–88.CrossRef Dolgacheva LP, Berezhnov AV, Fedotova EI, Zinchenko VP, Abramov AY. Role of DJ-1 in the mechanism of pathogenesis of Parkinson’s disease. J Bioenerg Biomembr. 2019;51(3):175–88.CrossRef
4.
go back to reference Pacelli C, Giguère N, Bourque MJ, Lévesque M, Slack RS, Trudeau L. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr Biol. 2015;25(18):2349–60.CrossRef Pacelli C, Giguère N, Bourque MJ, Lévesque M, Slack RS, Trudeau L. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr Biol. 2015;25(18):2349–60.CrossRef
5.
go back to reference Junn E, Jang WH, Zhao X, Jeong BS, Mouradian MM. Mitochondrial localization of DJ-1 leads to enhanced neuroprotection. J Neurosci Res. 2009;87(1):123–9.CrossRef Junn E, Jang WH, Zhao X, Jeong BS, Mouradian MM. Mitochondrial localization of DJ-1 leads to enhanced neuroprotection. J Neurosci Res. 2009;87(1):123–9.CrossRef
6.
go back to reference Urrutia PJ, Bórquez DA, Núñez MT. Inflaming the brain with iron. Antioxidants. 2021;10(1). Urrutia PJ, Bórquez DA, Núñez MT. Inflaming the brain with iron. Antioxidants. 2021;10(1).
7.
go back to reference Hin N, Newman M, Pederson S, Lardelli M. Iron responsive element (IRE)-mediated responses to iron dyshomeostasis in Alzheimer’s disease. bioRxiv. 2021; 2020.05.01.071498. Hin N, Newman M, Pederson S, Lardelli M. Iron responsive element (IRE)-mediated responses to iron dyshomeostasis in Alzheimer’s disease. bioRxiv. 2021; 2020.05.01.071498.
8.
go back to reference Hughes GL, Lones MA, Bedder M, Currie PD, Smith SL, Pownall ME. Machine learning discriminates a movement disorder in a zebrafish model of Parkinson’s disease. Dis Models Mech. 2020;13(10):d045815.CrossRef Hughes GL, Lones MA, Bedder M, Currie PD, Smith SL, Pownall ME. Machine learning discriminates a movement disorder in a zebrafish model of Parkinson’s disease. Dis Models Mech. 2020;13(10):d045815.CrossRef
9.
go back to reference Wu D, Lim E, Vaillant F, Asselin-Labat M-L, Visvader JE, Smyth GK. ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics. 2010;26(17):2176–82.CrossRef Wu D, Lim E, Vaillant F, Asselin-Labat M-L, Visvader JE, Smyth GK. ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics. 2010;26(17):2176–82.CrossRef
10.
go back to reference Zhou ZD, Tan E-K. Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol Neurodegener. 2017;12(1):75.CrossRef Zhou ZD, Tan E-K. Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol Neurodegener. 2017;12(1):75.CrossRef
11.
go back to reference Canet-Avilés RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A. 2004;101(24):9103–8.CrossRef Canet-Avilés RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A. 2004;101(24):9103–8.CrossRef
12.
go back to reference Yambire KF, Rostosky C, Watanabe T, Pacheu-Grau D, Torres-Odio S, Sanchez-Guerrero A, et al. Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo. Elife. 2019;8. Yambire KF, Rostosky C, Watanabe T, Pacheu-Grau D, Torres-Odio S, Sanchez-Guerrero A, et al. Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo. Elife. 2019;8.
Metadata
Title
Loss of park7 activity has differential effects on expression of iron responsive element (IRE) gene sets in the brain transcriptome in a zebrafish model of Parkinson’s disease
Authors
Hui Yung Chin
Michael Lardelli
Lyndsey Collins-Praino
Karissa Barthelson
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2021
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-021-00792-9

Other articles of this Issue 1/2021

Molecular Brain 1/2021 Go to the issue