Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 9/2014

01-09-2014 | Original Article

Parametric imaging of 18F-fluoro-3-deoxy-3-l-fluorothymidine PET data to investigate tumour heterogeneity

Authors: M. Veronese, G. Rizzo, E. O. Aboagye, A. Bertoldo

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 9/2014

Login to get access

Abstract

Purpose

[18F]Fluoro-3′-deoxy-3′-l-fluorothymidine ([18F]FLT) is a tissue proliferation marker which has been widely validated as a tumour-specific imaging tracer for PET. [18F]FLT uptake in breast cancer is generally quantified at the region level or through first-order statistical descriptors (mean or maximum value), approaches that ignore the known complexity and heterogeneity of cancer tissues. Our aims were: (1) to validate a robust and reproducible voxel-wise approach to the quantification of [18F]FLT PET data in breast cancer patients, and (2) to exploit the entire distribution of the [18F]FLT retention estimates and their variability in the tumour region for the prediction of early treatment response.

Methods

The dataset was derived from 15 patients with stage II–IV breast cancer, scanned twice before chemotherapy and once 1 week after therapy. Using RECIST criteria (after 60 days) nine patients were categorized as responders or nonresponders to treatment. Kinetic modelling (compartmental modelling, Patlak analysis and spectral analysis with iterative filter), tissue-to-plasma ratio and standardized uptake value were applied at the voxel level. Test–retest estimates were used to assess reproducibility and reliability of the [18F]FLT uptake values before and after therapy for responder/nonresponder prediction.

Results

All the methods provided a measure of [18F]FLT uptake that was reliable and reproducible with ICC >0.94. Moreover, a very strong correlation was found among the methods (R 2 > 0.81). All the methods provided a limited number of outliers (<20 % in tumour), with the exception of compartmental modelling (>25 %) which was therefore excluded from the prediction analysis. Differences between before and after therapy in mean voxel-wise uptake in tumour did not allow a complete responder/nonresponder classification. In contrast, considering the full estimate distributions within the tumour (changes in median and mode between before and after therapy) improved therapy response for all the analysed methods.

Conclusion

We showed that kinetic modelling (Patlak and spectral analysis with iterative filter) applied voxel-wise allows appropriate [18F]FLT uptake estimation in breast cancer with good reproducibility. Notably, this study indicated that a more comprehensive statistical investigation could improve tumour characterization and prediction of treatment response.
Literature
2.
go back to reference Shields AF, Grierson JR, Kozawa SM, Zheng M. Development of labeled thymidine analogs for imaging tumor proliferation. Nucl Med Biol. 1996;23(1):17–22.PubMedCrossRef Shields AF, Grierson JR, Kozawa SM, Zheng M. Development of labeled thymidine analogs for imaging tumor proliferation. Nucl Med Biol. 1996;23(1):17–22.PubMedCrossRef
3.
go back to reference Ullrich R, Backes H, Li H, Kracht L, Miletic H, Kesper K, et al. Glioma proliferation as assessed by 3'-fluoro-3'-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res. 2008;14(7):2049–55.PubMedCrossRef Ullrich R, Backes H, Li H, Kracht L, Miletic H, Kesper K, et al. Glioma proliferation as assessed by 3'-fluoro-3'-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res. 2008;14(7):2049–55.PubMedCrossRef
4.
go back to reference Kenny LM. Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res. 2005;65(21):10104–12. doi:10.1158/0008-5472.can-04-4297.PubMedCrossRef Kenny LM. Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res. 2005;65(21):10104–12. doi:10.​1158/​0008-5472.​can-04-4297.PubMedCrossRef
5.
go back to reference Buck AK, Hetzel M, Schirrmeister H, Halter G, Möller P, Kratochwil C, et al. Clinical relevance of imaging proliferative activity in lung nodules. Eur J Nucl Med Mol Imaging. 2005;32(5):525–33.PubMedCrossRef Buck AK, Hetzel M, Schirrmeister H, Halter G, Möller P, Kratochwil C, et al. Clinical relevance of imaging proliferative activity in lung nodules. Eur J Nucl Med Mol Imaging. 2005;32(5):525–33.PubMedCrossRef
6.
go back to reference Buck AK, Bommer M, Stilgenbauer S, Juweid M, Glatting G, Schirrmeister H, et al. Molecular imaging of proliferation in malignant lymphoma. Cancer Res. 2006;66(22):11055–61.PubMedCrossRef Buck AK, Bommer M, Stilgenbauer S, Juweid M, Glatting G, Schirrmeister H, et al. Molecular imaging of proliferation in malignant lymphoma. Cancer Res. 2006;66(22):11055–61.PubMedCrossRef
7.
go back to reference Salskov A, Tammisetti VS, Grierson J, Vesselle H. FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3'-deoxy-3'-[18F]fluorothymidine. Semin Nucl Med. 2007;37(6):429–39.PubMedCrossRef Salskov A, Tammisetti VS, Grierson J, Vesselle H. FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3'-deoxy-3'-[18F]fluorothymidine. Semin Nucl Med. 2007;37(6):429–39.PubMedCrossRef
8.
go back to reference Visvikis D, Francis D, Mulligan R, Costa D, Croasdale I, Luthra S, et al. Comparison of methodologies for the in vivo assessment of 18FLT utilisation in colorectal cancer. Eur J Nucl Med Mol Imaging. 2004;31(2):169–78.PubMedCrossRef Visvikis D, Francis D, Mulligan R, Costa D, Croasdale I, Luthra S, et al. Comparison of methodologies for the in vivo assessment of 18FLT utilisation in colorectal cancer. Eur J Nucl Med Mol Imaging. 2004;31(2):169–78.PubMedCrossRef
9.
go back to reference Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med. 2004;45(9):1431–4.PubMed Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med. 2004;45(9):1431–4.PubMed
10.
go back to reference Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO. Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging. 2007;34(9):1339–47. doi:10.1007/s00259-007-0379-4.PubMedCrossRef Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO. Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging. 2007;34(9):1339–47. doi:10.​1007/​s00259-007-0379-4.PubMedCrossRef
11.
go back to reference Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3(1):1–7.PubMedCrossRef Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3(1):1–7.PubMedCrossRef
12.
go back to reference Cunningham VJ, Jones T. Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab. 1993;13(1):15–23.PubMedCrossRef Cunningham VJ, Jones T. Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab. 1993;13(1):15–23.PubMedCrossRef
13.
go back to reference Muzi M, Mankoff DA, Grierson JR, Wells JM, Vesselle H, Krohn KA. Kinetic modeling of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med. 2005;46(2):371–80.PubMed Muzi M, Mankoff DA, Grierson JR, Wells JM, Vesselle H, Krohn KA. Kinetic modeling of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med. 2005;46(2):371–80.PubMed
14.
go back to reference Muzi M, Vesselle H, Grierson JR, Mankoff DA, Schmidt RA, Peterson L, et al. Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer. J Nucl Med. 2005;46(2):274–82.PubMed Muzi M, Vesselle H, Grierson JR, Mankoff DA, Schmidt RA, Peterson L, et al. Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer. J Nucl Med. 2005;46(2):274–82.PubMed
15.
go back to reference Harris RJ, Cloughesy TF, Pope WB, Nghiemphu PL, Lai A, Zaw T, et al. 18F-FDOPA and 18F-FLT positron emission tomography parametric response maps predict response in recurrent malignant gliomas treated with bevacizumab. Neuro Oncol. 2012;14(8):1079–89.PubMedCentralPubMedCrossRef Harris RJ, Cloughesy TF, Pope WB, Nghiemphu PL, Lai A, Zaw T, et al. 18F-FDOPA and 18F-FLT positron emission tomography parametric response maps predict response in recurrent malignant gliomas treated with bevacizumab. Neuro Oncol. 2012;14(8):1079–89.PubMedCentralPubMedCrossRef
16.
go back to reference Laymon CM, Oborski MJ, Lee VK, Davis DK, Wiener EC, Lieberman FS, et al. Combined imaging biomarkers for therapy evaluation in glioblastoma multiforme: correlating sodium MRI and F-18 FLT PET on a voxel-wise basis. Magn Reson Imaging. 2012;30(9):1268–78.PubMedCrossRef Laymon CM, Oborski MJ, Lee VK, Davis DK, Wiener EC, Lieberman FS, et al. Combined imaging biomarkers for therapy evaluation in glioblastoma multiforme: correlating sodium MRI and F-18 FLT PET on a voxel-wise basis. Magn Reson Imaging. 2012;30(9):1268–78.PubMedCrossRef
17.
go back to reference Nyflot MJ, Harari PM, Yip S, Perlman SB, Jeraj R. Correlation of PET images of metabolism, proliferation and hypoxia to characterize tumor phenotype in patients with cancer of the oropharynx. Radiother Oncol. 2012;105(1):36–40.PubMedCentralPubMedCrossRef Nyflot MJ, Harari PM, Yip S, Perlman SB, Jeraj R. Correlation of PET images of metabolism, proliferation and hypoxia to characterize tumor phenotype in patients with cancer of the oropharynx. Radiother Oncol. 2012;105(1):36–40.PubMedCentralPubMedCrossRef
18.
go back to reference Willaime JM, Turkheimer FE, Kenny LM, Aboagye EO. Quantification of intra-tumour cell proliferation heterogeneity using imaging descriptors of 18F fluorothymidine-positron emission tomography. Phys Med Biol. 2013;58(2):187–203. doi:10.1088/0031-9155/58/2/187.PubMedCrossRef Willaime JM, Turkheimer FE, Kenny LM, Aboagye EO. Quantification of intra-tumour cell proliferation heterogeneity using imaging descriptors of 18F fluorothymidine-positron emission tomography. Phys Med Biol. 2013;58(2):187–203. doi:10.​1088/​0031-9155/​58/​2/​187.PubMedCrossRef
19.
20.
go back to reference Basu S, Kwee TC, Gatenby R, Saboury B, Torigian DA, Alavi A. Evolving role of molecular imaging with PET in detecting and characterizing heterogeneity of cancer tissue at the primary and metastatic sites, a plausible explanation for failed attempts to cure malignant disorders. Eur J Nucl Med Mol Imaging. 2011;38(6):987–91.PubMedCrossRef Basu S, Kwee TC, Gatenby R, Saboury B, Torigian DA, Alavi A. Evolving role of molecular imaging with PET in detecting and characterizing heterogeneity of cancer tissue at the primary and metastatic sites, a plausible explanation for failed attempts to cure malignant disorders. Eur J Nucl Med Mol Imaging. 2011;38(6):987–91.PubMedCrossRef
21.
go back to reference Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92(3):205–16.PubMedCrossRef Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92(3):205–16.PubMedCrossRef
22.
go back to reference Cleij MC, Steel CJ, Brady F, Ell PJ, Pike VW, Luthra SK. An improved synthesis of 3′‐DEOXY‐3′‐[18F]fluorothymidine ([18F]FLT) and the fate of the precursor, 2,3′‐anhydro‐5′-O-(4,4′‐dimethoxytrityl)‐thymidine. J Label Compd Radiopharm. 2001;44(S1):S871–3.CrossRef Cleij MC, Steel CJ, Brady F, Ell PJ, Pike VW, Luthra SK. An improved synthesis of 3′‐DEOXY‐3′‐[18F]fluorothymidine ([18F]FLT) and the fate of the precursor, 2,3′‐anhydro‐5′-O-(4,4′‐dimethoxytrityl)‐thymidine. J Label Compd Radiopharm. 2001;44(S1):S871–3.CrossRef
23.
go back to reference Veronese M, Bertoldo A, Bishu S, Unterman A, Tomasi G, Smith CB, et al. A spectral analysis approach for determination of regional rates of cerebral protein synthesis with the L-[1-(11)C]leucine PET method. J Cereb Blood Flow Metab. 2010;30(8):1460–76.PubMedCentralPubMedCrossRef Veronese M, Bertoldo A, Bishu S, Unterman A, Tomasi G, Smith CB, et al. A spectral analysis approach for determination of regional rates of cerebral protein synthesis with the L-[1-(11)C]leucine PET method. J Cereb Blood Flow Metab. 2010;30(8):1460–76.PubMedCentralPubMedCrossRef
24.
go back to reference Lehtiö K, Oikonen V, Nyman S, Grönroos T, Roivainen A, Eskola O, et al. Quantifying tumour hypoxia with fluorine-18 fluoroerythronitroimidazole ([18F]FETNIM) and PET using the tumour to plasma ratio. Eur J Nucl Med Mol Imaging. 2003;30(1):101–8. doi:10.1007/s00259-002-1016-x.PubMedCrossRef Lehtiö K, Oikonen V, Nyman S, Grönroos T, Roivainen A, Eskola O, et al. Quantifying tumour hypoxia with fluorine-18 fluoroerythronitroimidazole ([18F]FETNIM) and PET using the tumour to plasma ratio. Eur J Nucl Med Mol Imaging. 2003;30(1):101–8. doi:10.​1007/​s00259-002-1016-x.PubMedCrossRef
25.
go back to reference van den Hoff J, Oehme L, Schramm G, Maus J, Lougovski A, Petr J, et al. The PET-derived tumor-to-blood standard uptake ratio (SUR) is superior to tumor SUV as a surrogate parameter of the metabolic rate of FDG. EJNMMI Res. 2013;3(1):77.PubMedCrossRef van den Hoff J, Oehme L, Schramm G, Maus J, Lougovski A, Petr J, et al. The PET-derived tumor-to-blood standard uptake ratio (SUR) is superior to tumor SUV as a surrogate parameter of the metabolic rate of FDG. EJNMMI Res. 2013;3(1):77.PubMedCrossRef
26.
go back to reference Kong X, Zhu Q, Vidal P, Watanabe K, Polsky B, Armstrong D, et al. Comparisons of anti-human immunodeficiency virus activities, cellular transport, and plasma and intracellular pharmacokinetics of 3′-fluoro-3′-deoxythymidine and 3′-azido-3′-deoxythymidine. Antimicrob Agents Chemother. 1992;36(4):808–18.PubMedCentralPubMedCrossRef Kong X, Zhu Q, Vidal P, Watanabe K, Polsky B, Armstrong D, et al. Comparisons of anti-human immunodeficiency virus activities, cellular transport, and plasma and intracellular pharmacokinetics of 3′-fluoro-3′-deoxythymidine and 3′-azido-3′-deoxythymidine. Antimicrob Agents Chemother. 1992;36(4):808–18.PubMedCentralPubMedCrossRef
27.
go back to reference Gazziola C, Ferraro P, Moras M, Reichard P, Bianchi V. Cytosolic high K(m) 5′-nucleotidase and 5′(3′)-deoxyribonucleotidase in substrate cycles involved in nucleotide metabolism. J Biol Chem. 2001;276(9):6185–90.PubMedCrossRef Gazziola C, Ferraro P, Moras M, Reichard P, Bianchi V. Cytosolic high K(m) 5′-nucleotidase and 5′(3′)-deoxyribonucleotidase in substrate cycles involved in nucleotide metabolism. J Biol Chem. 2001;276(9):6185–90.PubMedCrossRef
28.
go back to reference Grierson JR, Schwartz JL, Muzi M, Jordan R, Krohn KA. Metabolism of 3′-deoxy-3′-[F-18] fluorothymidine in proliferating A549 cells: validations for positron emission tomography. Nucl Med Biol. 2004;31(7):829–37.PubMedCrossRef Grierson JR, Schwartz JL, Muzi M, Jordan R, Krohn KA. Metabolism of 3′-deoxy-3′-[F-18] fluorothymidine in proliferating A549 cells: validations for positron emission tomography. Nucl Med Biol. 2004;31(7):829–37.PubMedCrossRef
29.
go back to reference Veronese M, Schmidt KC, Smith CB, Bertoldo A. Use of spectral analysis with iterative filter for voxelwise determination of regional rates of cerebral protein synthesis with L-[1-11C]leucine PET. J Cereb Blood Flow Metab. 2012;32(6):1073–85.PubMedCentralPubMedCrossRef Veronese M, Schmidt KC, Smith CB, Bertoldo A. Use of spectral analysis with iterative filter for voxelwise determination of regional rates of cerebral protein synthesis with L-[1-11C]leucine PET. J Cereb Blood Flow Metab. 2012;32(6):1073–85.PubMedCentralPubMedCrossRef
30.
go back to reference Veronese M, Rizzo G, Turkheimer FE, Bertoldo A. SAKE: a new quantification tool for positron emission tomography studies. Comput Methods Programs Biomed. 2013;111(1):199–213.PubMedCrossRef Veronese M, Rizzo G, Turkheimer FE, Bertoldo A. SAKE: a new quantification tool for positron emission tomography studies. Comput Methods Programs Biomed. 2013;111(1):199–213.PubMedCrossRef
32.
go back to reference Grecchi E, Veronese M, Moresco RM, Bellani G, Pesenti A, Messa C, et al. Assessment of voxelwise quantification of [18F]FDG dynamic PET data in human lung: insight for clinical use. Proceedings of the 2012 World Molecular Imaging Congress, Dublin, Ireland, 5–8 September 2012. Grecchi E, Veronese M, Moresco RM, Bellani G, Pesenti A, Messa C, et al. Assessment of voxelwise quantification of [18F]FDG dynamic PET data in human lung: insight for clinical use. Proceedings of the 2012 World Molecular Imaging Congress, Dublin, Ireland, 5–8 September 2012.
33.
go back to reference Mazoyer BM, Huesman RH, Budinger TF, Knittel BL. Dynamic PET data analysis. J Comput Assist Tomogr. 1986;10(4):645–53.PubMedCrossRef Mazoyer BM, Huesman RH, Budinger TF, Knittel BL. Dynamic PET data analysis. J Comput Assist Tomogr. 1986;10(4):645–53.PubMedCrossRef
34.
go back to reference Bertoldo A, Vicini P, Sambuceti G, Lammertsma AA, Parodi O, Cobelli C. Evaluation of compartmental and spectral analysis models of [18F]FDG kinetics for heart and brain studies with PET. IEEE Trans Biomed Eng. 1998;45(12):1429–48. doi:10.1109/10.730437.PubMedCrossRef Bertoldo A, Vicini P, Sambuceti G, Lammertsma AA, Parodi O, Cobelli C. Evaluation of compartmental and spectral analysis models of [18F]FDG kinetics for heart and brain studies with PET. IEEE Trans Biomed Eng. 1998;45(12):1429–48. doi:10.​1109/​10.​730437.PubMedCrossRef
Metadata
Title
Parametric imaging of 18F-fluoro-3-deoxy-3-l-fluorothymidine PET data to investigate tumour heterogeneity
Authors
M. Veronese
G. Rizzo
E. O. Aboagye
A. Bertoldo
Publication date
01-09-2014
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 9/2014
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-014-2757-z

Other articles of this Issue 9/2014

European Journal of Nuclear Medicine and Molecular Imaging 9/2014 Go to the issue