Skip to main content
Top
Published in: Molecular Imaging and Biology 4/2019

Open Access 01-08-2019 | Review Article

Paradigms in Fluorescence Molecular Imaging: Maximizing Measurement of Biological Changes in Disease, Therapeutic Efficacy, and Toxicology/Safety

Author: Jeffrey D. Peterson

Published in: Molecular Imaging and Biology | Issue 4/2019

Login to get access

Abstract

Fluorescence molecular imaging (MI) is an important concept in preclinical research that focuses on the visualization of cellular and biological function in a non-invasive fashion to better understand in vivo disease processes and treatment effects. MI differs fundamentally from traditional preclinical imaging strategies in that it generally relies on reporter probes specific for particular targets or pathways that can be used to reveal biological changes in situ, at the site(s) of disease. In contrast, the more established imaging modalities, like magnetic resonance imaging, X-ray, micro X-ray computed tomography, and ultrasound, historically have relied primarily on late-stage anatomical or physiologic changes. The practical application of fluorescence MI, however, has drifted somewhat from the emphasis on quantifying biology, and based on the publication record, it now appears to include any imaging in which a probe or contrast agent is used to non-invasively acquire in vivo endpoint information. Unfortunately, the mere use of a defined biologically specific probe, in the absence of careful study design, does not guarantee that any useful biological information is actually gained, although often useful endpoint results still can be achieved. This review proposes to add subcategories of MI, termed MI biological assessment (or MIBA), that emphasize a focus on obtaining early and clear biological changes associated with disease development, therapeutic efficacy, and drug-induced tissue changes. Proper selection of probes and careful study design are critical for maximizing the non-invasive assessment of in vivo biological changes, and applications of these critical elements are described.
Literature
1.
go back to reference Alavi A, Dann R, Chawluk J, Alavi J, Kushner M, Reivich M (1986) Positron emission tomography imaging of regional cerebral glucose metabolism. Semin Nucl Med 16:2–34CrossRefPubMed Alavi A, Dann R, Chawluk J, Alavi J, Kushner M, Reivich M (1986) Positron emission tomography imaging of regional cerebral glucose metabolism. Semin Nucl Med 16:2–34CrossRefPubMed
2.
go back to reference Haberkorn U, Markert A, Mier W, Askoxylakis V, Altmann A (2011) Molecular imaging of tumor metabolism and apoptosis. Oncogene 30:4141–4151CrossRefPubMed Haberkorn U, Markert A, Mier W, Askoxylakis V, Altmann A (2011) Molecular imaging of tumor metabolism and apoptosis. Oncogene 30:4141–4151CrossRefPubMed
3.
go back to reference Rice L, Bisdas S (2017) The diagnostic value of FDG and amyloid PET in Alzheimer’s disease-a systematic review. Eur J Radiol 94:16–24CrossRefPubMed Rice L, Bisdas S (2017) The diagnostic value of FDG and amyloid PET in Alzheimer’s disease-a systematic review. Eur J Radiol 94:16–24CrossRefPubMed
4.
go back to reference McMahon MT, Chan KW (2014) Developing MR probes for molecular imaging. Adv Cancer Res 124:297–327CrossRefPubMed McMahon MT, Chan KW (2014) Developing MR probes for molecular imaging. Adv Cancer Res 124:297–327CrossRefPubMed
5.
go back to reference Sosnovik DE, Weissleder R (2007) Emerging concepts in molecular MRI. Curr Opin Biotechnol 18:4–10CrossRefPubMed Sosnovik DE, Weissleder R (2007) Emerging concepts in molecular MRI. Curr Opin Biotechnol 18:4–10CrossRefPubMed
8.
go back to reference Deliolanis N, Lasser T, Hyde D, Soubret A, Ripoll J, Ntziachristos V (2007) Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections. Opt Lett 32:382–384CrossRefPubMed Deliolanis N, Lasser T, Hyde D, Soubret A, Ripoll J, Ntziachristos V (2007) Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections. Opt Lett 32:382–384CrossRefPubMed
9.
go back to reference Mohajerani P, Adibi A, Kempner J, Yared W (2009) Compensation of optical heterogeneity-induced artifacts in fluorescence molecular tomography: theory and in vivo validation. J Biomed Opt 14:034021CrossRefPubMed Mohajerani P, Adibi A, Kempner J, Yared W (2009) Compensation of optical heterogeneity-induced artifacts in fluorescence molecular tomography: theory and in vivo validation. J Biomed Opt 14:034021CrossRefPubMed
10.
go back to reference Schulz RB, Ripoll J, Ntziachristos V (2003) Noncontact optical tomography of turbid media. Opt Lett 28:1701–1703CrossRefPubMed Schulz RB, Ripoll J, Ntziachristos V (2003) Noncontact optical tomography of turbid media. Opt Lett 28:1701–1703CrossRefPubMed
11.
go back to reference Schulz RB, Ripoll J, Ntziachristos V (2004) Experimental fluorescence tomography of tissues with noncontact measurements. IEEE Trans Med Imaging 23:492–500CrossRefPubMed Schulz RB, Ripoll J, Ntziachristos V (2004) Experimental fluorescence tomography of tissues with noncontact measurements. IEEE Trans Med Imaging 23:492–500CrossRefPubMed
12.
go back to reference Mankoff DA (2007) A definition of molecular imaging. J Nucl Med 48(18N):21N Mankoff DA (2007) A definition of molecular imaging. J Nucl Med 48(18N):21N
13.
go back to reference Peterson JD (2016) Noninvasive in vivo optical imaging models for safety and toxicity testing. In: Gupta RC (ed) Nutraceuticals - efficacy, safety and toxicity. Elsevier, pp 306–317 Peterson JD (2016) Noninvasive in vivo optical imaging models for safety and toxicity testing. In: Gupta RC (ed) Nutraceuticals - efficacy, safety and toxicity. Elsevier, pp 306–317
14.
go back to reference Shuhendler AJ, Pu K, Cui L, Uetrecht JP, Rao J (2014) Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat Biotechnol 32:373–380CrossRefPubMedPubMedCentral Shuhendler AJ, Pu K, Cui L, Uetrecht JP, Rao J (2014) Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat Biotechnol 32:373–380CrossRefPubMedPubMedCentral
15.
go back to reference Vasquez KO, Peterson JD (2017) Early detection of acute drug-induced liver injury in mice by noninvasive near-infrared fluorescence imaging. J Pharmacol Exp Ther 361:87–98CrossRefPubMedPubMedCentral Vasquez KO, Peterson JD (2017) Early detection of acute drug-induced liver injury in mice by noninvasive near-infrared fluorescence imaging. J Pharmacol Exp Ther 361:87–98CrossRefPubMedPubMedCentral
16.
go back to reference Gilson RC, Tang R, Som A, Klajer C, Sarder P, Sudlow GP, Akers WJ, Achilefu S (2015) Protonation and trapping of a small pH-sensitive near-infrared fluorescent molecule in the acidic tumor environment delineate diverse tumors in vivo. Mol Pharm 12:4237–4246CrossRefPubMedPubMedCentral Gilson RC, Tang R, Som A, Klajer C, Sarder P, Sudlow GP, Akers WJ, Achilefu S (2015) Protonation and trapping of a small pH-sensitive near-infrared fluorescent molecule in the acidic tumor environment delineate diverse tumors in vivo. Mol Pharm 12:4237–4246CrossRefPubMedPubMedCentral
17.
go back to reference Ma J, Li W, Li J, Shi R, Yin G, Wang R (2018) A small molecular pH-dependent fluorescent probe for cancer cell imaging in living cell. Talanta 182:464–469CrossRefPubMed Ma J, Li W, Li J, Shi R, Yin G, Wang R (2018) A small molecular pH-dependent fluorescent probe for cancer cell imaging in living cell. Talanta 182:464–469CrossRefPubMed
18.
go back to reference Bao B, Groves K, Zhang J, Handy E, Kennedy P, Cuneo G, Supuran CT, Yared W, Rajopadhye M, Peterson JD (2012) In vivo imaging and quantification of carbonic anhydrase IX expression as an endogenous biomarker of tumor hypoxia. PLoS One 7:e50860CrossRefPubMedPubMedCentral Bao B, Groves K, Zhang J, Handy E, Kennedy P, Cuneo G, Supuran CT, Yared W, Rajopadhye M, Peterson JD (2012) In vivo imaging and quantification of carbonic anhydrase IX expression as an endogenous biomarker of tumor hypoxia. PLoS One 7:e50860CrossRefPubMedPubMedCentral
19.
go back to reference van Brussel AS, Adams A, Oliveira S et al (2016) Hypoxia-targeting fluorescent nanobodies for optical molecular imaging of pre-invasive breast cancer. Mol Imaging Biol 18:535–544CrossRefPubMed van Brussel AS, Adams A, Oliveira S et al (2016) Hypoxia-targeting fluorescent nanobodies for optical molecular imaging of pre-invasive breast cancer. Mol Imaging Biol 18:535–544CrossRefPubMed
20.
go back to reference Bremer C, Tung CH, Bogdanov A Jr, Weissleder R (2002) Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes. Radiology 222:814–818CrossRefPubMed Bremer C, Tung CH, Bogdanov A Jr, Weissleder R (2002) Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes. Radiology 222:814–818CrossRefPubMed
21.
go back to reference Kossodo S, Pickarski M, Lin SA, Gleason A, Gaspar R, Buono C, Ho G, Blusztajn A, Cuneo G, Zhang J, Jensen J, Hargreaves R, Coleman P, Hartman G, Rajopadhye M, Duong LT, Sur C, Yared W, Peterson J, Bednar B (2010) Dual in vivo quantification of integrin-targeted and protease-activated agents in cancer using fluorescence molecular tomography (FMT). Mol Imaging Biol 12:488–499CrossRefPubMed Kossodo S, Pickarski M, Lin SA, Gleason A, Gaspar R, Buono C, Ho G, Blusztajn A, Cuneo G, Zhang J, Jensen J, Hargreaves R, Coleman P, Hartman G, Rajopadhye M, Duong LT, Sur C, Yared W, Peterson J, Bednar B (2010) Dual in vivo quantification of integrin-targeted and protease-activated agents in cancer using fluorescence molecular tomography (FMT). Mol Imaging Biol 12:488–499CrossRefPubMed
22.
go back to reference Mahmood U, Weissleder R (2003) Near-infrared optical imaging of proteases in cancer. Mol Cancer Ther 2:489–496PubMed Mahmood U, Weissleder R (2003) Near-infrared optical imaging of proteases in cancer. Mol Cancer Ther 2:489–496PubMed
23.
go back to reference Ackermann M, Carvajal IM, Morse BA et al (2011) Adnectin CT-322 inhibits tumor growth and affects microvascular architecture and function in Colo205 tumor xenografts. Int J Oncol 38:71–80PubMed Ackermann M, Carvajal IM, Morse BA et al (2011) Adnectin CT-322 inhibits tumor growth and affects microvascular architecture and function in Colo205 tumor xenografts. Int J Oncol 38:71–80PubMed
24.
go back to reference Montet X, Figueiredo JL, Alencar H, Ntziachristos V, Mahmood U, Weissleder R (2007) Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 242:751–758CrossRefPubMed Montet X, Figueiredo JL, Alencar H, Ntziachristos V, Mahmood U, Weissleder R (2007) Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 242:751–758CrossRefPubMed
25.
go back to reference Hensley HH, Roder NA, O'Brien SW, Bickel LE, Xiao F, Litwin S, Connolly DC (2012) Combined in vivo molecular and anatomic imaging for detection of ovarian carcinoma-associated protease activity and integrin expression in mice. Neoplasia 14:451–462CrossRefPubMedPubMedCentral Hensley HH, Roder NA, O'Brien SW, Bickel LE, Xiao F, Litwin S, Connolly DC (2012) Combined in vivo molecular and anatomic imaging for detection of ovarian carcinoma-associated protease activity and integrin expression in mice. Neoplasia 14:451–462CrossRefPubMedPubMedCentral
26.
go back to reference Lee H, Kim J, Kim H, Kim Y, Choi Y (2014) A folate receptor-specific activatable probe for near-infrared fluorescence imaging of ovarian cancer. Chem Commun (Camb) 50:7507–7510CrossRef Lee H, Kim J, Kim H, Kim Y, Choi Y (2014) A folate receptor-specific activatable probe for near-infrared fluorescence imaging of ovarian cancer. Chem Commun (Camb) 50:7507–7510CrossRef
27.
go back to reference Tseng JC, Narayanan N, Ho G, Groves K, Delaney J, Bao B, Zhang J, Morin J, Kossodo S, Rajopadhye M, Peterson JD (2017) Fluorescence imaging of bombesin and transferrin receptor expression is comparable to 18F-FDG PET in early detection of sorafenib-induced changes in tumor metabolism. PLoS One 12:e0182689CrossRefPubMedPubMedCentral Tseng JC, Narayanan N, Ho G, Groves K, Delaney J, Bao B, Zhang J, Morin J, Kossodo S, Rajopadhye M, Peterson JD (2017) Fluorescence imaging of bombesin and transferrin receptor expression is comparable to 18F-FDG PET in early detection of sorafenib-induced changes in tumor metabolism. PLoS One 12:e0182689CrossRefPubMedPubMedCentral
28.
go back to reference Hu Z, Yang L, Ning W, Tang C, Meng Q, Zheng J, Dong C, Zhou HB (2018) A high-affinity subtype-selective fluorescent probe for estrogen receptor beta imaging in living cells. Chem Commun (Camb) 54:3887–3890CrossRef Hu Z, Yang L, Ning W, Tang C, Meng Q, Zheng J, Dong C, Zhou HB (2018) A high-affinity subtype-selective fluorescent probe for estrogen receptor beta imaging in living cells. Chem Commun (Camb) 54:3887–3890CrossRef
29.
go back to reference Lee CW, Guo L, Matei D, Stantz K (2015) Development of follicle-stimulating hormone receptor binding probes to image ovarian xenografts. J Biotechnol Biomater 5(3):198 Lee CW, Guo L, Matei D, Stantz K (2015) Development of follicle-stimulating hormone receptor binding probes to image ovarian xenografts. J Biotechnol Biomater 5(3):198
30.
go back to reference Ding S, Blue RE, Moorefield E et al (2017) Ex vivo and in vivo noninvasive imaging of epidermal growth factor receptor inhibition on colon tumorigenesis using activatable near-infrared fluorescent probes. Mol Imaging 16:1536012117729044CrossRefPubMedPubMedCentral Ding S, Blue RE, Moorefield E et al (2017) Ex vivo and in vivo noninvasive imaging of epidermal growth factor receptor inhibition on colon tumorigenesis using activatable near-infrared fluorescent probes. Mol Imaging 16:1536012117729044CrossRefPubMedPubMedCentral
31.
go back to reference Lwin TM, Murakami T, Miyake K, Yazaki PJ, Shivley JE, Hoffman RM, Bouvet M (2018) Tumor-specific labeling of pancreatic cancer using a humanized anti-CEA antibody conjugated to a near-infrared fluorophore. Ann Surg Oncol 25:1079–1085CrossRefPubMedPubMedCentral Lwin TM, Murakami T, Miyake K, Yazaki PJ, Shivley JE, Hoffman RM, Bouvet M (2018) Tumor-specific labeling of pancreatic cancer using a humanized anti-CEA antibody conjugated to a near-infrared fluorophore. Ann Surg Oncol 25:1079–1085CrossRefPubMedPubMedCentral
32.
go back to reference Paudyal B, Paudyal P, Shah D, Tominaga H, Tsushima Y, Endo K (2014) Detection of vascular endothelial growth factor in colon cancer xenografts using bevacizumab based near infrared fluorophore conjugate. J Biomed Sci 21:35CrossRefPubMedPubMedCentral Paudyal B, Paudyal P, Shah D, Tominaga H, Tsushima Y, Endo K (2014) Detection of vascular endothelial growth factor in colon cancer xenografts using bevacizumab based near infrared fluorophore conjugate. J Biomed Sci 21:35CrossRefPubMedPubMedCentral
33.
go back to reference Ma X, Phi Van V, Kimm MA et al (2017) Integrin-targeted hybrid fluorescence molecular tomography/X-ray computed tomography for imaging tumor progression and early response in non-small cell lung cancer. Neoplasia 19:8–16CrossRefPubMed Ma X, Phi Van V, Kimm MA et al (2017) Integrin-targeted hybrid fluorescence molecular tomography/X-ray computed tomography for imaging tumor progression and early response in non-small cell lung cancer. Neoplasia 19:8–16CrossRefPubMed
34.
go back to reference Zhang Q, Bindokas V, Shen J, Fan H, Hoffman RM, Xing HR (2011) Time-course imaging of therapeutic functional tumor vascular normalization by antiangiogenic agents. Mol Cancer Ther 10:1173–1184CrossRefPubMed Zhang Q, Bindokas V, Shen J, Fan H, Hoffman RM, Xing HR (2011) Time-course imaging of therapeutic functional tumor vascular normalization by antiangiogenic agents. Mol Cancer Ther 10:1173–1184CrossRefPubMed
35.
go back to reference Gao L, Liu H, Sun X, Gao D, Zhang C, Jia B, Zhu Z, Wang F, Liu Z (2016) Molecular imaging of post-Src inhibition tumor signatures for guiding dasatinib combination therapy. J Nucl Med 57:321–326CrossRefPubMed Gao L, Liu H, Sun X, Gao D, Zhang C, Jia B, Zhu Z, Wang F, Liu Z (2016) Molecular imaging of post-Src inhibition tumor signatures for guiding dasatinib combination therapy. J Nucl Med 57:321–326CrossRefPubMed
36.
go back to reference Gee MS, Upadhyay R, Bergquist H, Weissleder R, Josephson L, Mahmood U (2007) Multiparameter noninvasive assessment of treatment susceptibility, drug target inhibition and tumor response guides cancer treatment. Int J Cancer 121:2492–2500CrossRefPubMed Gee MS, Upadhyay R, Bergquist H, Weissleder R, Josephson L, Mahmood U (2007) Multiparameter noninvasive assessment of treatment susceptibility, drug target inhibition and tumor response guides cancer treatment. Int J Cancer 121:2492–2500CrossRefPubMed
37.
go back to reference Manning HC, Merchant NB, Foutch AC, Virostko JM, Wyatt SK, Shah C, McKinley ET, Xie J, Mutic NJ, Washington MK, LaFleur B, Tantawy MN, Peterson TE, Ansari MS, Baldwin RM, Rothenberg ML, Bornhop DJ, Gore JC, Coffey RJ (2008) Molecular imaging of therapeutic response to epidermal growth factor receptor blockade in colorectal cancer. Clin Cancer Res 14:7413–7422CrossRefPubMedPubMedCentral Manning HC, Merchant NB, Foutch AC, Virostko JM, Wyatt SK, Shah C, McKinley ET, Xie J, Mutic NJ, Washington MK, LaFleur B, Tantawy MN, Peterson TE, Ansari MS, Baldwin RM, Rothenberg ML, Bornhop DJ, Gore JC, Coffey RJ (2008) Molecular imaging of therapeutic response to epidermal growth factor receptor blockade in colorectal cancer. Clin Cancer Res 14:7413–7422CrossRefPubMedPubMedCentral
38.
go back to reference Glinzer A, Ma X, Prakash J, Kimm MA, Lohöfer F, Kosanke K, Pelisek J, Thon MP, Vorlova S, Heinze KG, Eckstein HH, Gee MW, Ntziachristos V, Zernecke A, Wildgruber M (2017) Targeting elastase for molecular imaging of early atherosclerotic lesions. Arterioscler Thromb Vasc Biol 37:525–533CrossRefPubMed Glinzer A, Ma X, Prakash J, Kimm MA, Lohöfer F, Kosanke K, Pelisek J, Thon MP, Vorlova S, Heinze KG, Eckstein HH, Gee MW, Ntziachristos V, Zernecke A, Wildgruber M (2017) Targeting elastase for molecular imaging of early atherosclerotic lesions. Arterioscler Thromb Vasc Biol 37:525–533CrossRefPubMed
39.
go back to reference Abd-Elrahman I, Kosuge H, Wises Sadan T, Ben-Nun Y, Meir K, Rubinstein C, Bogyo M, McConnell MV, Blum G (2016) Cathepsin activity-based probes and inhibitor for preclinical atherosclerosis imaging and macrophage depletion. PLoS One 11:e0160522CrossRefPubMedPubMedCentral Abd-Elrahman I, Kosuge H, Wises Sadan T, Ben-Nun Y, Meir K, Rubinstein C, Bogyo M, McConnell MV, Blum G (2016) Cathepsin activity-based probes and inhibitor for preclinical atherosclerosis imaging and macrophage depletion. PLoS One 11:e0160522CrossRefPubMedPubMedCentral
40.
go back to reference Lin SA, Patel M, Suresch D et al (2012) Quantitative longitudinal imaging of vascular inflammation and treatment by ezetimibe in apoE mice by FMT using new optical imaging biomarkers of cathepsin activity and alpha(v)beta(3) integrin. Int J Mol Imaging 2012:189254CrossRefPubMedPubMedCentral Lin SA, Patel M, Suresch D et al (2012) Quantitative longitudinal imaging of vascular inflammation and treatment by ezetimibe in apoE mice by FMT using new optical imaging biomarkers of cathepsin activity and alpha(v)beta(3) integrin. Int J Mol Imaging 2012:189254CrossRefPubMedPubMedCentral
41.
go back to reference Panizzi P, Swirski FK, Figueiredo JL, Waterman P, Sosnovik DE, Aikawa E, Libby P, Pittet M, Weissleder R, Nahrendorf M (2010) Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. J Am Coll Cardiol 55:1629–1638CrossRefPubMedPubMedCentral Panizzi P, Swirski FK, Figueiredo JL, Waterman P, Sosnovik DE, Aikawa E, Libby P, Pittet M, Weissleder R, Nahrendorf M (2010) Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. J Am Coll Cardiol 55:1629–1638CrossRefPubMedPubMedCentral
42.
go back to reference Nahrendorf M, Sosnovik DE, Waterman P, Swirski FK, Pande AN, Aikawa E, Figueiredo JL, Pittet MJ, Weissleder R (2007) Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circ Res 100:1218–1225CrossRefPubMed Nahrendorf M, Sosnovik DE, Waterman P, Swirski FK, Pande AN, Aikawa E, Figueiredo JL, Pittet MJ, Weissleder R (2007) Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circ Res 100:1218–1225CrossRefPubMed
43.
go back to reference Cai Y, Zhu L, Zhang F, Niu G, Lee S, Kimura S, Chen X (2013) Noninvasive monitoring of pulmonary fibrosis by targeting matrix metalloproteinases (MMPs). Mol Pharm 10:2237–2247CrossRefPubMedPubMedCentral Cai Y, Zhu L, Zhang F, Niu G, Lee S, Kimura S, Chen X (2013) Noninvasive monitoring of pulmonary fibrosis by targeting matrix metalloproteinases (MMPs). Mol Pharm 10:2237–2247CrossRefPubMedPubMedCentral
44.
go back to reference Korideck H, Peterson JD (2009) Noninvasive quantitative tomography of the therapeutic response to dexamethasone in ovalbumin-induced murine asthma. J Pharmacol Exp Ther 329:882–889CrossRefPubMed Korideck H, Peterson JD (2009) Noninvasive quantitative tomography of the therapeutic response to dexamethasone in ovalbumin-induced murine asthma. J Pharmacol Exp Ther 329:882–889CrossRefPubMed
45.
go back to reference Cortez-Retamozo V, Swirski FK, Waterman P, Yuan H, Figueiredo JL, Newton AP, Upadhyay R, Vinegoni C, Kohler R, Blois J, Smith A, Nahrendorf M, Josephson L, Weissleder R, Pittet MJ (2008) Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation. J Clin Invest 118:4058–4066CrossRefPubMedPubMedCentral Cortez-Retamozo V, Swirski FK, Waterman P, Yuan H, Figueiredo JL, Newton AP, Upadhyay R, Vinegoni C, Kohler R, Blois J, Smith A, Nahrendorf M, Josephson L, Weissleder R, Pittet MJ (2008) Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation. J Clin Invest 118:4058–4066CrossRefPubMedPubMedCentral
46.
go back to reference Kossodo S, Zhang J, Groves K et al (2011) Noninvasive in vivo quantification of neutrophil elastase activity in acute experimental mouse lung injury. Int J Mol Imaging 2011:581406CrossRefPubMedPubMedCentral Kossodo S, Zhang J, Groves K et al (2011) Noninvasive in vivo quantification of neutrophil elastase activity in acute experimental mouse lung injury. Int J Mol Imaging 2011:581406CrossRefPubMedPubMedCentral
47.
go back to reference Haller J, Hyde D, Deliolanis N, de Kleine R, Niedre M, Ntziachristos V (2008) Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging. J Appl Physiol (1985) 104:795–802CrossRef Haller J, Hyde D, Deliolanis N, de Kleine R, Niedre M, Ntziachristos V (2008) Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging. J Appl Physiol (1985) 104:795–802CrossRef
48.
go back to reference Stellari F, Sala A, Ruscitti F, Carnini C, Mirandola P, Vitale M, Civelli M, Villetti G (2015) Monitoring inflammation and airway remodeling by fluorescence molecular tomography in a chronic asthma model. J Transl Med 13:336CrossRefPubMedPubMedCentral Stellari F, Sala A, Ruscitti F, Carnini C, Mirandola P, Vitale M, Civelli M, Villetti G (2015) Monitoring inflammation and airway remodeling by fluorescence molecular tomography in a chronic asthma model. J Transl Med 13:336CrossRefPubMedPubMedCentral
49.
go back to reference Chen WT, Mahmood U, Weissleder R, Tung CH (2005) Arthritis imaging using a near-infrared fluorescence folate-targeted probe. Arthritis Res Ther 7:R310–R317CrossRefPubMedPubMedCentral Chen WT, Mahmood U, Weissleder R, Tung CH (2005) Arthritis imaging using a near-infrared fluorescence folate-targeted probe. Arthritis Res Ther 7:R310–R317CrossRefPubMedPubMedCentral
50.
go back to reference Ryu JH, Lee A, Chu JU, Koo H, Ko CY, Kim HS, Yoon SY, Kim BS, Choi K, Kwon IC, Kim K, Youn I (2011) Early diagnosis of arthritis in mice with collagen-induced arthritis, using a fluorogenic matrix metalloproteinase 3-specific polymeric probe. Arthritis Rheum 63:3824–3832CrossRefPubMed Ryu JH, Lee A, Chu JU, Koo H, Ko CY, Kim HS, Yoon SY, Kim BS, Choi K, Kwon IC, Kim K, Youn I (2011) Early diagnosis of arthritis in mice with collagen-induced arthritis, using a fluorogenic matrix metalloproteinase 3-specific polymeric probe. Arthritis Rheum 63:3824–3832CrossRefPubMed
51.
go back to reference Li J, Ju Y, Bouta EM, Xing L, Wood RW, Kuzin I, Bottaro A, Ritchlin CT, Schwarz EM (2013) Efficacy of B cell depletion therapy for murine joint arthritis flare is associated with increased lymphatic flow. Arthritis Rheum 65:130–138CrossRefPubMedPubMedCentral Li J, Ju Y, Bouta EM, Xing L, Wood RW, Kuzin I, Bottaro A, Ritchlin CT, Schwarz EM (2013) Efficacy of B cell depletion therapy for murine joint arthritis flare is associated with increased lymphatic flow. Arthritis Rheum 65:130–138CrossRefPubMedPubMedCentral
52.
go back to reference Peterson JD, Labranche TP, Vasquez KO et al (2010) Optical tomographic imaging discriminates between disease-modifying anti-rheumatic drug (DMARD) and non-DMARD efficacy in collagen antibody-induced arthritis. Arthritis Res Ther 12:R105CrossRefPubMedPubMedCentral Peterson JD, Labranche TP, Vasquez KO et al (2010) Optical tomographic imaging discriminates between disease-modifying anti-rheumatic drug (DMARD) and non-DMARD efficacy in collagen antibody-induced arthritis. Arthritis Res Ther 12:R105CrossRefPubMedPubMedCentral
53.
go back to reference Wunder A, Schellenberger E, Mahmood U et al (2005) Methotrexate-induced accumulation of fluorescent annexin V in collagen-induced arthritis. Mol Imaging 4:1–6CrossRefPubMed Wunder A, Schellenberger E, Mahmood U et al (2005) Methotrexate-induced accumulation of fluorescent annexin V in collagen-induced arthritis. Mol Imaging 4:1–6CrossRefPubMed
54.
go back to reference Wunder A, Tung CH, Muller-Ladner U et al (2004) In vivo imaging of protease activity in arthritis: a novel approach for monitoring treatment response. Arthritis Rheum 50:2459–2465CrossRefPubMed Wunder A, Tung CH, Muller-Ladner U et al (2004) In vivo imaging of protease activity in arthritis: a novel approach for monitoring treatment response. Arthritis Rheum 50:2459–2465CrossRefPubMed
55.
go back to reference Cho H, Bhatti FU, Yoon TW et al (2016) Non-invasive dual fluorescence in vivo imaging for detection of macrophage infiltration and matrix metalloproteinase (MMP) activity in inflammatory arthritic joints. Biomed Opt Express 7:1842–1852CrossRefPubMedPubMedCentral Cho H, Bhatti FU, Yoon TW et al (2016) Non-invasive dual fluorescence in vivo imaging for detection of macrophage infiltration and matrix metalloproteinase (MMP) activity in inflammatory arthritic joints. Biomed Opt Express 7:1842–1852CrossRefPubMedPubMedCentral
56.
go back to reference Scales HE, Ierna M, Smith KM et al (2016) Assessment of murine collagen-induced arthritis by longitudinal non-invasive duplexed molecular optical imaging. Rheumatology (Oxford) 55:564–572 Scales HE, Ierna M, Smith KM et al (2016) Assessment of murine collagen-induced arthritis by longitudinal non-invasive duplexed molecular optical imaging. Rheumatology (Oxford) 55:564–572
57.
go back to reference Abulrob A, Brunette E, Slinn J et al (2007) In vivo time domain optical imaging of renal ischemia-reperfusion injury: discrimination based on fluorescence lifetime. Mol Imaging 6:304–314CrossRefPubMed Abulrob A, Brunette E, Slinn J et al (2007) In vivo time domain optical imaging of renal ischemia-reperfusion injury: discrimination based on fluorescence lifetime. Mol Imaging 6:304–314CrossRefPubMed
58.
go back to reference Amoozegar CB, Wang T, Bouchard MB et al (2012) Dynamic contrast-enhanced optical imaging of in vivo organ function. J Biomed Opt 17:96003–96001CrossRefPubMed Amoozegar CB, Wang T, Bouchard MB et al (2012) Dynamic contrast-enhanced optical imaging of in vivo organ function. J Biomed Opt 17:96003–96001CrossRefPubMed
59.
go back to reference Nakamura K, Tabata Y (2010) A new fluorescent imaging of renal inflammation with RCP. J Control Release 148:351–358CrossRefPubMed Nakamura K, Tabata Y (2010) A new fluorescent imaging of renal inflammation with RCP. J Control Release 148:351–358CrossRefPubMed
Metadata
Title
Paradigms in Fluorescence Molecular Imaging: Maximizing Measurement of Biological Changes in Disease, Therapeutic Efficacy, and Toxicology/Safety
Author
Jeffrey D. Peterson
Publication date
01-08-2019
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 4/2019
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1273-0

Other articles of this Issue 4/2019

Molecular Imaging and Biology 4/2019 Go to the issue