Skip to main content
Top
Published in: NeuroMolecular Medicine 1/2020

01-03-2020 | Parkinson's Disease | Original Paper

α-Arbutin Protects Against Parkinson’s Disease-Associated Mitochondrial Dysfunction In Vitro and In Vivo

Authors: Yaqi Ding, Deqin Kong, Tong Zhou, Nai-di Yang, Chenqi Xin, Jiajia Xu, Qi Wang, Hang Zhang, Qiong Wu, Xiaomei Lu, Kahleong Lim, Bo Ma, Chengwu Zhang, Lin Li, Wei Huang

Published in: NeuroMolecular Medicine | Issue 1/2020

Login to get access

Abstract

Parkinson’s disease (PD), the most common neurodegenerative movement disorder, is characterized by the progressive loss of dopaminergic neurons in substantia nigra. The underlying mechanisms of PD pathogenesis have not been fully illustrated and currently PD remains incurable. Accumulating evidences suggest that mitochondrial dysfunction plays pivotal role in the dopaminergic neuronal death. Therefore, discovery of novel and safe agent for rescuing mitochondrial dysfunction would benefit PD treatment. Here we demonstrated for the first time that α-Arbutin (Arb), a natural polyphenol extracted from Ericaceae species, displayed significant protective effect on the rotenone (Rot)-induced mitochondrial dysfunction and apoptosis of human neuroblastoma cell (SH-SY5Y). We further found that the neuroprotective effect of Arb was associated with ameliorating oxidative stress, stabilizing of mitochondrial membrane potential, and enhancing adenosine triphosphate production. To investigate the underlying mechanism, we checked the AMP-activated protein kinase and autophagy pathway and we found that both were involved in the neuroprotection of Arb. Moreover, we explored the protective effect of Arb in drosophila PD model and found that Arb rescued parkin deficiency-induced motor function disability and mitochondrial abnormality of drosophila. Taken together, our study demonstrated that Arb got excellent neuroprotective effect on PD models both in vitro and in vivo and Arb might serve as a potent therapeutic agent for the treatment of PD.
Literature
go back to reference Abousleiman, P. M., Muqit, M. M. K., & Wood, N. W. (2006). Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nature Reviews Neuroscience,7(3), 207–219. Abousleiman, P. M., Muqit, M. M. K., & Wood, N. W. (2006). Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nature Reviews Neuroscience,7(3), 207–219.
go back to reference Arsikin, K., Kravic-Stevovic, T., & Jovanovic, M. (2012). Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells. Biochimica et Biophysica Acta,1822(11), 1826–1836.PubMed Arsikin, K., Kravic-Stevovic, T., & Jovanovic, M. (2012). Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells. Biochimica et Biophysica Acta,1822(11), 1826–1836.PubMed
go back to reference Auciello, F. R., Ross, F. A., Ikematsu, N., & Hardie, D. G. (2014). Oxidative stress activates AMPK in cultured cells primarily by increasing cellular AMP and/or ADP. FEBS Letters,588(18), 3361–3366.PubMedPubMedCentral Auciello, F. R., Ross, F. A., Ikematsu, N., & Hardie, D. G. (2014). Oxidative stress activates AMPK in cultured cells primarily by increasing cellular AMP and/or ADP. FEBS Letters,588(18), 3361–3366.PubMedPubMedCentral
go back to reference Ball, N., Teo, W. P., Chandra, S., & Chapman, J. (2019). Parkinson’s disease and the environment. Front Neurol,10, 219. Ball, N., Teo, W. P., Chandra, S., & Chapman, J. (2019). Parkinson’s disease and the environment. Front Neurol,10, 219.
go back to reference Banerjee, R., Starkov, A. A., Beal, M. F., & Thomas, B. (2009). Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis. Biochimica et Biophysica Acta,1792(7), 651–663.PubMed Banerjee, R., Starkov, A. A., Beal, M. F., & Thomas, B. (2009). Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis. Biochimica et Biophysica Acta,1792(7), 651–663.PubMed
go back to reference Barnham, K. J., Masters, C. L., & Bush, A. I. (2004). Neurodegenerative disease and oxidative stress. Nature Reviews Drug Discovery,3(3), 205–214.PubMed Barnham, K. J., Masters, C. L., & Bush, A. I. (2004). Neurodegenerative disease and oxidative stress. Nature Reviews Drug Discovery,3(3), 205–214.PubMed
go back to reference Betarbet, R., Sherer, T. B., MacKenzie, G., Garcia-Osuna, M., Panov, A. V., & Greenamyre, J. T. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nature Neuroscience,3(12), 1301–1306.PubMed Betarbet, R., Sherer, T. B., MacKenzie, G., Garcia-Osuna, M., Panov, A. V., & Greenamyre, J. T. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nature Neuroscience,3(12), 1301–1306.PubMed
go back to reference Burbulla, L. F., Song, P., Mazzulli, J. R., Zampese, E., Wong, Y. C., & Jeon, S. (2017). Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science,357(6357), 1255–1261.PubMedPubMedCentral Burbulla, L. F., Song, P., Mazzulli, J. R., Zampese, E., Wong, Y. C., & Jeon, S. (2017). Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science,357(6357), 1255–1261.PubMedPubMedCentral
go back to reference Dauer, W., & Przedborski, S. (2003). Parkinson’s disease: Mechanisms and models. Neuron,39(6), 889–909.PubMed Dauer, W., & Przedborski, S. (2003). Parkinson’s disease: Mechanisms and models. Neuron,39(6), 889–909.PubMed
go back to reference Ferretta, A., Gaballo, A., Tanzarella, P., Piccoli, C., Capitanio, N., Nico, B., et al. (2014). Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson’s disease. Biochimica et Biophysica Acta,1842(7), 902–915.PubMed Ferretta, A., Gaballo, A., Tanzarella, P., Piccoli, C., Capitanio, N., Nico, B., et al. (2014). Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson’s disease. Biochimica et Biophysica Acta,1842(7), 902–915.PubMed
go back to reference Fu, W., Zhuang, W., Zhou, S., & Wang, X. (2015). Plant-derived neuroprotective agents in Parkinson’s disease. American Journal of Translational Research,7(7), 1189–1202.PubMedPubMedCentral Fu, W., Zhuang, W., Zhou, S., & Wang, X. (2015). Plant-derived neuroprotective agents in Parkinson’s disease. American Journal of Translational Research,7(7), 1189–1202.PubMedPubMedCentral
go back to reference Garcia-Jimenez, A., Teruel-Puche, J. A., Berna, J., Rodriguez-Lopez, J. N., Tudela, J., & Garcia-Canovas, F. (2017). Action of tyrosinase on alpha and beta- arbutin: A kinetic study. PLoS ONE,12(5), e0177330.PubMedPubMedCentral Garcia-Jimenez, A., Teruel-Puche, J. A., Berna, J., Rodriguez-Lopez, J. N., Tudela, J., & Garcia-Canovas, F. (2017). Action of tyrosinase on alpha and beta- arbutin: A kinetic study. PLoS ONE,12(5), e0177330.PubMedPubMedCentral
go back to reference Ghosh, A., Chandran, K., Kalivendi, S. V., Joseph, J., Antholine, W. E., Hillard, C. J., et al. (2010). Neuroprotection by a mitochondria-targeted drug in a Parkinson’s disease model. Free Radical Biology and Medicine,49(11), 1674–1684.PubMed Ghosh, A., Chandran, K., Kalivendi, S. V., Joseph, J., Antholine, W. E., Hillard, C. J., et al. (2010). Neuroprotection by a mitochondria-targeted drug in a Parkinson’s disease model. Free Radical Biology and Medicine,49(11), 1674–1684.PubMed
go back to reference González-Polo, R. A., Niso-Santano, M., Ortíz-Ortíz, M. A., Gómez-Martín, A., Morán, J. M., García-Rubio, L., et al. (2007). Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells. Toxicological Sciences,97(2), 448–458.PubMed González-Polo, R. A., Niso-Santano, M., Ortíz-Ortíz, M. A., Gómez-Martín, A., Morán, J. M., García-Rubio, L., et al. (2007). Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells. Toxicological Sciences,97(2), 448–458.PubMed
go back to reference Greene, J. C., Whitworth, A. J., Kuo, I., Andrews, L. A., Feany, M. B., & Pallanck, L. J. (2003). Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proceedings of the National Academy of Sciences of the United States of America,100(7), 4078–4083.PubMedPubMedCentral Greene, J. C., Whitworth, A. J., Kuo, I., Andrews, L. A., Feany, M. B., & Pallanck, L. J. (2003). Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proceedings of the National Academy of Sciences of the United States of America,100(7), 4078–4083.PubMedPubMedCentral
go back to reference Hall, A. G. (1999). Review: The role of glutathione in the regulation of apoptosis. European Journal of Clinical Investigation,29(3), 238–245.PubMed Hall, A. G. (1999). Review: The role of glutathione in the regulation of apoptosis. European Journal of Clinical Investigation,29(3), 238–245.PubMed
go back to reference Hardie, D. G. (2007). AMP-activated/SNF1 protein kinases, conserved guardians of cellular energy. Nature Reviews Molecular Cell Biology,8(3), 774–785.PubMed Hardie, D. G. (2007). AMP-activated/SNF1 protein kinases, conserved guardians of cellular energy. Nature Reviews Molecular Cell Biology,8(3), 774–785.PubMed
go back to reference Isenberg, J. S., & Klaunig, J. E. (2000). Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells. Toxicological Sciences,53(2), 340–351.PubMed Isenberg, J. S., & Klaunig, J. E. (2000). Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells. Toxicological Sciences,53(2), 340–351.PubMed
go back to reference Katsuragi, Y., Ichimura, Y., & Komatsu, M. (2015). p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS Journal,282(24), 4672–4678.PubMed Katsuragi, Y., Ichimura, Y., & Komatsu, M. (2015). p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS Journal,282(24), 4672–4678.PubMed
go back to reference Kavitha, M., Manivasagam, T., Essa, M. M., Tamilselvam, K., Selvakumar, G. P., Karthikeyan, S., et al. (2014). Mangiferin antagonizes rotenone: Induced apoptosis through attenuating mitochondrial dysfunction and oxidative stress in SK-N-SH neuroblastoma cells. Neurochemical Research,39(4), 668–676.PubMed Kavitha, M., Manivasagam, T., Essa, M. M., Tamilselvam, K., Selvakumar, G. P., Karthikeyan, S., et al. (2014). Mangiferin antagonizes rotenone: Induced apoptosis through attenuating mitochondrial dysfunction and oxidative stress in SK-N-SH neuroblastoma cells. Neurochemical Research,39(4), 668–676.PubMed
go back to reference Koppula, S., Kumar, H., More, S. V., Lim, H. W., Hong, S. M., & Choi, D. K. (2012). Recent updates in redox regulation and free radical scavenging effects by herbal products in experimental models of Parkinson’s disease. Molecules,17(10), 11391–11420.PubMedPubMedCentral Koppula, S., Kumar, H., More, S. V., Lim, H. W., Hong, S. M., & Choi, D. K. (2012). Recent updates in redox regulation and free radical scavenging effects by herbal products in experimental models of Parkinson’s disease. Molecules,17(10), 11391–11420.PubMedPubMedCentral
go back to reference Lim, K. L., & Ng, C. H. (2009). Genetic models of Parkinson disease. Biochimica et Biophysica Acta,1792(7), 604–615.PubMed Lim, K. L., & Ng, C. H. (2009). Genetic models of Parkinson disease. Biochimica et Biophysica Acta,1792(7), 604–615.PubMed
go back to reference Liu, C. S., Chen, N. H., & Zhang, J. T. (2006). Protection of PC12 cells from hydrogen peroxide-induced cytotoxicity by salvianolic acid B, a new compound isolated from Radix Salviae miltiorrhizae. Phytomedicine,14(7–8), 492–497.PubMed Liu, C. S., Chen, N. H., & Zhang, J. T. (2006). Protection of PC12 cells from hydrogen peroxide-induced cytotoxicity by salvianolic acid B, a new compound isolated from Radix Salviae miltiorrhizae. Phytomedicine,14(7–8), 492–497.PubMed
go back to reference Liu, C. Q., Deng, L., & Zhang, P. (2013). Screening of high α-arbutin producing strains and production of α-arbutin by fermentation. World Journal of Microbiology and Biotechnology,29(8), 1391–1398.PubMed Liu, C. Q., Deng, L., & Zhang, P. (2013). Screening of high α-arbutin producing strains and production of α-arbutin by fermentation. World Journal of Microbiology and Biotechnology,29(8), 1391–1398.PubMed
go back to reference Moon, Y., Lee, K. H., Park, J. H., Geum, D., & Kim, K. (2005). Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: Protective effect of coenzyme Q (10). Journal of Neurochemistry,93(5), 1199–1208.PubMed Moon, Y., Lee, K. H., Park, J. H., Geum, D., & Kim, K. (2005). Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: Protective effect of coenzyme Q (10). Journal of Neurochemistry,93(5), 1199–1208.PubMed
go back to reference Narendra, D., Tanaka, A., Suen, D. F., & Youle, R. J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. Journal of Cell Biology,183(5), 795–803.PubMedPubMedCentral Narendra, D., Tanaka, A., Suen, D. F., & Youle, R. J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. Journal of Cell Biology,183(5), 795–803.PubMedPubMedCentral
go back to reference Ng, C. H., Guan, M. S., Koh, C., Ouyang, X., Yu, F., Tan, E. K., et al. (2012). AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson’s disease. Journal of Neuroscience,32(41), 14311–14317.PubMed Ng, C. H., Guan, M. S., Koh, C., Ouyang, X., Yu, F., Tan, E. K., et al. (2012). AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson’s disease. Journal of Neuroscience,32(41), 14311–14317.PubMed
go back to reference Park, J. S., Davis, R. L., & Sue, C. M. (2018). Mitochondrial dysfunction in Parkinson’s disease: New mechanistic insights and therapeutic perspectives. Current Neurology and Neuroscience Reports,18(5), 21.PubMedPubMedCentral Park, J. S., Davis, R. L., & Sue, C. M. (2018). Mitochondrial dysfunction in Parkinson’s disease: New mechanistic insights and therapeutic perspectives. Current Neurology and Neuroscience Reports,18(5), 21.PubMedPubMedCentral
go back to reference Park, J., Lee, S. B., Lee, S., Kim, Y., Song, S., Kim, S., et al. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature,44(7097), 1157–1161. Park, J., Lee, S. B., Lee, S., Kim, Y., Song, S., Kim, S., et al. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature,44(7097), 1157–1161.
go back to reference Poels, J., Spasić, M. R., & Callaerts, P. (2009). Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy. BioEssays,31(9), 944–952.PubMed Poels, J., Spasić, M. R., & Callaerts, P. (2009). Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy. BioEssays,31(9), 944–952.PubMed
go back to reference Reed, D. J., & Savage, M. K. (1995). Influence of metabolic inhibitors on mitochondrial permeability transition and glutathione status. Biochimica et Biophysica Acta,1271(1), 43–50.PubMed Reed, D. J., & Savage, M. K. (1995). Influence of metabolic inhibitors on mitochondrial permeability transition and glutathione status. Biochimica et Biophysica Acta,1271(1), 43–50.PubMed
go back to reference Reinhardt, P., Schmid, B., Burbulla, L. F., Schondorf, D. C., Wagner, L., Glatza, M., et al. (2013). Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell,12(3), 354–367.PubMed Reinhardt, P., Schmid, B., Burbulla, L. F., Schondorf, D. C., Wagner, L., Glatza, M., et al. (2013). Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell,12(3), 354–367.PubMed
go back to reference Ryan, B. J., Hoek, S., Fon, E. A., & Wade-Martins, R. (2015). Mitochondrial dysfunction and mitophagy in Parkinson’s: From familial to sporadic disease. Trends in Biochemical Sciences,40(4), 200–210.PubMed Ryan, B. J., Hoek, S., Fon, E. A., & Wade-Martins, R. (2015). Mitochondrial dysfunction and mitophagy in Parkinson’s: From familial to sporadic disease. Trends in Biochemical Sciences,40(4), 200–210.PubMed
go back to reference Schapira, A. H. V. (2008). Mitochondria in the etiology and pathogenesis of Parkinson’s disease. The Lancet Neurology,7(3), 97–109.PubMed Schapira, A. H. V. (2008). Mitochondria in the etiology and pathogenesis of Parkinson’s disease. The Lancet Neurology,7(3), 97–109.PubMed
go back to reference Solesio, M., Prime, T., Logan, A., Murphy, M. P., Del Mar Arroyo-Jimenez, M., Jordán, J., et al. (2013). The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson’s disease. Biochimica et Biophysica Acta,1832(1), 174–182.PubMed Solesio, M., Prime, T., Logan, A., Murphy, M. P., Del Mar Arroyo-Jimenez, M., Jordán, J., et al. (2013). The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson’s disease. Biochimica et Biophysica Acta,1832(1), 174–182.PubMed
go back to reference Sugimoto, K., Nishimura, T., Nomura, K., Sugimoto, K., & Kuriki, T. (2003). Syntheses of arbutin-alpha-glycosides and a comparison of their inhibitory effects with those of alpha-arbutin and arbutin on human tyrosinase. Chemical & Pharmaceutical Bulletin,51(7), 798–801. Sugimoto, K., Nishimura, T., Nomura, K., Sugimoto, K., & Kuriki, T. (2003). Syntheses of arbutin-alpha-glycosides and a comparison of their inhibitory effects with those of alpha-arbutin and arbutin on human tyrosinase. Chemical & Pharmaceutical Bulletin,51(7), 798–801.
go back to reference Sundararaman, A., Amirtham, U., & Rangarajan, A. (2016). Calcium-oxidant signaling network regulates AMP-activated protein kinase (AMPK) activation upon matrix deprivation. Journal of Biological Chemistry,291(28), 14410–14429.PubMedPubMedCentral Sundararaman, A., Amirtham, U., & Rangarajan, A. (2016). Calcium-oxidant signaling network regulates AMP-activated protein kinase (AMPK) activation upon matrix deprivation. Journal of Biological Chemistry,291(28), 14410–14429.PubMedPubMedCentral
go back to reference Surmeier, D. J., Obeso, J. A., & Halliday, G. M. (2017). Selective neuronal vulnerability in Parkinson disease. Nature Reviews Neuroscience,18(2), 101–113.PubMedPubMedCentral Surmeier, D. J., Obeso, J. A., & Halliday, G. M. (2017). Selective neuronal vulnerability in Parkinson disease. Nature Reviews Neuroscience,18(2), 101–113.PubMedPubMedCentral
go back to reference Talpade, D. J., Greene, J. G., Higgins, D. S., & Greenamyre, J. T. (2000). In vivo labeling of mitochondrial complex I (NADH:ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone. Journal of Neurochemistry,75(6), 2611–2621.PubMed Talpade, D. J., Greene, J. G., Higgins, D. S., & Greenamyre, J. T. (2000). In vivo labeling of mitochondrial complex I (NADH:ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone. Journal of Neurochemistry,75(6), 2611–2621.PubMed
go back to reference Tessari, I., Bisaglia, M., Valle, F., et al. (2008). The reaction of alpha-synuclein with tyrosinase: Possible implications for Parkinson disease. Journal of Biological Chemistry,283(24), 16808–16817.PubMed Tessari, I., Bisaglia, M., Valle, F., et al. (2008). The reaction of alpha-synuclein with tyrosinase: Possible implications for Parkinson disease. Journal of Biological Chemistry,283(24), 16808–16817.PubMed
go back to reference Thomas, B., & Beal, M. F. (2007). Parkinson’s disease. Human Molecular Genetics,16(2), 183–194. Thomas, B., & Beal, M. F. (2007). Parkinson’s disease. Human Molecular Genetics,16(2), 183–194.
go back to reference Uttara, B., Singh, A. V., Zamboni, P., & Mahajan, R. T. (2009). Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options”. Current Neuropharmacology,7(1), 65–74.PubMedPubMedCentral Uttara, B., Singh, A. V., Zamboni, P., & Mahajan, R. T. (2009). Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options”. Current Neuropharmacology,7(1), 65–74.PubMedPubMedCentral
go back to reference Wang, X., & Hai, C. (2016). Novel insights into redox system and the mechanism of redox regulation. Molecular Biology Reports,43(7), 607–628.PubMed Wang, X., & Hai, C. (2016). Novel insights into redox system and the mechanism of redox regulation. Molecular Biology Reports,43(7), 607–628.PubMed
go back to reference Wang, C., Lu, R., Ouyang, X., Ho, M. W., Chia, W., Yu, F., et al. (2007). Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. Journal of Neuroscience,27(32), 8563–8570.PubMed Wang, C., Lu, R., Ouyang, X., Ho, M. W., Chia, W., Yu, F., et al. (2007). Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. Journal of Neuroscience,27(32), 8563–8570.PubMed
go back to reference Weisova, P., Davila, D., Tuffy, L. P., Ward, M. W., Concannon, C. G., & Prehn, J. H. (2011). Role of 5′-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons. Antioxidants & Redox Signaling,14(2011), 1863–1876. Weisova, P., Davila, D., Tuffy, L. P., Ward, M. W., Concannon, C. G., & Prehn, J. H. (2011). Role of 5′-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons. Antioxidants & Redox Signaling,14(2011), 1863–1876.
go back to reference Whitworth, A. J., Wes, P. D., & Pallanck, L. J. (2006). Drosophila models pioneer a new approach to drug discovery for Parkinson’s disease. Drug Discovery Today,11(3/4), 119–126.PubMed Whitworth, A. J., Wes, P. D., & Pallanck, L. J. (2006). Drosophila models pioneer a new approach to drug discovery for Parkinson’s disease. Drug Discovery Today,11(3/4), 119–126.PubMed
go back to reference Xiong, N., Huang, J., Zhang, Z., Zhang, Z., Xiong, J., Liu, X., et al. (2009). Stereotaxical infusion of rotenone: A reliable rodent model for Parkinson’s disease. PLoS ONE,4(11), e7878.PubMedPubMedCentral Xiong, N., Huang, J., Zhang, Z., Zhang, Z., Xiong, J., Liu, X., et al. (2009). Stereotaxical infusion of rotenone: A reliable rodent model for Parkinson’s disease. PLoS ONE,4(11), e7878.PubMedPubMedCentral
go back to reference Xiong, N., Long, X., Xiong, J., Jia, M., Chen, C., Huang, J., et al. (2012). Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson’s disease models. Critical Reviews in Toxicology,42(7), 613–632.PubMed Xiong, N., Long, X., Xiong, J., Jia, M., Chen, C., Huang, J., et al. (2012). Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson’s disease models. Critical Reviews in Toxicology,42(7), 613–632.PubMed
go back to reference Zhang, H. A., Gao, M., Zhang, L., Zhao, Y., Shi, L. L., Chen, B. N., et al. (2012). Salvianolic acid A protects human SH-SY5Y neuroblastoma cells against H2O2-induced injury by increasing stress tolerance ability. Biochemical and Biophysical Research Communications,421(3), 479–483.PubMed Zhang, H. A., Gao, M., Zhang, L., Zhao, Y., Shi, L. L., Chen, B. N., et al. (2012). Salvianolic acid A protects human SH-SY5Y neuroblastoma cells against H2O2-induced injury by increasing stress tolerance ability. Biochemical and Biophysical Research Communications,421(3), 479–483.PubMed
Metadata
Title
α-Arbutin Protects Against Parkinson’s Disease-Associated Mitochondrial Dysfunction In Vitro and In Vivo
Authors
Yaqi Ding
Deqin Kong
Tong Zhou
Nai-di Yang
Chenqi Xin
Jiajia Xu
Qi Wang
Hang Zhang
Qiong Wu
Xiaomei Lu
Kahleong Lim
Bo Ma
Chengwu Zhang
Lin Li
Wei Huang
Publication date
01-03-2020
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 1/2020
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-019-08562-6

Other articles of this Issue 1/2020

NeuroMolecular Medicine 1/2020 Go to the issue