Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2021

Open Access 01-12-2021 | Pancreatitis | Review

Role of lysosomes in physiological activities, diseases, and therapy

Authors: Ziqi Zhang, Pengfei Yue, Tianqi Lu, Yang Wang, Yuquan Wei, Xiawei Wei

Published in: Journal of Hematology & Oncology | Issue 1/2021

Login to get access

Abstract

Long known as digestive organelles, lysosomes have now emerged as multifaceted centers responsible for degradation, nutrient sensing, and immunity. Growing evidence also implicates role of lysosome-related mechanisms in pathologic process. In this review, we discuss physiological function of lysosomes and, more importantly, how the homeostasis of lysosomes is disrupted in several diseases, including atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, lysosomal storage disorders, and malignant tumors. In atherosclerosis and Gaucher disease, dysfunction of lysosomes changes cytokine secretion from macrophages, partially through inflammasome activation. In neurodegenerative diseases, defect autophagy facilitates accumulation of toxic protein and dysfunctional organelles leading to neuron death. Lysosomal dysfunction has been demonstrated in pathology of pancreatitis. Abnormal autophagy activation or inhibition has been revealed in autoimmune disorders. In tumor microenvironment, malignant phenotypes, including tumorigenesis, growth regulation, invasion, drug resistance, and radiotherapy resistance, of tumor cells and behaviors of tumor-associated macrophages, fibroblasts, dendritic cells, and T cells are also mediated by lysosomes. Based on these findings, a series of therapeutic methods targeting lysosomal proteins and processes have been developed from bench to bedside. In a word, present researches corroborate lysosomes to be pivotal organelles for understanding pathology of atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, and lysosomal storage disorders, and malignant tumors and developing novel therapeutic strategies.
Literature
2.
go back to reference Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol. 2007;8(11):917–29.PubMedCrossRef Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol. 2007;8(11):917–29.PubMedCrossRef
3.
go back to reference Chen CC, Cang C, Fenske S, et al. Patch-clamp technique to characterize ion channels in enlarged individual endolysosomes. Nat Protoc. 2017;12(8):1639–58.PubMedCrossRef Chen CC, Cang C, Fenske S, et al. Patch-clamp technique to characterize ion channels in enlarged individual endolysosomes. Nat Protoc. 2017;12(8):1639–58.PubMedCrossRef
4.
go back to reference Alessandrini F, Pezzè L, Ciribilli Y. LAMPs: shedding light on cancer biology. Semin Oncol. 2017;44(4):239–53.PubMedCrossRef Alessandrini F, Pezzè L, Ciribilli Y. LAMPs: shedding light on cancer biology. Semin Oncol. 2017;44(4):239–53.PubMedCrossRef
6.
go back to reference Balka KR, De Nardo D. Understanding early TLR signaling through the Myddosome. J Leukoc Biol. 2019;105(2):339–51.PubMedCrossRef Balka KR, De Nardo D. Understanding early TLR signaling through the Myddosome. J Leukoc Biol. 2019;105(2):339–51.PubMedCrossRef
7.
go back to reference Carroll B, Dunlop EA. The lysosome: a crucial hub for AMPK and mTORC1 signalling. Biochem J. 2017;474(9):1453–66.PubMedCrossRef Carroll B, Dunlop EA. The lysosome: a crucial hub for AMPK and mTORC1 signalling. Biochem J. 2017;474(9):1453–66.PubMedCrossRef
8.
go back to reference Settembre C, Fraldi A, Medina DL, et al. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 2013;14(5):283–96.PubMedPubMedCentralCrossRef Settembre C, Fraldi A, Medina DL, et al. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 2013;14(5):283–96.PubMedPubMedCentralCrossRef
9.
go back to reference Martina JA, Chen Y, Gucek M, et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 2012;8(6):903–14.PubMedPubMedCentralCrossRef Martina JA, Chen Y, Gucek M, et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 2012;8(6):903–14.PubMedPubMedCentralCrossRef
10.
go back to reference Settembre C, Zoncu R, Medina DL, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012;31(5):1095–108.PubMedPubMedCentralCrossRef Settembre C, Zoncu R, Medina DL, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012;31(5):1095–108.PubMedPubMedCentralCrossRef
12.
go back to reference Li Y, Xu M, Ding X, et al. Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat Cell Biol. 2016;18(10):1065–77.PubMedCrossRef Li Y, Xu M, Ding X, et al. Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat Cell Biol. 2016;18(10):1065–77.PubMedCrossRef
14.
15.
go back to reference Palmieri M, Pal R, Nelvagal HR, et al. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun. 2017;8:14338.PubMedPubMedCentralCrossRef Palmieri M, Pal R, Nelvagal HR, et al. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun. 2017;8:14338.PubMedPubMedCentralCrossRef
16.
go back to reference Medina DL, Di Paola S, Peluso I, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol. 2015;17(3):288–99.PubMedPubMedCentralCrossRef Medina DL, Di Paola S, Peluso I, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol. 2015;17(3):288–99.PubMedPubMedCentralCrossRef
18.
go back to reference Palmieri M, Impey S, Kang H, et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet. 2011;20(19):3852–66.PubMedCrossRef Palmieri M, Impey S, Kang H, et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet. 2011;20(19):3852–66.PubMedCrossRef
19.
go back to reference Bajaj L, Lotfi P, Pal R, et al. Lysosome biogenesis in health and disease. J Neurochem. 2019;148(5):573–89.PubMedCrossRef Bajaj L, Lotfi P, Pal R, et al. Lysosome biogenesis in health and disease. J Neurochem. 2019;148(5):573–89.PubMedCrossRef
20.
go back to reference Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–64.PubMedCrossRef Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–64.PubMedCrossRef
21.
go back to reference Do H, Lee WS, Ghosh P, et al. Human mannose 6-phosphate-uncovering enzyme is synthesized as a proenzyme that is activated by the endoprotease furin. J Biol Chem. 2002;277(33):29737–44.PubMedCrossRef Do H, Lee WS, Ghosh P, et al. Human mannose 6-phosphate-uncovering enzyme is synthesized as a proenzyme that is activated by the endoprotease furin. J Biol Chem. 2002;277(33):29737–44.PubMedCrossRef
22.
go back to reference Zeng J, Racicott J, Morales CR. The inactivation of the sortilin gene leads to a partial disruption of prosaposin trafficking to the lysosomes. Exp Cell Res. 2009;315(18):3112–24.PubMedCrossRef Zeng J, Racicott J, Morales CR. The inactivation of the sortilin gene leads to a partial disruption of prosaposin trafficking to the lysosomes. Exp Cell Res. 2009;315(18):3112–24.PubMedCrossRef
23.
go back to reference Ni X, Morales CR. The lysosomal trafficking of acid sphingomyelinase is mediated by sortilin and mannose 6-phosphate receptor. Traffic. 2006;7(7):889–902.PubMedCrossRef Ni X, Morales CR. The lysosomal trafficking of acid sphingomyelinase is mediated by sortilin and mannose 6-phosphate receptor. Traffic. 2006;7(7):889–902.PubMedCrossRef
24.
go back to reference Canuel M, Korkidakis A, Konnyu K, et al. Sortilin mediates the lysosomal targeting of cathepsins D and H. Biochem Biophys Res Commun. 2008;373(2):292–7.PubMedCrossRef Canuel M, Korkidakis A, Konnyu K, et al. Sortilin mediates the lysosomal targeting of cathepsins D and H. Biochem Biophys Res Commun. 2008;373(2):292–7.PubMedCrossRef
25.
go back to reference Reczek D, Schwake M, Schroder J, et al. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell. 2007;131(4):770–83.PubMedCrossRef Reczek D, Schwake M, Schroder J, et al. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell. 2007;131(4):770–83.PubMedCrossRef
26.
go back to reference Nakatsu F, Ohno H. Adaptor protein complexes as the key regulators of protein sorting in the post-Golgi network. Cell Struct Funct. 2003;28(5):419–29.PubMedCrossRef Nakatsu F, Ohno H. Adaptor protein complexes as the key regulators of protein sorting in the post-Golgi network. Cell Struct Funct. 2003;28(5):419–29.PubMedCrossRef
27.
go back to reference Nielsen MS, Madsen P, Christensen EI, et al. The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J. 2001;20(9):2180–90.PubMedPubMedCentralCrossRef Nielsen MS, Madsen P, Christensen EI, et al. The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J. 2001;20(9):2180–90.PubMedPubMedCentralCrossRef
28.
go back to reference Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal biology and function: modern view of cellular debris bin. Cells. 2020;9(5):66.CrossRef Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal biology and function: modern view of cellular debris bin. Cells. 2020;9(5):66.CrossRef
29.
31.
go back to reference Tanida I. Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal. 2011;14(11):2201–14.PubMedCrossRef Tanida I. Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal. 2011;14(11):2201–14.PubMedCrossRef
32.
go back to reference Xie Y, Kang R, Sun X, et al. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy. 2015;11(1):28–45.PubMedCrossRef Xie Y, Kang R, Sun X, et al. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy. 2015;11(1):28–45.PubMedCrossRef
33.
go back to reference Tekirdag K, Cuervo AM. Chaperone-mediated autophagy and endosomal microautophagy: jointed by a chaperone. J Biol Chem. 2018;293(15):5414–24.PubMedCrossRef Tekirdag K, Cuervo AM. Chaperone-mediated autophagy and endosomal microautophagy: jointed by a chaperone. J Biol Chem. 2018;293(15):5414–24.PubMedCrossRef
35.
go back to reference Nakagawa I, Amano A, Mizushima N, et al. Autophagy defends cells against invading group A Streptococcus. Science. 2004;306(5698):1037–40.PubMedCrossRef Nakagawa I, Amano A, Mizushima N, et al. Autophagy defends cells against invading group A Streptococcus. Science. 2004;306(5698):1037–40.PubMedCrossRef
36.
go back to reference Gutierrez MG, Master SS, Singh SB, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119(6):753–66.PubMedCrossRef Gutierrez MG, Master SS, Singh SB, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119(6):753–66.PubMedCrossRef
37.
go back to reference Saric A, Hipolito VE, Kay JG, et al. mTOR controls lysosome tubulation and antigen presentation in macrophages and dendritic cells. Mol Biol Cell. 2016;27(2):321–33.PubMedPubMedCentralCrossRef Saric A, Hipolito VE, Kay JG, et al. mTOR controls lysosome tubulation and antigen presentation in macrophages and dendritic cells. Mol Biol Cell. 2016;27(2):321–33.PubMedPubMedCentralCrossRef
38.
go back to reference Mantegazza AR, Zajac AL, Twelvetrees A, et al. TLR-dependent phagosome tubulation in dendritic cells promotes phagosome cross-talk to optimize MHC-II antigen presentation. Proc Natl Acad Sci USA. 2014;111(43):15508–13.PubMedCrossRefPubMedCentral Mantegazza AR, Zajac AL, Twelvetrees A, et al. TLR-dependent phagosome tubulation in dendritic cells promotes phagosome cross-talk to optimize MHC-II antigen presentation. Proc Natl Acad Sci USA. 2014;111(43):15508–13.PubMedCrossRefPubMedCentral
39.
go back to reference Schmid D, Pypaert M, Münz C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity. 2007;26(1):79–92.PubMedCrossRef Schmid D, Pypaert M, Münz C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity. 2007;26(1):79–92.PubMedCrossRef
40.
go back to reference Paludan C, Schmid D, Landthaler M, et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science. 2005;307(5709):593–6.PubMedCrossRef Paludan C, Schmid D, Landthaler M, et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science. 2005;307(5709):593–6.PubMedCrossRef
41.
go back to reference Loi M, Müller A, Steinbach K, et al. Macroautophagy proteins control MHC class I levels on dendritic cells and shape anti-viral CD8(+) T cell responses. Cell Rep. 2016;15(5):1076–87.PubMedCrossRef Loi M, Müller A, Steinbach K, et al. Macroautophagy proteins control MHC class I levels on dendritic cells and shape anti-viral CD8(+) T cell responses. Cell Rep. 2016;15(5):1076–87.PubMedCrossRef
43.
go back to reference Wang S, Tsun ZY, Wolfson RL, et al. Metabolism Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science. 2015;347(6218):188–94.PubMedPubMedCentralCrossRef Wang S, Tsun ZY, Wolfson RL, et al. Metabolism Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science. 2015;347(6218):188–94.PubMedPubMedCentralCrossRef
44.
go back to reference Rebsamen M, Pochini L, Stasyk T, et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 2015;519(7544):477–81.PubMedPubMedCentralCrossRef Rebsamen M, Pochini L, Stasyk T, et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 2015;519(7544):477–81.PubMedPubMedCentralCrossRef
45.
go back to reference Wolfson RL, Chantranupong L, Saxton RA, et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science. 2016;351(6268):43–8.PubMedCrossRef Wolfson RL, Chantranupong L, Saxton RA, et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science. 2016;351(6268):43–8.PubMedCrossRef
47.
go back to reference Ahmadi A, Argulian E, Leipsic J, et al. From subclinical atherosclerosis to plaque progression and acute coronary events: JACC state-of-the-art review. J Am Coll Cardiol. 2019;74(12):1608–17.PubMedCrossRef Ahmadi A, Argulian E, Leipsic J, et al. From subclinical atherosclerosis to plaque progression and acute coronary events: JACC state-of-the-art review. J Am Coll Cardiol. 2019;74(12):1608–17.PubMedCrossRef
48.
go back to reference Herrington W, Lacey B, Sherliker P, et al. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res. 2016;118(4):535–46.PubMedCrossRef Herrington W, Lacey B, Sherliker P, et al. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res. 2016;118(4):535–46.PubMedCrossRef
49.
go back to reference Hamburg NM, Creager MA. Pathophysiology of intermittent claudication in peripheral artery disease. Circ J. 2017;81(3):281–9.PubMedCrossRef Hamburg NM, Creager MA. Pathophysiology of intermittent claudication in peripheral artery disease. Circ J. 2017;81(3):281–9.PubMedCrossRef
50.
go back to reference Peshkova IO, Schaefer G, Koltsova EK. Atherosclerosis and aortic aneurysm—Is inflammation a common denominator? FEBS J. 2016;283(9):1636–52.PubMedCrossRef Peshkova IO, Schaefer G, Koltsova EK. Atherosclerosis and aortic aneurysm—Is inflammation a common denominator? FEBS J. 2016;283(9):1636–52.PubMedCrossRef
51.
go back to reference Linton MF, Yancey PG, Davies SS, et al: The role of lipids and lipoproteins in atherosclerosis. In Endotext. Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, Grossman A, Hershman JM, Hofland J, Kaltsas G, et al. 2000–2021, MDText.com, Inc.; 2000. Linton MF, Yancey PG, Davies SS, et al: The role of lipids and lipoproteins in atherosclerosis. In Endotext. Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, Grossman A, Hershman JM, Hofland J, Kaltsas G, et al. 2000–2021, MDText.com, Inc.; 2000.
52.
go back to reference Hendrikx T, Walenbergh SM, Hofker MH, et al. Lysosomal cholesterol accumulation: driver on the road to inflammation during atherosclerosis and non-alcoholic steatohepatitis. Obes Rev. 2014;15(5):424–33.PubMedCrossRef Hendrikx T, Walenbergh SM, Hofker MH, et al. Lysosomal cholesterol accumulation: driver on the road to inflammation during atherosclerosis and non-alcoholic steatohepatitis. Obes Rev. 2014;15(5):424–33.PubMedCrossRef
53.
54.
go back to reference Sheedy F, Grebe A, Rayner K, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating the intracellular nucleation from soluble to particulate ligands in sterile inflammation. Nat Immunol. 2013;14:66.CrossRef Sheedy F, Grebe A, Rayner K, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating the intracellular nucleation from soluble to particulate ligands in sterile inflammation. Nat Immunol. 2013;14:66.CrossRef
55.
go back to reference Kunjathoor VV, Febbraio M, Podrez EA, et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem. 2002;277(51):49982–8.PubMedCrossRef Kunjathoor VV, Febbraio M, Podrez EA, et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem. 2002;277(51):49982–8.PubMedCrossRef
56.
go back to reference Schaeffer DF, Riazy M, Parhar KS, et al. LOX-1 augments oxLDL uptake by lysoPC-stimulated murine macrophages but is not required for oxLDL clearance from plasma. J Lipid Res. 2009;50(8):1676–84.PubMedPubMedCentralCrossRef Schaeffer DF, Riazy M, Parhar KS, et al. LOX-1 augments oxLDL uptake by lysoPC-stimulated murine macrophages but is not required for oxLDL clearance from plasma. J Lipid Res. 2009;50(8):1676–84.PubMedPubMedCentralCrossRef
57.
go back to reference Reynolds T. Cholesteryl ester storage disease: a rare and possibly treatable cause of premature vascular disease and cirrhosis. J Clin Pathol. 2013;66:56.CrossRef Reynolds T. Cholesteryl ester storage disease: a rare and possibly treatable cause of premature vascular disease and cirrhosis. J Clin Pathol. 2013;66:56.CrossRef
58.
go back to reference Emanuel R, Sergin I, Bhattacharya S, et al. Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arterioscler Thromb Vasc Biol. 2014;34:66.CrossRef Emanuel R, Sergin I, Bhattacharya S, et al. Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arterioscler Thromb Vasc Biol. 2014;34:66.CrossRef
59.
go back to reference Ouimet M, Franklin V, Mak E, et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 2011;13:655–67.PubMedPubMedCentralCrossRef Ouimet M, Franklin V, Mak E, et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 2011;13:655–67.PubMedPubMedCentralCrossRef
61.
go back to reference Sergin I, Evans T, Zhang X, et al. Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis. Nat Commun. 2017;8:66.CrossRef Sergin I, Evans T, Zhang X, et al. Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis. Nat Commun. 2017;8:66.CrossRef
63.
go back to reference Grootaert M, Roth L, Schrijvers D, et al. Defective autophagy in atherosclerosis: to die or to senesce? Oxid Med Cell Longev. 2018;2018:1–12.CrossRef Grootaert M, Roth L, Schrijvers D, et al. Defective autophagy in atherosclerosis: to die or to senesce? Oxid Med Cell Longev. 2018;2018:1–12.CrossRef
64.
go back to reference Conus S, Simon H-U. Cathepsins: key modulators of cell death and inflammatory responses. Biochem Pharmacol. 2008;76:1374–82.PubMedCrossRef Conus S, Simon H-U. Cathepsins: key modulators of cell death and inflammatory responses. Biochem Pharmacol. 2008;76:1374–82.PubMedCrossRef
66.
go back to reference Castellano BM, Thelen AM, Moldavski O, et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science. 2017;355(6331):1306–11.PubMedPubMedCentralCrossRef Castellano BM, Thelen AM, Moldavski O, et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science. 2017;355(6331):1306–11.PubMedPubMedCentralCrossRef
67.
go back to reference Eid W, Dauner K, Courtney KC, et al. mTORC1 activates SREBP-2 by suppressing cholesterol trafficking to lysosomes in mammalian cells. Proc Natl Acad Sci USA. 2017;114(30):7999–8004.PubMedCrossRefPubMedCentral Eid W, Dauner K, Courtney KC, et al. mTORC1 activates SREBP-2 by suppressing cholesterol trafficking to lysosomes in mammalian cells. Proc Natl Acad Sci USA. 2017;114(30):7999–8004.PubMedCrossRefPubMedCentral
68.
go back to reference Ai D, Jiang H, Westerterp M, et al. Disruption of mammalian target of rapamycin complex 1 in macrophages decreases chemokine gene expression and atherosclerosis. Circ Res. 2014;114(10):1576–84.PubMedPubMedCentralCrossRef Ai D, Jiang H, Westerterp M, et al. Disruption of mammalian target of rapamycin complex 1 in macrophages decreases chemokine gene expression and atherosclerosis. Circ Res. 2014;114(10):1576–84.PubMedPubMedCentralCrossRef
69.
go back to reference Sanches-Silva A, Testai L, Nabavi SF, et al. Therapeutic potential of polyphenols in cardiovascular diseases: Regulation of mTOR signaling pathway. Pharmacol Res. 2020;152:104626.PubMedCrossRef Sanches-Silva A, Testai L, Nabavi SF, et al. Therapeutic potential of polyphenols in cardiovascular diseases: Regulation of mTOR signaling pathway. Pharmacol Res. 2020;152:104626.PubMedCrossRef
70.
go back to reference Tian F, Yu B, Hu J. MTOR mediates the cross-talk of macrophage polarization and autophagy in atherosclerosis. Int J Cardiol. 2014;177:144–5.PubMedCrossRef Tian F, Yu B, Hu J. MTOR mediates the cross-talk of macrophage polarization and autophagy in atherosclerosis. Int J Cardiol. 2014;177:144–5.PubMedCrossRef
71.
go back to reference Guo Y-Y, Yao M. Wu S 2015 Response to Feng Tian et al.: MTOR mediates the croß-talk of macrophage polarization and autophagy in atherosclerosis. Int J Cardiol. 2015;184C:262.CrossRef Guo Y-Y, Yao M. Wu S 2015 Response to Feng Tian et al.: MTOR mediates the croß-talk of macrophage polarization and autophagy in atherosclerosis. Int J Cardiol. 2015;184C:262.CrossRef
72.
go back to reference Barrett TJ. Macrophages in atherosclerosis regression. Arterioscler Thromb Vasc Biol. 2020;40(1):20–33.PubMedCrossRef Barrett TJ. Macrophages in atherosclerosis regression. Arterioscler Thromb Vasc Biol. 2020;40(1):20–33.PubMedCrossRef
73.
go back to reference Xie Y, Zhang J, Tian L, et al. Bushen Kangshuai tablet inhibits progression of atherosclerosis by intervening in macrophage autophagy and polarization. J Tradit Chin Med. 2020;40:28–37.PubMed Xie Y, Zhang J, Tian L, et al. Bushen Kangshuai tablet inhibits progression of atherosclerosis by intervening in macrophage autophagy and polarization. J Tradit Chin Med. 2020;40:28–37.PubMed
74.
go back to reference Cao Q, Du H, Fu X, et al. Artemisinin attenuated atherosclerosis in high-fat diet-fed ApoE−/− mice by promoting macrophage autophagy through the AMPK/mTOR/ULK1 pathway. J Cardiovasc Pharmacol. 2020;75(4):321–32.PubMedCrossRef Cao Q, Du H, Fu X, et al. Artemisinin attenuated atherosclerosis in high-fat diet-fed ApoE−/− mice by promoting macrophage autophagy through the AMPK/mTOR/ULK1 pathway. J Cardiovasc Pharmacol. 2020;75(4):321–32.PubMedCrossRef
75.
go back to reference Cochain C, Vafadarnejad E, Arampatzi P, et al. Single-cell RNA-Seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res. 2018;122(12):1661–74.PubMedCrossRef Cochain C, Vafadarnejad E, Arampatzi P, et al. Single-cell RNA-Seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res. 2018;122(12):1661–74.PubMedCrossRef
76.
77.
go back to reference Martini-Stoica H, Xu Y, Ballabio A, et al. The autophagy-lysosomal pathway in neurodegeneration: a TFEB perspective. Trends Neuroences. 2016;39(4):221–34.CrossRef Martini-Stoica H, Xu Y, Ballabio A, et al. The autophagy-lysosomal pathway in neurodegeneration: a TFEB perspective. Trends Neuroences. 2016;39(4):221–34.CrossRef
78.
go back to reference Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci. 2015;16(6):345–57.PubMedCrossRef Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci. 2015;16(6):345–57.PubMedCrossRef
80.
go back to reference Cai Q, Jeong YY. Mitophagy in Alzheimer’s disease and other age-related neurodegenerative diseases. Cells. 2020;9(1):66.CrossRef Cai Q, Jeong YY. Mitophagy in Alzheimer’s disease and other age-related neurodegenerative diseases. Cells. 2020;9(1):66.CrossRef
81.
go back to reference Hampel H, Frank R, Broich K, et al. Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov. 2010;9(7):560–74.PubMedCrossRef Hampel H, Frank R, Broich K, et al. Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov. 2010;9(7):560–74.PubMedCrossRef
82.
go back to reference Whyte LS, Lau AA, Hemsley KM, et al. Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer’s disease? J Neurochem. 2017;140(5):703–17.PubMedCrossRef Whyte LS, Lau AA, Hemsley KM, et al. Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer’s disease? J Neurochem. 2017;140(5):703–17.PubMedCrossRef
83.
go back to reference Haass C, Schlossmacher MG, Hung AY, et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature. 1992;359(6393):322–5.PubMedCrossRef Haass C, Schlossmacher MG, Hung AY, et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature. 1992;359(6393):322–5.PubMedCrossRef
84.
go back to reference Sisodia SS. Evidence that beta-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science. 1990;248:492–5.PubMedCrossRef Sisodia SS. Evidence that beta-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science. 1990;248:492–5.PubMedCrossRef
85.
go back to reference Vassar R. β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease. BACE. 1999;286(5440):735–41. Vassar R. β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease. BACE. 1999;286(5440):735–41.
86.
go back to reference Ma LY, Lv YL, Huo K, et al. Autophagy-lysosome dysfunction is involved in Abeta deposition in STZ-induced diabetic rats. Behav Brain Res. 2017;320:484–93.PubMedCrossRef Ma LY, Lv YL, Huo K, et al. Autophagy-lysosome dysfunction is involved in Abeta deposition in STZ-induced diabetic rats. Behav Brain Res. 2017;320:484–93.PubMedCrossRef
87.
go back to reference Takashima A. Tau aggregation is a therapeutic target for Alzheimer’s disease. Curr Alzheimer Res. 2010;7(8):56.CrossRef Takashima A. Tau aggregation is a therapeutic target for Alzheimer’s disease. Curr Alzheimer Res. 2010;7(8):56.CrossRef
88.
go back to reference Guo JL, Lee MY. Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like Tangles*. J Biol Chem. 2011;286:66.CrossRef Guo JL, Lee MY. Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like Tangles*. J Biol Chem. 2011;286:66.CrossRef
89.
go back to reference Wang Y, Mandelkow E. Degradation of tau protein by autophagy and proteasomal pathways. Biochem Soc Trans. 2012;40(4):644–52.PubMedCrossRef Wang Y, Mandelkow E. Degradation of tau protein by autophagy and proteasomal pathways. Biochem Soc Trans. 2012;40(4):644–52.PubMedCrossRef
90.
go back to reference Zhenzhen L, Tao L, Ping L, et al. The ambiguous relationship of oxidative stress, Tau hyperphosphorylation, and autophagy dysfunction in Alzheimer’s disease. Oxid Med Cell Longevity. 2015;2015:352723. Zhenzhen L, Tao L, Ping L, et al. The ambiguous relationship of oxidative stress, Tau hyperphosphorylation, and autophagy dysfunction in Alzheimer’s disease. Oxid Med Cell Longevity. 2015;2015:352723.
91.
go back to reference Mueller-Steiner S, Zhou Y, Arai H, et al. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer’s disease. Neuron. 2006;51(6):703–14.PubMedCrossRef Mueller-Steiner S, Zhou Y, Arai H, et al. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer’s disease. Neuron. 2006;51(6):703–14.PubMedCrossRef
92.
go back to reference Schuur M, et al. Cathepsin D gene and the risk of Alzheimer’s disease: a population-based study and meta-analysis—ScienceDirect. Neurobiol Aging. 2011;32(9):1607–14.PubMedCrossRef Schuur M, et al. Cathepsin D gene and the risk of Alzheimer’s disease: a population-based study and meta-analysis—ScienceDirect. Neurobiol Aging. 2011;32(9):1607–14.PubMedCrossRef
94.
go back to reference Sherrington R, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;6:66. Sherrington R, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;6:66.
95.
go back to reference Lee JH, Yu WH, Kumar A, et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell. 2010;141(7):1146–58.PubMedPubMedCentralCrossRef Lee JH, Yu WH, Kumar A, et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell. 2010;141(7):1146–58.PubMedPubMedCentralCrossRef
96.
go back to reference Salminen A, Kaarniranta K, Kauppinen A, et al. Impaired autophagy and APP processing in Alzheimer’s disease: the potential role of Beclin 1 interactome. Prog Neurobiol. 2013;106–107:33–54.PubMedCrossRef Salminen A, Kaarniranta K, Kauppinen A, et al. Impaired autophagy and APP processing in Alzheimer’s disease: the potential role of Beclin 1 interactome. Prog Neurobiol. 2013;106–107:33–54.PubMedCrossRef
97.
go back to reference Pickford F, Masliah E, Britschgi M, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest. 2008;118(6):2190–9.PubMedPubMedCentral Pickford F, Masliah E, Britschgi M, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest. 2008;118(6):2190–9.PubMedPubMedCentral
98.
go back to reference Harris H, Rubinsztein DC. Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol. 2012;8(2):108–17.CrossRef Harris H, Rubinsztein DC. Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol. 2012;8(2):108–17.CrossRef
99.
go back to reference Xiao Q, Yan P, Ma X, et al. Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Abeta generation and amyloid plaque pathogenesis. J Neurosci. 2015;35(35):12137–51.PubMedPubMedCentralCrossRef Xiao Q, Yan P, Ma X, et al. Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Abeta generation and amyloid plaque pathogenesis. J Neurosci. 2015;35(35):12137–51.PubMedPubMedCentralCrossRef
100.
go back to reference Olanow CW. The pathogenesis of cell death in Parkinson’s disease—2007. Mov Disord. 2007;22(S17):S335–42.PubMedCrossRef Olanow CW. The pathogenesis of cell death in Parkinson’s disease—2007. Mov Disord. 2007;22(S17):S335–42.PubMedCrossRef
101.
go back to reference Spillantini M. Alpha-synuclein in Lewy bodies. Nature. 1997;66:388. Spillantini M. Alpha-synuclein in Lewy bodies. Nature. 1997;66:388.
102.
go back to reference Xilouri M, Brekk OR, Stefanis L. Alpha-synuclein and protein degradation systems: a reciprocal relationship. Mol Neurobiol. 2013;47(2):537–51.PubMedCrossRef Xilouri M, Brekk OR, Stefanis L. Alpha-synuclein and protein degradation systems: a reciprocal relationship. Mol Neurobiol. 2013;47(2):537–51.PubMedCrossRef
103.
go back to reference Cuervo AM, Stefanis L, Fredenburg R, et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004;305(5688):1292–5.PubMedCrossRef Cuervo AM, Stefanis L, Fredenburg R, et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004;305(5688):1292–5.PubMedCrossRef
104.
go back to reference Lee HJ, Khoshaghideh F, Patel S, et al. Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci. 2004;24(8):1888–96.PubMedPubMedCentralCrossRef Lee HJ, Khoshaghideh F, Patel S, et al. Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci. 2004;24(8):1888–96.PubMedPubMedCentralCrossRef
105.
go back to reference Tereza V, Maria X, Kostas V, et al. Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem. 2008;283(35):23542–56.CrossRef Tereza V, Maria X, Kostas V, et al. Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem. 2008;283(35):23542–56.CrossRef
106.
go back to reference Xilouri M, Vogiatzi T, Vekrellis K, et al. Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS ONE. 2009;4(5):e5515.PubMedPubMedCentralCrossRef Xilouri M, Vogiatzi T, Vekrellis K, et al. Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS ONE. 2009;4(5):e5515.PubMedPubMedCentralCrossRef
107.
go back to reference Mihael H, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;6:18. Mihael H, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;6:18.
108.
go back to reference Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant |[alpha]|-synucleinlinked to early-onset Parkinson disease. Nat Med. 1998;4(11):1318–20.PubMedCrossRef Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant |[alpha]|-synucleinlinked to early-onset Parkinson disease. Nat Med. 1998;4(11):1318–20.PubMedCrossRef
109.
go back to reference Schultheis PJ, Fleming SM, Clippinger AK, et al. Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited alpha-synuclein accumulation and age-dependent sensorimotor deficits. Hum Mol Genet. 2013;22(10):2067–82.PubMedPubMedCentralCrossRef Schultheis PJ, Fleming SM, Clippinger AK, et al. Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited alpha-synuclein accumulation and age-dependent sensorimotor deficits. Hum Mol Genet. 2013;22(10):2067–82.PubMedPubMedCentralCrossRef
110.
go back to reference Tsunemi T, Krainc D. Zn(2)(+) dyshomeostasis caused by loss of ATP13A2/PARK9 leads to lysosomal dysfunction and alpha-synuclein accumulation. Hum Mol Genet. 2014;23(11):2791–801.PubMedCrossRef Tsunemi T, Krainc D. Zn(2)(+) dyshomeostasis caused by loss of ATP13A2/PARK9 leads to lysosomal dysfunction and alpha-synuclein accumulation. Hum Mol Genet. 2014;23(11):2791–801.PubMedCrossRef
111.
go back to reference Mazzulli JR, Xu YH, Sun Y, et al. Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 2011;146(1):37–52.PubMedPubMedCentralCrossRef Mazzulli JR, Xu YH, Sun Y, et al. Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 2011;146(1):37–52.PubMedPubMedCentralCrossRef
112.
go back to reference Mazzulli JR, Zunke F, Isacson O, et al. alpha-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc Natl Acad Sci USA. 2016;113(7):1931–6.PubMedCrossRefPubMedCentral Mazzulli JR, Zunke F, Isacson O, et al. alpha-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc Natl Acad Sci USA. 2016;113(7):1931–6.PubMedCrossRefPubMedCentral
113.
go back to reference Neudorfer O, Giladi N, Elstein D, et al. Occurrence of Parkinson’s syndrome in type I Gaucher disease. Qjm Mon J Assoc Phys. 1996;89(9):691. Neudorfer O, Giladi N, Elstein D, et al. Occurrence of Parkinson’s syndrome in type I Gaucher disease. Qjm Mon J Assoc Phys. 1996;89(9):691.
114.
go back to reference Steele JW, Ju S, Lachenmayer ML, et al. Latrepirdine stimulates autophagy and reduces accumulation of alpha-synuclein in cells and in mouse brain. Mol Psychiatry. 2013;18(8):882–8.PubMedCrossRef Steele JW, Ju S, Lachenmayer ML, et al. Latrepirdine stimulates autophagy and reduces accumulation of alpha-synuclein in cells and in mouse brain. Mol Psychiatry. 2013;18(8):882–8.PubMedCrossRef
116.
go back to reference Sturrock A, Leavitt BR. The clinical and genetic features of Huntington disease. J Geriatr Psychiatry Neurol. 2010;23(4):243–59.PubMedCrossRef Sturrock A, Leavitt BR. The clinical and genetic features of Huntington disease. J Geriatr Psychiatry Neurol. 2010;23(4):243–59.PubMedCrossRef
117.
go back to reference Gusella JF, Gilliam TC, Tanzi RE, et al. Molecular genetics of Huntington’s disease. Arch Neurol. 1993;50(11):1157–63.PubMedCrossRef Gusella JF, Gilliam TC, Tanzi RE, et al. Molecular genetics of Huntington’s disease. Arch Neurol. 1993;50(11):1157–63.PubMedCrossRef
118.
go back to reference Ha T, Rob W, Nicolle M, et al. Characterization and localization of the Huntington disease gene product. Hum Mol Genet. 2016;12:2069–73. Ha T, Rob W, Nicolle M, et al. Characterization and localization of the Huntington disease gene product. Hum Mol Genet. 2016;12:2069–73.
119.
go back to reference Buerlein FJB, Saha I, Mishra A, et al. In situ architecture and cellular interactions of PolyQ inclusions. Cell. 2017;66:179–87.CrossRef Buerlein FJB, Saha I, Mishra A, et al. In situ architecture and cellular interactions of PolyQ inclusions. Cell. 2017;66:179–87.CrossRef
120.
go back to reference Claire-Anne G, Shi-Hua L, Hong Y, et al. Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neuroence Off J Soc Neuroence. 1999;19(7):2522–34.CrossRef Claire-Anne G, Shi-Hua L, Hong Y, et al. Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neuroence Off J Soc Neuroence. 1999;19(7):2522–34.CrossRef
122.
go back to reference Kegel KB, Manho K, Ellen S, et al. Huntingtin expression stimulates endosomal–lysosomal activity, endosome tubulation, and autophagy. J Neurosci. 2000;20(19):7268–78.PubMedPubMedCentralCrossRef Kegel KB, Manho K, Ellen S, et al. Huntingtin expression stimulates endosomal–lysosomal activity, endosome tubulation, and autophagy. J Neurosci. 2000;20(19):7268–78.PubMedPubMedCentralCrossRef
123.
go back to reference Martinez-Vicente M, Talloczy Z, Wong E, et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci. 2010;13(5):567–76.PubMedPubMedCentralCrossRef Martinez-Vicente M, Talloczy Z, Wong E, et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci. 2010;13(5):567–76.PubMedPubMedCentralCrossRef
124.
go back to reference Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004;36(6):585–95.PubMedCrossRef Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004;36(6):585–95.PubMedCrossRef
125.
go back to reference Johnston Jennifer A, et al. Aggresomes: a cellular response to misfolded proteins. J Cell Biol. 1998;6:56. Johnston Jennifer A, et al. Aggresomes: a cellular response to misfolded proteins. J Cell Biol. 1998;6:56.
126.
go back to reference Ravikumar B, Imarisio S, Sarkar S, et al. Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci. 2008;121(10):1649–60.PubMedCrossRef Ravikumar B, Imarisio S, Sarkar S, et al. Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci. 2008;121(10):1649–60.PubMedCrossRef
127.
go back to reference Maria F, et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell. 2010;6:56. Maria F, et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell. 2010;6:56.
128.
go back to reference Bjørkøy G, Lamark T, Brech A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171(4):603–14.PubMedPubMedCentralCrossRef Bjørkøy G, Lamark T, Brech A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171(4):603–14.PubMedPubMedCentralCrossRef
129.
go back to reference Kaushik S, Massey AC, Mizushima N, et al. Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol Biol Cell. 2008;19(5):2179.PubMedPubMedCentralCrossRef Kaushik S, Massey AC, Mizushima N, et al. Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol Biol Cell. 2008;19(5):2179.PubMedPubMedCentralCrossRef
130.
go back to reference Koga H, Martinez-Vicente M, Arias E, et al. Constitutive upregulation of chaperone-mediated autophagy in Huntington’s disease. J Neurosci. 2011;31(50):18492–505.PubMedPubMedCentralCrossRef Koga H, Martinez-Vicente M, Arias E, et al. Constitutive upregulation of chaperone-mediated autophagy in Huntington’s disease. J Neurosci. 2011;31(50):18492–505.PubMedPubMedCentralCrossRef
131.
go back to reference Mayerle J, Sendler M, Hegyi E, et al. Genetics, cell biology, and pathophysiology of pancreatitis. Gastroenterology. 2019;156(7):1951.e1-68.e1.CrossRef Mayerle J, Sendler M, Hegyi E, et al. Genetics, cell biology, and pathophysiology of pancreatitis. Gastroenterology. 2019;156(7):1951.e1-68.e1.CrossRef
132.
go back to reference Pandol SJ, Saluja AK, Imrie CW, et al. Acute pancreatitis: bench to the bedside. Gastroenterology. 2007;132(3):1127–51.PubMedCrossRef Pandol SJ, Saluja AK, Imrie CW, et al. Acute pancreatitis: bench to the bedside. Gastroenterology. 2007;132(3):1127–51.PubMedCrossRef
133.
go back to reference Krüger B, Albrecht E, Lerch MM. The role of intracellular calcium signaling in premature protease activation and the onset of pancreatitis. Am J Pathol. 2000;157(1):43–50.PubMedPubMedCentralCrossRef Krüger B, Albrecht E, Lerch MM. The role of intracellular calcium signaling in premature protease activation and the onset of pancreatitis. Am J Pathol. 2000;157(1):43–50.PubMedPubMedCentralCrossRef
134.
go back to reference Muili KA, Wang D, Orabi AI, et al. Bile acids induce pancreatic acinar cell injury and pancreatitis by activating calcineurin. J Biol Chem. 2013;288(1):570–80.PubMedCrossRef Muili KA, Wang D, Orabi AI, et al. Bile acids induce pancreatic acinar cell injury and pancreatitis by activating calcineurin. J Biol Chem. 2013;288(1):570–80.PubMedCrossRef
136.
go back to reference Sendler M, Weiss FU, Golchert J, et al. Cathepsin B-mediated activation of trypsinogen in endocytosing macrophages increases severity of pancreatitis in mice. Gastroenterology. 2018;154(3):704e10-18e10.CrossRef Sendler M, Weiss FU, Golchert J, et al. Cathepsin B-mediated activation of trypsinogen in endocytosing macrophages increases severity of pancreatitis in mice. Gastroenterology. 2018;154(3):704e10-18e10.CrossRef
137.
go back to reference Talukdar R, Sareen A, Zhu H, et al. Release of Cathepsin B in cytosol causes cell death in acute pancreatitis. Gastroenterology. 2016;151(4):747e5-58e5.CrossRef Talukdar R, Sareen A, Zhu H, et al. Release of Cathepsin B in cytosol causes cell death in acute pancreatitis. Gastroenterology. 2016;151(4):747e5-58e5.CrossRef
138.
go back to reference Louhimo J, Steer ML, Perides G. Necroptosis is an important severity determinant and potential therapeutic target in experimental severe pancreatitis. Cell Mol Gastroenterol Hepatol. 2016;2(4):519–35.PubMedPubMedCentralCrossRef Louhimo J, Steer ML, Perides G. Necroptosis is an important severity determinant and potential therapeutic target in experimental severe pancreatitis. Cell Mol Gastroenterol Hepatol. 2016;2(4):519–35.PubMedPubMedCentralCrossRef
139.
go back to reference Sendler M, Mayerle J, Lerch MM. Necrosis, apoptosis, necroptosis, pyroptosis: it matters how acinar cells die during pancreatitis. Cell Mol Gastroenterol Hepatol. 2016;2(4):407–8.PubMedPubMedCentralCrossRef Sendler M, Mayerle J, Lerch MM. Necrosis, apoptosis, necroptosis, pyroptosis: it matters how acinar cells die during pancreatitis. Cell Mol Gastroenterol Hepatol. 2016;2(4):407–8.PubMedPubMedCentralCrossRef
140.
go back to reference Mareninova OA, Hermann K, French SW, et al. Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis. J Clin Invest. 2009;119(11):3340–55.PubMedPubMedCentral Mareninova OA, Hermann K, French SW, et al. Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis. J Clin Invest. 2009;119(11):3340–55.PubMedPubMedCentral
141.
go back to reference Halangk W, Lerch MM, Brandt-Nedelev B, et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest. 2000;106(6):773–81.PubMedPubMedCentralCrossRef Halangk W, Lerch MM, Brandt-Nedelev B, et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest. 2000;106(6):773–81.PubMedPubMedCentralCrossRef
142.
go back to reference Wartmann T, Mayerle J, Kahne T, et al. Cathepsin L inactivates human trypsinogen, whereas cathepsin L-deletion reduces the severity of pancreatitis in mice. Gastroenterology. 2010;138(2):726–37.PubMedCrossRef Wartmann T, Mayerle J, Kahne T, et al. Cathepsin L inactivates human trypsinogen, whereas cathepsin L-deletion reduces the severity of pancreatitis in mice. Gastroenterology. 2010;138(2):726–37.PubMedCrossRef
143.
go back to reference Diakopoulos KN, Lesina M, Wörmann S, et al. Impaired autophagy induces chronic atrophic pancreatitis in mice via sex- and nutrition-dependent processes. Gastroenterology. 2015;148(3):626e7-38e17.CrossRef Diakopoulos KN, Lesina M, Wörmann S, et al. Impaired autophagy induces chronic atrophic pancreatitis in mice via sex- and nutrition-dependent processes. Gastroenterology. 2015;148(3):626e7-38e17.CrossRef
144.
go back to reference Antonucci L, Fagman JB, Kim JY, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci USA. 2015;112(45):E6166–74.PubMedCrossRefPubMedCentral Antonucci L, Fagman JB, Kim JY, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci USA. 2015;112(45):E6166–74.PubMedCrossRefPubMedCentral
145.
go back to reference Mareninova OA, Sendler M, Malla SR, et al. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis. Cell Mol Gastroenterol Hepatol. 2015;1(6):678–94.PubMedPubMedCentralCrossRef Mareninova OA, Sendler M, Malla SR, et al. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis. Cell Mol Gastroenterol Hepatol. 2015;1(6):678–94.PubMedPubMedCentralCrossRef
147.
go back to reference Clarke AJ, Ellinghaus U, Cortini A, et al. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Ann Rheum Dis. 2015;74(5):912–20.PubMedCrossRef Clarke AJ, Ellinghaus U, Cortini A, et al. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Ann Rheum Dis. 2015;74(5):912–20.PubMedCrossRef
148.
go back to reference An N, Chen Y, Wang C, et al. Chloroquine autophagic inhibition rebalances Th17/Treg-mediated immunity and ameliorates systemic lupus erythematosus. Cell Physiol Biochem. 2017;44(1):412–22.PubMedCrossRef An N, Chen Y, Wang C, et al. Chloroquine autophagic inhibition rebalances Th17/Treg-mediated immunity and ameliorates systemic lupus erythematosus. Cell Physiol Biochem. 2017;44(1):412–22.PubMedCrossRef
149.
go back to reference Martinez J, Cunha LD, Park S, et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature. 2016;533(7601):115–9.PubMedPubMedCentralCrossRef Martinez J, Cunha LD, Park S, et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature. 2016;533(7601):115–9.PubMedPubMedCentralCrossRef
150.
go back to reference Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456(7219):264–8.PubMedCrossRef Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456(7219):264–8.PubMedCrossRef
151.
go back to reference Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39(2):207–11.PubMedCrossRef Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39(2):207–11.PubMedCrossRef
152.
go back to reference Yang Z, Fujii H, Mohan SV, et al. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J Exp Med. 2013;210(10):2119–34.PubMedPubMedCentralCrossRef Yang Z, Fujii H, Mohan SV, et al. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J Exp Med. 2013;210(10):2119–34.PubMedPubMedCentralCrossRef
153.
go back to reference Alirezaei M, Fox HS, Flynn CT, et al. Elevated ATG5 expression in autoimmune demyelination and multiple sclerosis. Autophagy. 2009;5(2):152–8.PubMedCrossRef Alirezaei M, Fox HS, Flynn CT, et al. Elevated ATG5 expression in autoimmune demyelination and multiple sclerosis. Autophagy. 2009;5(2):152–8.PubMedCrossRef
154.
go back to reference He Y, Xu Y, Zhang C, et al. Identification of a lysosomal pathway that modulates glucocorticoid signaling and the inflammatory response. Sci Signal. 2011;4(180):ra44.PubMedPubMedCentralCrossRef He Y, Xu Y, Zhang C, et al. Identification of a lysosomal pathway that modulates glucocorticoid signaling and the inflammatory response. Sci Signal. 2011;4(180):ra44.PubMedPubMedCentralCrossRef
155.
go back to reference Fernandez D, Bonilla E, Mirza N, et al. Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum. 2006;54(9):2983–8.PubMedPubMedCentralCrossRef Fernandez D, Bonilla E, Mirza N, et al. Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum. 2006;54(9):2983–8.PubMedPubMedCentralCrossRef
156.
go back to reference Vergarajauregui S, Puertollano R. Mucolipidosis type IV: the importance of functional lysosomes for efficient autophagy. Autophagy. 2008;4(6):832–4.PubMedCrossRef Vergarajauregui S, Puertollano R. Mucolipidosis type IV: the importance of functional lysosomes for efficient autophagy. Autophagy. 2008;4(6):832–4.PubMedCrossRef
157.
go back to reference Plotegher N, Duchen MR. Mitochondrial dysfunction and neurodegeneration in lysosomal storage disorders. Trends Mol Med. 2017;23(2):116–34.PubMedCrossRef Plotegher N, Duchen MR. Mitochondrial dysfunction and neurodegeneration in lysosomal storage disorders. Trends Mol Med. 2017;23(2):116–34.PubMedCrossRef
158.
go back to reference Takikita S, Myerowitz R, Schreiner C, et al. The values and limits of an in vitro model of Pompe disease: the best laid schemes o’ mice an’ men. Autophagy. 2009;5(5):729–31.PubMedCrossRef Takikita S, Myerowitz R, Schreiner C, et al. The values and limits of an in vitro model of Pompe disease: the best laid schemes o’ mice an’ men. Autophagy. 2009;5(5):729–31.PubMedCrossRef
159.
go back to reference Nishino I, Fu J, Tanji K, et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature. 2000;406(6798):906–10.PubMedCrossRef Nishino I, Fu J, Tanji K, et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature. 2000;406(6798):906–10.PubMedCrossRef
160.
go back to reference Wątek M, Piktel E, Wollny T, et al. Defective sphingolipids metabolism and tumor associated macrophages as the possible links between gaucher disease and blood cancer development. Int J Mol Sci. 2019;20(4):843.PubMedCentralCrossRef Wątek M, Piktel E, Wollny T, et al. Defective sphingolipids metabolism and tumor associated macrophages as the possible links between gaucher disease and blood cancer development. Int J Mol Sci. 2019;20(4):843.PubMedCentralCrossRef
161.
go back to reference Mistry PK, Taddei T, Dahl SV, et al. Gaucher disease and malignancy: a model for cancer pathogenesis in an inborn error of metabolism. Crit Rev Oncog. 2013;18(3):235–46.PubMedPubMedCentralCrossRef Mistry PK, Taddei T, Dahl SV, et al. Gaucher disease and malignancy: a model for cancer pathogenesis in an inborn error of metabolism. Crit Rev Oncog. 2013;18(3):235–46.PubMedPubMedCentralCrossRef
162.
go back to reference Sidransky E. Gaucher disease: complexity in a “simple” disorder. Mol Genet Metab. 2004;83(1–2):15. Sidransky E. Gaucher disease: complexity in a “simple” disorder. Mol Genet Metab. 2004;83(1–2):15.
163.
go back to reference Rosenbloom B, Weinreb N, Zimran A, et al. Gaucher disease and cancer incidence: a study from the Gaucher Registry. Blood. 2005;105:4569–72.PubMedCrossRef Rosenbloom B, Weinreb N, Zimran A, et al. Gaucher disease and cancer incidence: a study from the Gaucher Registry. Blood. 2005;105:4569–72.PubMedCrossRef
164.
go back to reference Fost MD, Dahl SV, Weverling GJ, et al. Increased incidence of cancer in adult Gaucher disease in Western Europe. Blood Cells Mol Dis. 2006;36(1):58. Fost MD, Dahl SV, Weverling GJ, et al. Increased incidence of cancer in adult Gaucher disease in Western Europe. Blood Cells Mol Dis. 2006;36(1):58.
165.
go back to reference Aflaki E, Moaven N, Borger DK, et al. Lysosomal storage and impaired autophagy lead to inflammasome activation in Gaucher macrophages. Aging Cell. 2016;15(1):77–88.PubMedCrossRef Aflaki E, Moaven N, Borger DK, et al. Lysosomal storage and impaired autophagy lead to inflammasome activation in Gaucher macrophages. Aging Cell. 2016;15(1):77–88.PubMedCrossRef
166.
go back to reference Mistry P, Liu J, Yang M, et al. Glucocerebrosidase gene-deficient mouse recapitulates Gaucher disease displaying cellular and molecular dysregulation beyond the macrophage. Proc Natl Acad Sci USA. 2010;107:19473–8.PubMedCrossRefPubMedCentral Mistry P, Liu J, Yang M, et al. Glucocerebrosidase gene-deficient mouse recapitulates Gaucher disease displaying cellular and molecular dysregulation beyond the macrophage. Proc Natl Acad Sci USA. 2010;107:19473–8.PubMedCrossRefPubMedCentral
167.
go back to reference Boven LA, Van Meurs M, Boot RG, et al. Gaucher cells demonstrate a distinct macrophage phenotype and resemble alternatively activated macrophages. Am J Clin Pathol. 2004;122(3):359–69.PubMedCrossRef Boven LA, Van Meurs M, Boot RG, et al. Gaucher cells demonstrate a distinct macrophage phenotype and resemble alternatively activated macrophages. Am J Clin Pathol. 2004;122(3):359–69.PubMedCrossRef
168.
go back to reference Ivanova M, Limgala RP, Changsila E, et al. Gaucheromas: when macrophages promote tumor formation and dissemination. Blood Cells Mol Dis. 2018;68:100–5.PubMedCrossRef Ivanova M, Limgala RP, Changsila E, et al. Gaucheromas: when macrophages promote tumor formation and dissemination. Blood Cells Mol Dis. 2018;68:100–5.PubMedCrossRef
169.
go back to reference Elinav E, Nowarski R, Thaiss C, et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13:759–71.PubMedCrossRef Elinav E, Nowarski R, Thaiss C, et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13:759–71.PubMedCrossRef
170.
go back to reference Korniluk A, Koper O, Kemona H, et al. From inflammation to cancer. Irish J Med Sci. 2016;186:66. Korniluk A, Koper O, Kemona H, et al. From inflammation to cancer. Irish J Med Sci. 2016;186:66.
172.
go back to reference Reuter S, Gupta S, Chaturvedi M, et al. Oxidative stress, inflammation, and cancer: How are they linked? Free Radical Biol Med. 2010;49:1603–16.CrossRef Reuter S, Gupta S, Chaturvedi M, et al. Oxidative stress, inflammation, and cancer: How are they linked? Free Radical Biol Med. 2010;49:1603–16.CrossRef
173.
go back to reference Najafi M, Hashemi Goradel N, Farhood B, et al. Tumor microenvironment: interactions and therapy. J Cell Physiol. 2018;6:17. Najafi M, Hashemi Goradel N, Farhood B, et al. Tumor microenvironment: interactions and therapy. J Cell Physiol. 2018;6:17.
174.
go back to reference Davidson S, Heiden M. Critical functions of the lysosome in cancer biology. Annu Rev Pharmacol Toxicol. 2017;57:698.CrossRef Davidson S, Heiden M. Critical functions of the lysosome in cancer biology. Annu Rev Pharmacol Toxicol. 2017;57:698.CrossRef
175.
go back to reference Maria, C., et al. Therapeutic modulation of autophagy: which disease comes first? 2019. Maria, C., et al. Therapeutic modulation of autophagy: which disease comes first? 2019.
176.
go back to reference Rybstein M, Bravo San Pedro JM, Kroemer G, et al. The autophagic network and cancer. Nat Cell Biol. 2018;6:20. Rybstein M, Bravo San Pedro JM, Kroemer G, et al. The autophagic network and cancer. Nat Cell Biol. 2018;6:20.
177.
go back to reference Karantza V, Patel S, Kravchuk O, et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 2007;21:1621–35.CrossRef Karantza V, Patel S, Kravchuk O, et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 2007;21:1621–35.CrossRef
179.
go back to reference Ivanov A, Pawlikowski J, Manoharan I, et al. Lysosome-mediated processing of chromatin in senescence. J Cell Biol. 2013;202:56.CrossRef Ivanov A, Pawlikowski J, Manoharan I, et al. Lysosome-mediated processing of chromatin in senescence. J Cell Biol. 2013;202:56.CrossRef
180.
go back to reference Bartsch K, Knittler K, Borowski C, et al. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum Mol Genet. 2017;26:3960–72.PubMedCrossRef Bartsch K, Knittler K, Borowski C, et al. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum Mol Genet. 2017;26:3960–72.PubMedCrossRef
181.
go back to reference Guo H, Chitiprolu M, Gagnon D, et al. Autophagy supports genomic stability by degrading retrotransposon RNA. Nat Commun. 2014;5(1):5276.PubMedCrossRef Guo H, Chitiprolu M, Gagnon D, et al. Autophagy supports genomic stability by degrading retrotransposon RNA. Nat Commun. 2014;5(1):5276.PubMedCrossRef
183.
go back to reference Guo JY, Chen H-Y, Mathew R, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 2011;25(5):460–70.PubMedPubMedCentralCrossRef Guo JY, Chen H-Y, Mathew R, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 2011;25(5):460–70.PubMedPubMedCentralCrossRef
184.
go back to reference Dionne LK, Sorkin A. Endocytosis of receptor tyrosine kinases. Cold Spring Harbor Perspect Biol. 2013;5:66. Dionne LK, Sorkin A. Endocytosis of receptor tyrosine kinases. Cold Spring Harbor Perspect Biol. 2013;5:66.
185.
go back to reference Yamazaki T, Zaal K, Hailey D, et al. Role of Grb2 in EGF-stimulated EGFR internalization. J Cell Sci. 2002;115:1791–802.PubMedCrossRef Yamazaki T, Zaal K, Hailey D, et al. Role of Grb2 in EGF-stimulated EGFR internalization. J Cell Sci. 2002;115:1791–802.PubMedCrossRef
186.
go back to reference Frosi Y, Anastasi S, Ballarò C, et al. A two-tiered mechanism of EGFR inhibition by RALT/MIG6 via kinase suppression and receptor degradation. J Cell Biol. 2010;189:557–71.PubMedPubMedCentralCrossRef Frosi Y, Anastasi S, Ballarò C, et al. A two-tiered mechanism of EGFR inhibition by RALT/MIG6 via kinase suppression and receptor degradation. J Cell Biol. 2010;189:557–71.PubMedPubMedCentralCrossRef
187.
go back to reference Commisso C, Davidson SM, Soydaner-Azeloglu RG, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497(7451):633–7.PubMedPubMedCentralCrossRef Commisso C, Davidson SM, Soydaner-Azeloglu RG, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497(7451):633–7.PubMedPubMedCentralCrossRef
188.
go back to reference Kamphorst J, Nofal M, Commisso C, et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Can Res. 2015;75:544–53.CrossRef Kamphorst J, Nofal M, Commisso C, et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Can Res. 2015;75:544–53.CrossRef
189.
190.
go back to reference Vidak E, Javoršek U, Vizovišek M, et al. Cysteine cathepsins and their extracellular roles: shaping the microenvironment. Cells. 2019;8(3):56.CrossRef Vidak E, Javoršek U, Vizovišek M, et al. Cysteine cathepsins and their extracellular roles: shaping the microenvironment. Cells. 2019;8(3):56.CrossRef
191.
go back to reference Akkari L, Gocheva V, Kester J, et al. Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix. Genes Dev. 2014;28:2134–50.PubMedPubMedCentralCrossRef Akkari L, Gocheva V, Kester J, et al. Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix. Genes Dev. 2014;28:2134–50.PubMedPubMedCentralCrossRef
192.
go back to reference Bengsch F, Buck A, Günther S, et al. Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression. Oncogene. 2013;33:56. Bengsch F, Buck A, Günther S, et al. Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression. Oncogene. 2013;33:56.
193.
go back to reference Emmert-Buck M, Karustis DG, Day NA, et al. Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumor tissues. Biochem J. 1992;282(Pt 1):273–8.CrossRef Emmert-Buck M, Karustis DG, Day NA, et al. Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumor tissues. Biochem J. 1992;282(Pt 1):273–8.CrossRef
194.
195.
go back to reference Mitrović A, Pecar Fonovic U, Kos J. Cysteine cathepsins B and X promote epithelial–mesenchymal transition of tumor cells. Eur J Cell Biol. 2017;96:56.CrossRef Mitrović A, Pecar Fonovic U, Kos J. Cysteine cathepsins B and X promote epithelial–mesenchymal transition of tumor cells. Eur J Cell Biol. 2017;96:56.CrossRef
196.
go back to reference Alapati K, Kesanakurti D, Rao JS, et al. uPAR and cathepsin B-mediated compartmentalization of JNK regulates the migration of glioma-initiating cells. Stem Cell Res. 2014;12(3):716–29.PubMedPubMedCentralCrossRef Alapati K, Kesanakurti D, Rao JS, et al. uPAR and cathepsin B-mediated compartmentalization of JNK regulates the migration of glioma-initiating cells. Stem Cell Res. 2014;12(3):716–29.PubMedPubMedCentralCrossRef
197.
go back to reference Joyce JA, Baruch A, Chehade K, et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell. 2004;5(5):443–53.PubMedCrossRef Joyce JA, Baruch A, Chehade K, et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell. 2004;5(5):443–53.PubMedCrossRef
198.
go back to reference Jechorek D, Votapek J, Meyer F, et al. Characterization of cathepsin X in colorectal cancer development and progression. Pathol Res Pract. 2014;210(12):822–9.PubMedCrossRef Jechorek D, Votapek J, Meyer F, et al. Characterization of cathepsin X in colorectal cancer development and progression. Pathol Res Pract. 2014;210(12):822–9.PubMedCrossRef
199.
go back to reference Fisher O, Levert A, Lord S, et al. High expression of cathepsin E in tissues but not blood of patients with Barrett’s esophagus and adenocarcinoma. Ann Surg Oncol. 2014;22:563. Fisher O, Levert A, Lord S, et al. High expression of cathepsin E in tissues but not blood of patients with Barrett’s esophagus and adenocarcinoma. Ann Surg Oncol. 2014;22:563.
200.
go back to reference Kiuchi S, Tomaru U, Ishizu A, et al. Expression of cathepsins V and S in thymic epithelial tumors. Hum Pathol. 2016;60:56. Kiuchi S, Tomaru U, Ishizu A, et al. Expression of cathepsins V and S in thymic epithelial tumors. Hum Pathol. 2016;60:56.
201.
go back to reference Fristrup N, Ulhøi B, Demtroder K, et al. Cathepsin E, Maspin, Plk1, and Survivin are promising prognostic protein markers for progression in non-muscle invasive bladder cancer. Am J Pathol. 2012;180:1824–34.PubMedCrossRef Fristrup N, Ulhøi B, Demtroder K, et al. Cathepsin E, Maspin, Plk1, and Survivin are promising prognostic protein markers for progression in non-muscle invasive bladder cancer. Am J Pathol. 2012;180:1824–34.PubMedCrossRef
202.
go back to reference Kawakubo-Yasukochi T, Yasukochi A, Toyama T, et al. Repression of cathepsin E expression increases the risk of mammary carcinogenesis and links to poor prognosis in breast cancer. Carcinogenesis. 2013;35:53. Kawakubo-Yasukochi T, Yasukochi A, Toyama T, et al. Repression of cathepsin E expression increases the risk of mammary carcinogenesis and links to poor prognosis in breast cancer. Carcinogenesis. 2013;35:53.
203.
go back to reference Gao L, Zheng H, Cai Q, et al. Autophagy and Tumour Radiotherapy. 2020. Gao L, Zheng H, Cai Q, et al. Autophagy and Tumour Radiotherapy. 2020.
204.
go back to reference Liang N, Jia L, Liu Y, et al. ATM pathway is essential for ionizing radiation-induced autophagy. Cell Signal. 2013;25(12):2530–9.PubMedCrossRef Liang N, Jia L, Liu Y, et al. ATM pathway is essential for ionizing radiation-induced autophagy. Cell Signal. 2013;25(12):2530–9.PubMedCrossRef
205.
go back to reference Huang T, Kim CK, Alvarez AA, et al. MST4 phosphorylation of ATG4B regulates autophagic activity, tumorigenicity, and radioresistance in glioblastoma. Cancer Cell. 2017;32(6):840-55.e8.PubMedPubMedCentralCrossRef Huang T, Kim CK, Alvarez AA, et al. MST4 phosphorylation of ATG4B regulates autophagic activity, tumorigenicity, and radioresistance in glioblastoma. Cancer Cell. 2017;32(6):840-55.e8.PubMedPubMedCentralCrossRef
206.
go back to reference Lu C, Xie C. Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway. Oncol Rep. 2016;35(6):3559–65.PubMedCrossRef Lu C, Xie C. Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway. Oncol Rep. 2016;35(6):3559–65.PubMedCrossRef
207.
go back to reference Chakradeo S, Sharma K, Alhaddad A, et al. Yet another function of p53–the switch that determines whether radiation-induced autophagy will be cytoprotective or nonprotective: implications for autophagy inhibition as a therapeutic strategy. Mol Pharmacol. 2015;87(5):803–14.PubMedPubMedCentralCrossRef Chakradeo S, Sharma K, Alhaddad A, et al. Yet another function of p53–the switch that determines whether radiation-induced autophagy will be cytoprotective or nonprotective: implications for autophagy inhibition as a therapeutic strategy. Mol Pharmacol. 2015;87(5):803–14.PubMedPubMedCentralCrossRef
208.
go back to reference Rosenfeld MR, Ye X, Supko JG, et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy. 2014;10(8):1359–68.PubMedPubMedCentralCrossRef Rosenfeld MR, Ye X, Supko JG, et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy. 2014;10(8):1359–68.PubMedPubMedCentralCrossRef
209.
go back to reference Bilger A, Bittner MI, Grosu AL, et al. FET-PET-based reirradiation and chloroquine in patients with recurrent glioblastoma: first tolerability and feasibility results. Strahlenther Onkol. 2014;190(10):957–61.PubMedCrossRef Bilger A, Bittner MI, Grosu AL, et al. FET-PET-based reirradiation and chloroquine in patients with recurrent glioblastoma: first tolerability and feasibility results. Strahlenther Onkol. 2014;190(10):957–61.PubMedCrossRef
210.
go back to reference Karagounis IV, Kalamida D, Mitrakas A, et al. Repression of the autophagic response sensitises lung cancer cells to radiation and chemotherapy. Br J Cancer. 2016;115(3):312–21.PubMedPubMedCentralCrossRef Karagounis IV, Kalamida D, Mitrakas A, et al. Repression of the autophagic response sensitises lung cancer cells to radiation and chemotherapy. Br J Cancer. 2016;115(3):312–21.PubMedPubMedCentralCrossRef
211.
go back to reference Kim WY, Oh SH, Woo JK, et al. Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1alpha. Cancer Res. 2009;69(4):1624–32.PubMedPubMedCentralCrossRef Kim WY, Oh SH, Woo JK, et al. Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1alpha. Cancer Res. 2009;69(4):1624–32.PubMedPubMedCentralCrossRef
212.
go back to reference Malla RR, Gopinath S, Alapati K, et al. uPAR and cathepsin B inhibition enhanced radiation-induced apoptosis in gliomainitiating cells. Neuro Oncol. 2012;14(6):745–60.PubMedPubMedCentralCrossRef Malla RR, Gopinath S, Alapati K, et al. uPAR and cathepsin B inhibition enhanced radiation-induced apoptosis in gliomainitiating cells. Neuro Oncol. 2012;14(6):745–60.PubMedPubMedCentralCrossRef
213.
go back to reference Seo HR, Bae S, Lee Y-S. Radiation-induced cathepsin S is involved in radioresistance. Int J Cancer. 2009;124(8):1794–801.PubMedCrossRef Seo HR, Bae S, Lee Y-S. Radiation-induced cathepsin S is involved in radioresistance. Int J Cancer. 2009;124(8):1794–801.PubMedCrossRef
214.
go back to reference Zhang QQ, Wang WJ, Li J, et al. Cathepsin L suppression increases the radiosensitivity of human glioma U251 cells via G2/M cell cycle arrest and DNA damage. Acta Pharmacol Sin. 2015;36(9):1113–25.PubMedPubMedCentralCrossRef Zhang QQ, Wang WJ, Li J, et al. Cathepsin L suppression increases the radiosensitivity of human glioma U251 cells via G2/M cell cycle arrest and DNA damage. Acta Pharmacol Sin. 2015;36(9):1113–25.PubMedPubMedCentralCrossRef
215.
go back to reference Wang W, Long L, Wang L, et al. Knockdown of Cathepsin L promotes radiosensitivity of glioma stem cells both in vivo and in vitro. Cancer Lett. 2016;371(2):274–84.PubMedCrossRef Wang W, Long L, Wang L, et al. Knockdown of Cathepsin L promotes radiosensitivity of glioma stem cells both in vivo and in vitro. Cancer Lett. 2016;371(2):274–84.PubMedCrossRef
216.
go back to reference Yang N, Wang P, Wang WJ, et al. Inhibition of cathepsin L sensitizes human glioma cells to ionizing radiation in vitro through NF-kappaB signaling pathway. Acta Pharmacol Sin. 2015;36(3):400–10.PubMedPubMedCentralCrossRef Yang N, Wang P, Wang WJ, et al. Inhibition of cathepsin L sensitizes human glioma cells to ionizing radiation in vitro through NF-kappaB signaling pathway. Acta Pharmacol Sin. 2015;36(3):400–10.PubMedPubMedCentralCrossRef
217.
go back to reference Gopinath S, Malla R, Alapati K, et al. Cathepsin B and uPAR regulate self-renewal of glioma-initiating cells through GLI-regulated Sox2 and Bmi1 expression. Carcinogenesis. 2013;34(3):550–9.PubMedCrossRef Gopinath S, Malla R, Alapati K, et al. Cathepsin B and uPAR regulate self-renewal of glioma-initiating cells through GLI-regulated Sox2 and Bmi1 expression. Carcinogenesis. 2013;34(3):550–9.PubMedCrossRef
218.
go back to reference Wang W, Long L, Wang L, et al. Knockdown of Cathepsin L promotes radiosensitivity of glioma stem cells both in vivo and in vitro. Cancer Lett. 2015;371:66. Wang W, Long L, Wang L, et al. Knockdown of Cathepsin L promotes radiosensitivity of glioma stem cells both in vivo and in vitro. Cancer Lett. 2015;371:66.
219.
go back to reference Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.PubMedCrossRef Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.PubMedCrossRef
220.
go back to reference Geisslinger F, Muller M, Vollmar AM, et al. Targeting lysosomes in cancer as promising strategy to overcome chemoresistance—a mini review. Front Oncol. 2020;10:1156.PubMedPubMedCentralCrossRef Geisslinger F, Muller M, Vollmar AM, et al. Targeting lysosomes in cancer as promising strategy to overcome chemoresistance—a mini review. Front Oncol. 2020;10:1156.PubMedPubMedCentralCrossRef
221.
go back to reference Halaby R, Resistance CD. Influence of lysosomal sequestration on multidrug resistance in cancer cells. Cancer Drug Resistance. 2019;2:31–42. Halaby R, Resistance CD. Influence of lysosomal sequestration on multidrug resistance in cancer cells. Cancer Drug Resistance. 2019;2:31–42.
222.
go back to reference Zhitomirsky B, Assaraf Y. Lysosomes as mediators of drug resistance in cancer. Drug Resist Updates. 2015;24:56. Zhitomirsky B, Assaraf Y. Lysosomes as mediators of drug resistance in cancer. Drug Resist Updates. 2015;24:56.
223.
go back to reference Al-Akra L, Bae DH, Sahni S, et al. Tumor stressors induce two mechanisms of intracellular P-glycoprotein-mediated resistance that are overcome by lysosomal-targeted thiosemicarbazones. J Biol Chem. 2018;293(10):3562–87.PubMedPubMedCentralCrossRef Al-Akra L, Bae DH, Sahni S, et al. Tumor stressors induce two mechanisms of intracellular P-glycoprotein-mediated resistance that are overcome by lysosomal-targeted thiosemicarbazones. J Biol Chem. 2018;293(10):3562–87.PubMedPubMedCentralCrossRef
224.
go back to reference Yamagishi T, Sahni S, Sharp DM, et al. P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration. J Biol Chem. 2013;288(44):31761–71.PubMedPubMedCentralCrossRef Yamagishi T, Sahni S, Sharp DM, et al. P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration. J Biol Chem. 2013;288(44):31761–71.PubMedPubMedCentralCrossRef
225.
go back to reference Schindler M, Grabski S, Hoff E, et al. Defective pH regulation of acidic compartments in human breast cancer cells (MCF-7) is normalized in adriamycin-resistant cells (MCF-7adr). Biochemistry. 1996;35(9):2811–7.PubMedCrossRef Schindler M, Grabski S, Hoff E, et al. Defective pH regulation of acidic compartments in human breast cancer cells (MCF-7) is normalized in adriamycin-resistant cells (MCF-7adr). Biochemistry. 1996;35(9):2811–7.PubMedCrossRef
226.
go back to reference You H, Jin J, Shu H, et al. Small interfering RNA targeting the subunit ATP6L of proton pump V-ATPase overcomes chemoresistance of breast cancer cells. Cancer Lett. 2009;280(1):110–9.PubMedCrossRef You H, Jin J, Shu H, et al. Small interfering RNA targeting the subunit ATP6L of proton pump V-ATPase overcomes chemoresistance of breast cancer cells. Cancer Lett. 2009;280(1):110–9.PubMedCrossRef
227.
go back to reference Zhitomirsky B, Assaraf YG. Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome-dependent cancer multidrug resistance. Oncotarget. 2015;6(2):1143–56.PubMedCrossRef Zhitomirsky B, Assaraf YG. Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome-dependent cancer multidrug resistance. Oncotarget. 2015;6(2):1143–56.PubMedCrossRef
228.
go back to reference Zhitomirsky B, Yunaev A, Kreiserman R, et al. Lysosomotropic drugs activate TFEB via lysosomal membrane fluidization and consequent inhibition of mTORC1 activity. Cell Death Dis. 2018;9(12):1191.PubMedPubMedCentralCrossRef Zhitomirsky B, Yunaev A, Kreiserman R, et al. Lysosomotropic drugs activate TFEB via lysosomal membrane fluidization and consequent inhibition of mTORC1 activity. Cell Death Dis. 2018;9(12):1191.PubMedPubMedCentralCrossRef
230.
go back to reference Cai Q, Wang S, Jin L, et al. Long non-coding RNA GBCDRlnc1 induces chemoresistance of gallbladder cancer cells by activating autophagy. Mol Cancer. 2019;18(1):56.CrossRef Cai Q, Wang S, Jin L, et al. Long non-coding RNA GBCDRlnc1 induces chemoresistance of gallbladder cancer cells by activating autophagy. Mol Cancer. 2019;18(1):56.CrossRef
231.
go back to reference Wu J, Li W, Ning J, et al. Long noncoding RNA UCA1 targets miR-582-5p and contributes to the progression and drug resistance of bladder cancer cells through ATG7-mediated autophagy inhibition. Onco Targets Ther. 2019;12:495–508.PubMedPubMedCentralCrossRef Wu J, Li W, Ning J, et al. Long noncoding RNA UCA1 targets miR-582-5p and contributes to the progression and drug resistance of bladder cancer cells through ATG7-mediated autophagy inhibition. Onco Targets Ther. 2019;12:495–508.PubMedPubMedCentralCrossRef
232.
go back to reference Zhu Z, Zhang P, Li N, et al. Lovastatin enhances cytotoxicity of temozolomide via impairing autophagic flux in glioblastoma cells. Biomed Res Int. 2019;2019:2710693.PubMedPubMedCentralCrossRef Zhu Z, Zhang P, Li N, et al. Lovastatin enhances cytotoxicity of temozolomide via impairing autophagic flux in glioblastoma cells. Biomed Res Int. 2019;2019:2710693.PubMedPubMedCentralCrossRef
233.
go back to reference Lin Z, Zhang Z, Jiang X, et al. Mevastatin blockade of autolysosome maturation stimulates LBH589-induced cell death in triple-negative breast cancer cells. Oncotarget. 2017;8(11):17833–48.PubMedPubMedCentralCrossRef Lin Z, Zhang Z, Jiang X, et al. Mevastatin blockade of autolysosome maturation stimulates LBH589-induced cell death in triple-negative breast cancer cells. Oncotarget. 2017;8(11):17833–48.PubMedPubMedCentralCrossRef
234.
go back to reference Vallecillo-Hernandez J, Barrachina MD, Ortiz-Masia D, et al. Indomethacin disrupts autophagic flux by inducing lysosomal dysfunction in gastric cancer cells and increases their sensitivity to cytotoxic drugs. Sci Rep. 2018;8(1):3593.PubMedPubMedCentralCrossRef Vallecillo-Hernandez J, Barrachina MD, Ortiz-Masia D, et al. Indomethacin disrupts autophagic flux by inducing lysosomal dysfunction in gastric cancer cells and increases their sensitivity to cytotoxic drugs. Sci Rep. 2018;8(1):3593.PubMedPubMedCentralCrossRef
235.
go back to reference Zhang X, Kumstel S, Jiang K, et al. LW6 enhances chemosensitivity to gemcitabine and inhibits autophagic flux in pancreatic cancer. J Adv Res. 2019;20:9–21.PubMedPubMedCentralCrossRef Zhang X, Kumstel S, Jiang K, et al. LW6 enhances chemosensitivity to gemcitabine and inhibits autophagic flux in pancreatic cancer. J Adv Res. 2019;20:9–21.PubMedPubMedCentralCrossRef
236.
go back to reference Huang AC, Lien JC, Lin MW, et al. Tetrandrine induces cell death in SAS human oral cancer cells through caspase activation-dependent apoptosis and LC3-I and LC3-II activation-dependent autophagy. Int J Oncol. 2013;43(2):485–94.PubMedCrossRef Huang AC, Lien JC, Lin MW, et al. Tetrandrine induces cell death in SAS human oral cancer cells through caspase activation-dependent apoptosis and LC3-I and LC3-II activation-dependent autophagy. Int J Oncol. 2013;43(2):485–94.PubMedCrossRef
237.
go back to reference Kuo HH, Kakadiya R, Wu YC, et al. Derivatives of 6-cinnamamido-quinoline-4-carboxamide impair lysosome function and induce apoptosis. Oncotarget. 2016;7(25):38078–90.PubMedPubMedCentralCrossRef Kuo HH, Kakadiya R, Wu YC, et al. Derivatives of 6-cinnamamido-quinoline-4-carboxamide impair lysosome function and induce apoptosis. Oncotarget. 2016;7(25):38078–90.PubMedPubMedCentralCrossRef
239.
go back to reference Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016;19(1):20–7.PubMedPubMedCentralCrossRef Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016;19(1):20–7.PubMedPubMedCentralCrossRef
240.
go back to reference Song W, Mazzieri R, Yang T, et al. Translational significance for tumor metastasis of tumor-associated macrophages and epithelial-mesenchymal transition. Front Immunol. 2017;8:1106.PubMedPubMedCentralCrossRef Song W, Mazzieri R, Yang T, et al. Translational significance for tumor metastasis of tumor-associated macrophages and epithelial-mesenchymal transition. Front Immunol. 2017;8:1106.PubMedPubMedCentralCrossRef
241.
go back to reference Jayasingam SD, Citartan M, Thang TH, et al. Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Front Oncol. 2019;9:1512.PubMedCrossRef Jayasingam SD, Citartan M, Thang TH, et al. Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Front Oncol. 2019;9:1512.PubMedCrossRef
242.
go back to reference Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.PubMedCrossRef Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.PubMedCrossRef
245.
go back to reference Sica A, Erreni M, Allavena P, et al. Macrophage polarization in pathology. Cell Mol Life Sci. 2015;72(21):4111–26.PubMedCrossRef Sica A, Erreni M, Allavena P, et al. Macrophage polarization in pathology. Cell Mol Life Sci. 2015;72(21):4111–26.PubMedCrossRef
246.
go back to reference Genin M, Clement F, Fattaccioli A, et al. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 2015;15:577.PubMedPubMedCentralCrossRef Genin M, Clement F, Fattaccioli A, et al. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 2015;15:577.PubMedPubMedCentralCrossRef
247.
go back to reference Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11(11):750–61.PubMedCrossRef Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11(11):750–61.PubMedCrossRef
248.
go back to reference Ghassabeh GH, De BP, Brys L, et al. Identification of a common gene signature for type II cytokine-associated myeloid cells elicited in vivo in different pathologic conditions. Blood. 2006;108(2):575–83.PubMedCrossRef Ghassabeh GH, De BP, Brys L, et al. Identification of a common gene signature for type II cytokine-associated myeloid cells elicited in vivo in different pathologic conditions. Blood. 2006;108(2):575–83.PubMedCrossRef
249.
go back to reference Stein MB, Keshav S, Harris N, et al. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176(1):287–92.PubMedCrossRef Stein MB, Keshav S, Harris N, et al. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176(1):287–92.PubMedCrossRef
250.
go back to reference Goerdt S, Orfanos CE. Other functions, other genes: alternative activation of antigen-presenting cells. Immunity. 1999;10(2):137–42.PubMedCrossRef Goerdt S, Orfanos CE. Other functions, other genes: alternative activation of antigen-presenting cells. Immunity. 1999;10(2):137–42.PubMedCrossRef
251.
go back to reference Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Cells. 2011;12(11):1035–44. Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Cells. 2011;12(11):1035–44.
252.
go back to reference Yin M, Zhou HJ, Zhang J, et al. ASK1-dependent endothelial cell activation is critical in ovarian cancer growth and metastasis. JCI Insight. 2017;2(18):56.CrossRef Yin M, Zhou HJ, Zhang J, et al. ASK1-dependent endothelial cell activation is critical in ovarian cancer growth and metastasis. JCI Insight. 2017;2(18):56.CrossRef
253.
go back to reference Shan M, Qin J, Jin F, et al. Autophagy suppresses isoprenaline-induced M2 macrophage polarization via the ROS/ERK and mTOR signaling pathway. Free Radic Biol Med. 2017;16:25. Shan M, Qin J, Jin F, et al. Autophagy suppresses isoprenaline-induced M2 macrophage polarization via the ROS/ERK and mTOR signaling pathway. Free Radic Biol Med. 2017;16:25.
254.
go back to reference Dongyao, Yan, Hao-Wei, et al. STAT3 and STAT6 signaling pathways synergize to promote cathepsin secretion from macrophages via IRE1α activation. 2016. Dongyao, Yan, Hao-Wei, et al. STAT3 and STAT6 signaling pathways synergize to promote cathepsin secretion from macrophages via IRE1α activation. 2016.
255.
go back to reference Liu N, Luo J, Kuang D, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α–mediated tumor progression. J Clin Investig. 2019;129(2):631–46.PubMedCrossRefPubMedCentral Liu N, Luo J, Kuang D, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α–mediated tumor progression. J Clin Investig. 2019;129(2):631–46.PubMedCrossRefPubMedCentral
256.
go back to reference Chang CP, Su YC, Hu CW, et al. TLR2-dependent selective autophagy regulates NF-kappaB lysosomal degradation in hepatoma-derived M2 macrophage differentiation. Cell Death Differ. 2013;20(3):515–23.PubMedCrossRef Chang CP, Su YC, Hu CW, et al. TLR2-dependent selective autophagy regulates NF-kappaB lysosomal degradation in hepatoma-derived M2 macrophage differentiation. Cell Death Differ. 2013;20(3):515–23.PubMedCrossRef
257.
go back to reference Yang M, Liu J, Shao J, et al. Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization. Mol Cancer. 2014;13(1):43–43.PubMedPubMedCentralCrossRef Yang M, Liu J, Shao J, et al. Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization. Mol Cancer. 2014;13(1):43–43.PubMedPubMedCentralCrossRef
258.
go back to reference Chang CP, Su Y-C, Lee P-H, et al. Targeting NFKB by autophagy to polarize hepatoma-associated macrophage differentiation. Autophagy. 2013;9(4):619–21.PubMedPubMedCentralCrossRef Chang CP, Su Y-C, Lee P-H, et al. Targeting NFKB by autophagy to polarize hepatoma-associated macrophage differentiation. Autophagy. 2013;9(4):619–21.PubMedPubMedCentralCrossRef
259.
260.
go back to reference Ruibo W, et al. Tumor cells induce LAMP2a expression in tumor-associated macrophage for cancer progression. 2019. Ruibo W, et al. Tumor cells induce LAMP2a expression in tumor-associated macrophage for cancer progression. 2019.
261.
262.
go back to reference Müller E, Speth M, Christopoulos P, et al. Both type I and type II interferons can activate antitumor M1 macrophages when combined with TLR stimulation. Front Immunol. 2018;9:56.CrossRef Müller E, Speth M, Christopoulos P, et al. Both type I and type II interferons can activate antitumor M1 macrophages when combined with TLR stimulation. Front Immunol. 2018;9:56.CrossRef
263.
go back to reference Bellora F, Castriconi R, Dondero A, et al. TLR activation of tumor-associated macrophages from ovarian cancer patients triggers cytolytic activity of NK cells. Eur J Immunol. 2014;44:56.CrossRef Bellora F, Castriconi R, Dondero A, et al. TLR activation of tumor-associated macrophages from ovarian cancer patients triggers cytolytic activity of NK cells. Eur J Immunol. 2014;44:56.CrossRef
264.
go back to reference Huang Z, Yang Y, Jiang Y, et al. Anti-tumor immune responses of tumor-associated macrophages via toll-like receptor 4 triggered by cationic polymers. Biomaterials. 2013;34(3):746–55.PubMedCrossRef Huang Z, Yang Y, Jiang Y, et al. Anti-tumor immune responses of tumor-associated macrophages via toll-like receptor 4 triggered by cationic polymers. Biomaterials. 2013;34(3):746–55.PubMedCrossRef
265.
go back to reference Wu L, Tang H, Zheng H, et al. Multiwalled carbon nanotubes prevent tumor metastasis through switching M2-polarized macrophages to M1 via TLR4 activation. J Biomed Nanotechnol. 2019;15(1):138–50.PubMedCrossRef Wu L, Tang H, Zheng H, et al. Multiwalled carbon nanotubes prevent tumor metastasis through switching M2-polarized macrophages to M1 via TLR4 activation. J Biomed Nanotechnol. 2019;15(1):138–50.PubMedCrossRef
266.
go back to reference Sato-Kaneko F, Yao S, Ahmadi A, et al. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight. 2017;2:56.CrossRef Sato-Kaneko F, Yao S, Ahmadi A, et al. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight. 2017;2:56.CrossRef
267.
go back to reference Peng J, Tsang J, Li D, et al. Inhibition of TGF-β signaling in combination with TLR7 ligation re-programs a tumoricidal phenotype in tumor-associated macrophages. Cancer Lett. 2013;331:56.CrossRef Peng J, Tsang J, Li D, et al. Inhibition of TGF-β signaling in combination with TLR7 ligation re-programs a tumoricidal phenotype in tumor-associated macrophages. Cancer Lett. 2013;331:56.CrossRef
268.
go back to reference Huang Z, Gan J, Long Z, et al. Targeted delivery of let-7b to reprogramme tumor-associated macrophages and tumor infiltrating dendritic cells for tumor rejection. Biomaterials. 2016;90:56.CrossRef Huang Z, Gan J, Long Z, et al. Targeted delivery of let-7b to reprogramme tumor-associated macrophages and tumor infiltrating dendritic cells for tumor rejection. Biomaterials. 2016;90:56.CrossRef
269.
go back to reference Liu Z, Xie Y, Xiong Y, et al. TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages. Cancer Lett. 2019;469:56.CrossRef Liu Z, Xie Y, Xiong Y, et al. TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages. Cancer Lett. 2019;469:56.CrossRef
270.
go back to reference Muraoka D, Seo N, Hayashi T, et al. Antigen delivery targeted to tumor-associated macrophages overcomes tumor immune resistance. J Clin Investig. 2019;129:56.CrossRef Muraoka D, Seo N, Hayashi T, et al. Antigen delivery targeted to tumor-associated macrophages overcomes tumor immune resistance. J Clin Investig. 2019;129:56.CrossRef
271.
go back to reference Sato Y, Goto Y, Narita N, et al. Cancer cells expressing toll-like receptors and the tumor microenvironment. Cancer Microenviron. 2009;2:S205–14.CrossRef Sato Y, Goto Y, Narita N, et al. Cancer cells expressing toll-like receptors and the tumor microenvironment. Cancer Microenviron. 2009;2:S205–14.CrossRef
272.
go back to reference Korneev K, Atretkhany K-S, Drutskaya M, et al. TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine. 2016;89:514. Korneev K, Atretkhany K-S, Drutskaya M, et al. TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine. 2016;89:514.
273.
go back to reference Chen C-C, Cang C, Fenske S, et al. Patch-clamp technique to characterize ion channels in enlarged individual endolysosomes. Nat Protoc. 2017;12:1639–58.PubMedCrossRef Chen C-C, Cang C, Fenske S, et al. Patch-clamp technique to characterize ion channels in enlarged individual endolysosomes. Nat Protoc. 2017;12:1639–58.PubMedCrossRef
274.
go back to reference Seglen P, Grinde B, Solheim A. Inhibition of the lysosomal pathway of protein degradation in isolated rat hepatocytes by ammonia, methylamine, chloroquine and leupeptin. Eur J Biochem/FEBS. 1979;95:215–25.CrossRef Seglen P, Grinde B, Solheim A. Inhibition of the lysosomal pathway of protein degradation in isolated rat hepatocytes by ammonia, methylamine, chloroquine and leupeptin. Eur J Biochem/FEBS. 1979;95:215–25.CrossRef
275.
go back to reference Chen D, Xie J, Fiskesund R, et al. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat Commun. 2018;9(1):873.PubMedPubMedCentralCrossRef Chen D, Xie J, Fiskesund R, et al. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat Commun. 2018;9(1):873.PubMedPubMedCentralCrossRef
276.
go back to reference Li Y, Cao F, Li M, et al. Hydroxychloroquine induced lung cancer suppression by enhancing chemo-sensitization and promoting the transition of M2-TAMs to M1-like macrophages. J Exp Clin Cancer Res. 2018;37:56.PubMedPubMedCentralCrossRef Li Y, Cao F, Li M, et al. Hydroxychloroquine induced lung cancer suppression by enhancing chemo-sensitization and promoting the transition of M2-TAMs to M1-like macrophages. J Exp Clin Cancer Res. 2018;37:56.PubMedPubMedCentralCrossRef
277.
go back to reference Canton J, Khezri R, Glogauer M, et al. Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages. Mol Biol Cell. 2014;25(21):3330–41.PubMedPubMedCentralCrossRef Canton J, Khezri R, Glogauer M, et al. Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages. Mol Biol Cell. 2014;25(21):3330–41.PubMedPubMedCentralCrossRef
278.
go back to reference Wang R, Zhang J, Chen S, et al. Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression. Lung Cancer. 2011;74:188–96.PubMedCrossRef Wang R, Zhang J, Chen S, et al. Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression. Lung Cancer. 2011;74:188–96.PubMedCrossRef
279.
280.
go back to reference Gocheva V, Wang H-W, Gadea B, et al. Abstract LB-379: IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 2010;24:241–55.PubMedPubMedCentralCrossRef Gocheva V, Wang H-W, Gadea B, et al. Abstract LB-379: IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 2010;24:241–55.PubMedPubMedCentralCrossRef
281.
go back to reference Naegler D, Storer A, Portaro F, et al. Major increase in endopeptidase activity of human cathepsin B upon removal of occluding loop contacts†. Biochemistry. 1997;36:12608–15.CrossRef Naegler D, Storer A, Portaro F, et al. Major increase in endopeptidase activity of human cathepsin B upon removal of occluding loop contacts†. Biochemistry. 1997;36:12608–15.CrossRef
282.
go back to reference Koblinski J, Ahram M, Sloane B. Unraveling the role of proteases in cancer. Clin Chim Acta Int J Clin Chem. 2000;291:113–35.CrossRef Koblinski J, Ahram M, Sloane B. Unraveling the role of proteases in cancer. Clin Chim Acta Int J Clin Chem. 2000;291:113–35.CrossRef
283.
go back to reference Vasiljeva O, Papazoglou A, Krüger A, et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Can Res. 2006;66:5242–50.CrossRef Vasiljeva O, Papazoglou A, Krüger A, et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Can Res. 2006;66:5242–50.CrossRef
284.
285.
go back to reference Madsen DH, Jurgensen HJ, Siersbaek M, et al. Tumor-associated macrophages derived from circulating inflammatory monocytes degrade collagen through cellular uptake. Cell Rep. 2017;21(13):3662–71.PubMedPubMedCentralCrossRef Madsen DH, Jurgensen HJ, Siersbaek M, et al. Tumor-associated macrophages derived from circulating inflammatory monocytes degrade collagen through cellular uptake. Cell Rep. 2017;21(13):3662–71.PubMedPubMedCentralCrossRef
286.
go back to reference Small D, Burden R, Jaworski J, et al. Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization. Int J Cancer J Cancer. 2013;133:568. Small D, Burden R, Jaworski J, et al. Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization. Int J Cancer J Cancer. 2013;133:568.
287.
go back to reference Beaujouin M, Baghdiguian S, Glondu-Lassis M, et al. Overexpression of both catalytically active and -inactive cathepsin D by cancer cells enhances apoptosis-dependent chemo-sensitivity. Oncogene. 2006;25(13):1967–73.PubMedPubMedCentralCrossRef Beaujouin M, Baghdiguian S, Glondu-Lassis M, et al. Overexpression of both catalytically active and -inactive cathepsin D by cancer cells enhances apoptosis-dependent chemo-sensitivity. Oncogene. 2006;25(13):1967–73.PubMedPubMedCentralCrossRef
288.
go back to reference Larionova I, Cherdyntseva N, Liu T, et al. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology. 2019;8(7):1596004–104.PubMedPubMedCentralCrossRef Larionova I, Cherdyntseva N, Liu T, et al. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology. 2019;8(7):1596004–104.PubMedPubMedCentralCrossRef
289.
go back to reference Bruchard M, Mignot G, Derangère V, et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Natre Med. 2012;19:568. Bruchard M, Mignot G, Derangère V, et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Natre Med. 2012;19:568.
290.
go back to reference Herroon M, Rajagurubandara E, Rudy D, et al. Macrophage cathepsin K promotes prostate tumor progression in bone. Oncogene. 2012;2:568. Herroon M, Rajagurubandara E, Rudy D, et al. Macrophage cathepsin K promotes prostate tumor progression in bone. Oncogene. 2012;2:568.
291.
go back to reference Wilkinson R, Magorrian S, Williams R, et al. CCL2 is transcriptionally controlled by the lysosomal protease cathepsin S in a CD74-dependent manner. Oncotarget. 2015;6:56.CrossRef Wilkinson R, Magorrian S, Williams R, et al. CCL2 is transcriptionally controlled by the lysosomal protease cathepsin S in a CD74-dependent manner. Oncotarget. 2015;6:56.CrossRef
293.
go back to reference Kitamura H, Ohno Y, Toyoshima Y, et al. Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy. Cancer Sci. 2017;108(10):1947–52.PubMedPubMedCentralCrossRef Kitamura H, Ohno Y, Toyoshima Y, et al. Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy. Cancer Sci. 2017;108(10):1947–52.PubMedPubMedCentralCrossRef
294.
go back to reference Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell. 2019;179(4):829e20-45e20.CrossRef Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell. 2019;179(4):829e20-45e20.CrossRef
295.
go back to reference Nishimura J, Tanaka H, Yamakoshi Y, et al. Impact of tumor-infiltrating LAMP-3 dendritic cells on the prognosis of esophageal squamous cell carcinoma. Esophagus. 2019;16(4):333–44.PubMedCrossRef Nishimura J, Tanaka H, Yamakoshi Y, et al. Impact of tumor-infiltrating LAMP-3 dendritic cells on the prognosis of esophageal squamous cell carcinoma. Esophagus. 2019;16(4):333–44.PubMedCrossRef
296.
go back to reference Parekh VV, Pabbisetty SK, Wu L, et al. Autophagy-related protein Vps34 controls the homeostasis and function of antigen cross-presenting CD8alpha(+) dendritic cells. Proc Natl Acad Sci USA. 2017;114(31):E6371–80.PubMedCrossRefPubMedCentral Parekh VV, Pabbisetty SK, Wu L, et al. Autophagy-related protein Vps34 controls the homeostasis and function of antigen cross-presenting CD8alpha(+) dendritic cells. Proc Natl Acad Sci USA. 2017;114(31):E6371–80.PubMedCrossRefPubMedCentral
297.
go back to reference Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18(2):99–115.PubMedCrossRef Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18(2):99–115.PubMedCrossRef
298.
go back to reference Martinez-Outschoorn UE, Whitaker-Menezes D, Lin Z, et al. Cytokine production and inflammation drive autophagy in the tumor microenvironment: role of stromal caveolin-1 as a key regulator. Cell Cycle. 2011;10(11):1784–93.PubMedPubMedCentralCrossRef Martinez-Outschoorn UE, Whitaker-Menezes D, Lin Z, et al. Cytokine production and inflammation drive autophagy in the tumor microenvironment: role of stromal caveolin-1 as a key regulator. Cell Cycle. 2011;10(11):1784–93.PubMedPubMedCentralCrossRef
299.
go back to reference Martinez-Outschoorn UE, Trimmer C, Lin Z, et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle. 2010;9(17):3515–33.PubMedPubMedCentralCrossRef Martinez-Outschoorn UE, Trimmer C, Lin Z, et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle. 2010;9(17):3515–33.PubMedPubMedCentralCrossRef
300.
go back to reference Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle. 2010;9(16):3256–76.PubMedPubMedCentralCrossRef Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle. 2010;9(16):3256–76.PubMedPubMedCentralCrossRef
301.
go back to reference Salem AF, Howell A, Sartini M, et al. Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1alpha, autophagy and ketone body production. Cell Cycle. 2012;11(22):4167–73.PubMedPubMedCentralCrossRef Salem AF, Howell A, Sartini M, et al. Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1alpha, autophagy and ketone body production. Cell Cycle. 2012;11(22):4167–73.PubMedPubMedCentralCrossRef
302.
go back to reference Avena P, Anselmo W, Whitaker-Menezes D, et al. Compartment-specific activation of PPARgamma governs breast cancer tumor growth, via metabolic reprogramming and symbiosis. Cell Cycle. 2013;12(9):1360–70.PubMedPubMedCentralCrossRef Avena P, Anselmo W, Whitaker-Menezes D, et al. Compartment-specific activation of PPARgamma governs breast cancer tumor growth, via metabolic reprogramming and symbiosis. Cell Cycle. 2013;12(9):1360–70.PubMedPubMedCentralCrossRef
303.
go back to reference Zhang X, Schonrogge M, Eichberg J, et al. Blocking autophagy in cancer-associated fibroblasts supports chemotherapy of pancreatic cancer cells. Front Oncol. 2018;8:590.PubMedPubMedCentralCrossRef Zhang X, Schonrogge M, Eichberg J, et al. Blocking autophagy in cancer-associated fibroblasts supports chemotherapy of pancreatic cancer cells. Front Oncol. 2018;8:590.PubMedPubMedCentralCrossRef
304.
go back to reference Molejon MI, Swayden M, Fanale D, et al. Chloroquine plays a cell-dependent role in the response to treatment of pancreatic adenocarcinoma. Oncotarget. 2018;9(56):30837–46.PubMedPubMedCentralCrossRef Molejon MI, Swayden M, Fanale D, et al. Chloroquine plays a cell-dependent role in the response to treatment of pancreatic adenocarcinoma. Oncotarget. 2018;9(56):30837–46.PubMedPubMedCentralCrossRef
305.
go back to reference Wang M, Zhang J, Huang Y, et al. Cancer-associated fibroblasts autophagy enhances progression of triple-negative breast cancer cells. Med Sci Monit. 2017;23:3904–12.PubMedPubMedCentralCrossRef Wang M, Zhang J, Huang Y, et al. Cancer-associated fibroblasts autophagy enhances progression of triple-negative breast cancer cells. Med Sci Monit. 2017;23:3904–12.PubMedPubMedCentralCrossRef
306.
go back to reference Zhao XL, Lin Y, Jiang J, et al. High-mobility group box 1 released by autophagic cancer-associated fibroblasts maintains the stemness of luminal breast cancer cells. J Pathol. 2017;243(3):376–89.PubMedCrossRefPubMedCentral Zhao XL, Lin Y, Jiang J, et al. High-mobility group box 1 released by autophagic cancer-associated fibroblasts maintains the stemness of luminal breast cancer cells. J Pathol. 2017;243(3):376–89.PubMedCrossRefPubMedCentral
307.
go back to reference Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15(6):388–400.PubMedCrossRef Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15(6):388–400.PubMedCrossRef
309.
go back to reference Vodnala SK, Eil R, Kishton RJ, et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science. 2019;363:6434.CrossRef Vodnala SK, Eil R, Kishton RJ, et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science. 2019;363:6434.CrossRef
310.
go back to reference DeVorkin L, Pavey N, Carleton G, et al. Autophagy regulation of metabolism is required for CD8(+) T cell anti-tumor immunity. Cell Rep. 2019;27(2):502e5-13e5.CrossRef DeVorkin L, Pavey N, Carleton G, et al. Autophagy regulation of metabolism is required for CD8(+) T cell anti-tumor immunity. Cell Rep. 2019;27(2):502e5-13e5.CrossRef
311.
go back to reference Rivera Vargas T, Cai Z, Shen Y, et al. Selective degradation of PU.1 during autophagy represses the differentiation and antitumour activity of TH9 cells. Nat Commun. 2017;8(1):559.PubMedPubMedCentralCrossRef Rivera Vargas T, Cai Z, Shen Y, et al. Selective degradation of PU.1 during autophagy represses the differentiation and antitumour activity of TH9 cells. Nat Commun. 2017;8(1):559.PubMedPubMedCentralCrossRef
312.
go back to reference Benoit-Lizon I, Jacquin E, Apetoh L. Selective autophagy restricts IL-9 secretion from TH9 cells: relevance in cancer growth. Cell Cycle. 2018;17(4):391–2.PubMedPubMedCentralCrossRef Benoit-Lizon I, Jacquin E, Apetoh L. Selective autophagy restricts IL-9 secretion from TH9 cells: relevance in cancer growth. Cell Cycle. 2018;17(4):391–2.PubMedPubMedCentralCrossRef
313.
go back to reference Wei J, Long L, Yang K, et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol. 2016;17(3):277–85.PubMedPubMedCentralCrossRef Wei J, Long L, Yang K, et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol. 2016;17(3):277–85.PubMedPubMedCentralCrossRef
314.
go back to reference Yu X, Teng XL, Wang F, et al. Metabolic control of regulatory T cell stability and function by TRAF3IP3 at the lysosome. J Exp Med. 2018;215(9):2463–76.PubMedPubMedCentralCrossRef Yu X, Teng XL, Wang F, et al. Metabolic control of regulatory T cell stability and function by TRAF3IP3 at the lysosome. J Exp Med. 2018;215(9):2463–76.PubMedPubMedCentralCrossRef
315.
go back to reference Platt FM. Emptying the stores: lysosomal diseases and therapeutic strategies. Nat Rev Drug Discov. 2018;17(2):133–50.PubMedCrossRef Platt FM. Emptying the stores: lysosomal diseases and therapeutic strategies. Nat Rev Drug Discov. 2018;17(2):133–50.PubMedCrossRef
316.
317.
go back to reference Verheye S, Martinet W, Kockx MM, et al. Selective clearance of macrophages in atherosclerotic plaques by autophagy. J Am Coll Cardiol. 2007;49(6):706–15.PubMedCrossRef Verheye S, Martinet W, Kockx MM, et al. Selective clearance of macrophages in atherosclerotic plaques by autophagy. J Am Coll Cardiol. 2007;49(6):706–15.PubMedCrossRef
318.
go back to reference Pakala R, Stabile E, Jang GJ, et al. Rapamycin attenuates atherosclerotic plaque progression in apolipoprotein E knockout mice: inhibitory effect on monocyte chemotaxis. J Cardiovasc Pharmacol. 2005;46(4):481–6.PubMedCrossRef Pakala R, Stabile E, Jang GJ, et al. Rapamycin attenuates atherosclerotic plaque progression in apolipoprotein E knockout mice: inhibitory effect on monocyte chemotaxis. J Cardiovasc Pharmacol. 2005;46(4):481–6.PubMedCrossRef
319.
go back to reference Mueller MA, Beutner F, Teupser D, et al. Prevention of atherosclerosis by the mTOR inhibitor everolimus in LDLR−/− mice despite severe hypercholesterolemia. Atherosclerosis. 2008;198(1):39–48.PubMedCrossRef Mueller MA, Beutner F, Teupser D, et al. Prevention of atherosclerosis by the mTOR inhibitor everolimus in LDLR−/− mice despite severe hypercholesterolemia. Atherosclerosis. 2008;198(1):39–48.PubMedCrossRef
320.
go back to reference Zhao L, Ding T, Cyrus T, et al. Low-dose oral sirolimus reduces atherogenesis, vascular inflammation and modulates plaque composition in mice lacking the LDL receptor. Br J Pharmacol. 2009;156(5):774–85.PubMedPubMedCentralCrossRef Zhao L, Ding T, Cyrus T, et al. Low-dose oral sirolimus reduces atherogenesis, vascular inflammation and modulates plaque composition in mice lacking the LDL receptor. Br J Pharmacol. 2009;156(5):774–85.PubMedPubMedCentralCrossRef
321.
go back to reference Yang M, Liu J, Shao J, et al. Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization. Mol Cancer. 2020;13(1):43.CrossRef Yang M, Liu J, Shao J, et al. Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization. Mol Cancer. 2020;13(1):43.CrossRef
322.
go back to reference Zhao Y, Guo Y, Jiang Y, et al. Mitophagy regulates macrophage phenotype in diabetic nephropathy rats. Biochem Biophys Res Commun. 2017;494(1–2):42–50.PubMedCrossRef Zhao Y, Guo Y, Jiang Y, et al. Mitophagy regulates macrophage phenotype in diabetic nephropathy rats. Biochem Biophys Res Commun. 2017;494(1–2):42–50.PubMedCrossRef
323.
go back to reference Cui SN, Chen ZY, Yang XB, et al. Trichostatin A modulates the macrophage phenotype by enhancing autophagy to reduce inflammation during polymicrobial sepsis. Int Immunopharmacol. 2019;77:105973.PubMedCrossRef Cui SN, Chen ZY, Yang XB, et al. Trichostatin A modulates the macrophage phenotype by enhancing autophagy to reduce inflammation during polymicrobial sepsis. Int Immunopharmacol. 2019;77:105973.PubMedCrossRef
324.
325.
go back to reference Boakye YD, Groyer L, Heiss EH. An increased autophagic flux contributes to the anti-inflammatory potential of urolithin A in macrophages. Biochimica Et Biophysica Acta. 2018;32:76. Boakye YD, Groyer L, Heiss EH. An increased autophagic flux contributes to the anti-inflammatory potential of urolithin A in macrophages. Biochimica Et Biophysica Acta. 2018;32:76.
326.
go back to reference Zhou S, Jian G, Rui L, et al. Spermine alleviates acute liver injury by inhibiting liver-resident macrophage pro-inflammatory response through ATG5-dependent autophagy. Front Immunol. 2018;9:948.PubMedPubMedCentralCrossRef Zhou S, Jian G, Rui L, et al. Spermine alleviates acute liver injury by inhibiting liver-resident macrophage pro-inflammatory response through ATG5-dependent autophagy. Front Immunol. 2018;9:948.PubMedPubMedCentralCrossRef
328.
go back to reference Kos J, Mitrović A, Mirković B. The current stage of cathepsin B inhibitors as potential anticancer agents. Fut Med Chem. 2014;6(11):1355–71.CrossRef Kos J, Mitrović A, Mirković B. The current stage of cathepsin B inhibitors as potential anticancer agents. Fut Med Chem. 2014;6(11):1355–71.CrossRef
329.
go back to reference Paukner S, Kudela P, Kohl G, et al. DNA-loaded bacterial ghosts efficiently mediate reporter gene transfer and expression in macrophages. Mol Ther. 2005;11:215–23.PubMedCrossRef Paukner S, Kudela P, Kohl G, et al. DNA-loaded bacterial ghosts efficiently mediate reporter gene transfer and expression in macrophages. Mol Ther. 2005;11:215–23.PubMedCrossRef
330.
go back to reference Yudong, S, et al. Combination antitumor immunotherapy with VEGF and PIGF siRNA via systemic delivery of multi-functionalized nanoparticles to tumor-associated macrophages and breast cancer cells. 2018. Yudong, S, et al. Combination antitumor immunotherapy with VEGF and PIGF siRNA via systemic delivery of multi-functionalized nanoparticles to tumor-associated macrophages and breast cancer cells. 2018.
331.
go back to reference Hayashi N, Kataoka H, Yano S, et al. A novel photodynamic therapy targeting cancer cells and tumor-associated macrophages. Mol Cancer Ther. 2015;14(2):452–60.PubMedCrossRef Hayashi N, Kataoka H, Yano S, et al. A novel photodynamic therapy targeting cancer cells and tumor-associated macrophages. Mol Cancer Ther. 2015;14(2):452–60.PubMedCrossRef
332.
go back to reference Zheng H, Li J, Wang M, et al. Exhausting tumor associated macrophages with sialic acid-polyethyleneimine-cholesterol modified liposomal doxorubicin for enhancing sarcoma chemotherapy. Int J Pharms. 2019;63:558. Zheng H, Li J, Wang M, et al. Exhausting tumor associated macrophages with sialic acid-polyethyleneimine-cholesterol modified liposomal doxorubicin for enhancing sarcoma chemotherapy. Int J Pharms. 2019;63:558.
333.
go back to reference Binaschi M, Parlani M, Bellarosa D, et al. Human and murine macrophages mediate activation of MEN 4901/T-0128: a new promising camptothecin analogue-polysaccharide conjugate. Anticancer Drugs. 2006;17(10):1119–26.PubMedCrossRef Binaschi M, Parlani M, Bellarosa D, et al. Human and murine macrophages mediate activation of MEN 4901/T-0128: a new promising camptothecin analogue-polysaccharide conjugate. Anticancer Drugs. 2006;17(10):1119–26.PubMedCrossRef
334.
go back to reference Xia X, Mai J, Xu R, et al. Porous silicon microparticle potentiates anti-tumor immunity by enhancing cross-presentation and inducing type I interferon response. Cell Rep. 2015;11(6):957–66.PubMedPubMedCentralCrossRef Xia X, Mai J, Xu R, et al. Porous silicon microparticle potentiates anti-tumor immunity by enhancing cross-presentation and inducing type I interferon response. Cell Rep. 2015;11(6):957–66.PubMedPubMedCentralCrossRef
335.
go back to reference Wang Y, Zhang L, Xu Z, et al. mRNA vaccine with antigen-specific checkpoint blockade induces an enhanced immune response against established melanoma. Mol Ther. 2018;26(2):420–34.PubMedCrossRef Wang Y, Zhang L, Xu Z, et al. mRNA vaccine with antigen-specific checkpoint blockade induces an enhanced immune response against established melanoma. Mol Ther. 2018;26(2):420–34.PubMedCrossRef
336.
go back to reference Duan F, Feng X, Yang X, et al. A simple and powerful co-delivery system based on pH-responsive metal-organic frameworks for enhanced cancer immunotherapy. Biomaterials. 2017;122:23–33.PubMedCrossRef Duan F, Feng X, Yang X, et al. A simple and powerful co-delivery system based on pH-responsive metal-organic frameworks for enhanced cancer immunotherapy. Biomaterials. 2017;122:23–33.PubMedCrossRef
337.
go back to reference Xie L, Yang Y, Meng J, et al. Cationic polysaccharide spermine-pullulan drives tumor associated macrophage towards M1 phenotype to inhibit tumor progression. Int J Biol Macromol. 2019;123:1012–9.PubMedCrossRef Xie L, Yang Y, Meng J, et al. Cationic polysaccharide spermine-pullulan drives tumor associated macrophage towards M1 phenotype to inhibit tumor progression. Int J Biol Macromol. 2019;123:1012–9.PubMedCrossRef
338.
go back to reference Wei X, Liu L, Li X, et al. Selectively targeting tumor-associated macrophages and tumor cells with polymeric micelles for enhanced cancer chemo-immunotherapy. J Control Rel. 2019;313:42–53.CrossRef Wei X, Liu L, Li X, et al. Selectively targeting tumor-associated macrophages and tumor cells with polymeric micelles for enhanced cancer chemo-immunotherapy. J Control Rel. 2019;313:42–53.CrossRef
339.
go back to reference Cang C, Aranda K, Seo YJ, et al. TMEM175 is an organelle K(+) channel regulating lysosomal function. Cell. 2015;162(5):1101–12.PubMedCrossRef Cang C, Aranda K, Seo YJ, et al. TMEM175 is an organelle K(+) channel regulating lysosomal function. Cell. 2015;162(5):1101–12.PubMedCrossRef
340.
go back to reference Shen J, Kelleher RJ. The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci. 2007;104(2):403–9.PubMedCrossRef Shen J, Kelleher RJ. The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci. 2007;104(2):403–9.PubMedCrossRef
341.
go back to reference Zhang X, Garbett K, Veeraraghavalu K, et al. A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J Neurosci Off J Soc Neurosci. 2012;32(25):8633.CrossRef Zhang X, Garbett K, Veeraraghavalu K, et al. A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J Neurosci Off J Soc Neurosci. 2012;32(25):8633.CrossRef
342.
go back to reference Gukovskaya AS, Gukovsky I, Algul H, et al. Autophagy, inflammation, and immune dysfunction in the pathogenesis of pancreatitis. Gastroenterology. 2017;153(5):1212–26.PubMedCrossRef Gukovskaya AS, Gukovsky I, Algul H, et al. Autophagy, inflammation, and immune dysfunction in the pathogenesis of pancreatitis. Gastroenterology. 2017;153(5):1212–26.PubMedCrossRef
343.
go back to reference Monteith AJ, Kang S, Scott E, et al. Defects in lysosomal maturation facilitate the activation of innate sensors in systemic lupus erythematosus. Proc Natl Acad Sci USA. 2016;113(15):E2142–51.PubMedCrossRefPubMedCentral Monteith AJ, Kang S, Scott E, et al. Defects in lysosomal maturation facilitate the activation of innate sensors in systemic lupus erythematosus. Proc Natl Acad Sci USA. 2016;113(15):E2142–51.PubMedCrossRefPubMedCentral
344.
go back to reference Lassen KG, McKenzie CI, Mari M, et al. Genetic coding variant in GPR65 alters lysosomal ph and links lysosomal dysfunction with colitis risk. Immunity. 2016;44(6):1392–405.PubMedPubMedCentralCrossRef Lassen KG, McKenzie CI, Mari M, et al. Genetic coding variant in GPR65 alters lysosomal ph and links lysosomal dysfunction with colitis risk. Immunity. 2016;44(6):1392–405.PubMedPubMedCentralCrossRef
346.
347.
348.
go back to reference Muenzer J. Overview of the mucopolysaccharidoses. Rheumatology (Oxford). 2011;50(Suppl 5):v4-12.CrossRef Muenzer J. Overview of the mucopolysaccharidoses. Rheumatology (Oxford). 2011;50(Suppl 5):v4-12.CrossRef
350.
go back to reference Li C, Chen L, Wang J, et al. Expression and clinical significance of cathepsin B and stefin A in laryngeal cancer. Oncol Rep. 2011;26:869–75.PubMed Li C, Chen L, Wang J, et al. Expression and clinical significance of cathepsin B and stefin A in laryngeal cancer. Oncol Rep. 2011;26:869–75.PubMed
351.
go back to reference Ebert MP, Kruger S, Fogeron ML, et al. Overexpression of cathepsin B in gastric cancer identified by proteome analysis. Proteomics. 2005;5:1693–704.PubMedCrossRef Ebert MP, Kruger S, Fogeron ML, et al. Overexpression of cathepsin B in gastric cancer identified by proteome analysis. Proteomics. 2005;5:1693–704.PubMedCrossRef
352.
go back to reference Lah TT, Cercek M, Blejec A, et al. Cathepsin B, a prognostic indicator in lymph node-negative breast carcinoma patients: comparison with cathepsin D, cathepsin L, and other clinical indicators. Clin Cancer Res. 2000;6:578–84.PubMed Lah TT, Cercek M, Blejec A, et al. Cathepsin B, a prognostic indicator in lymph node-negative breast carcinoma patients: comparison with cathepsin D, cathepsin L, and other clinical indicators. Clin Cancer Res. 2000;6:578–84.PubMed
353.
go back to reference Ledakis P, Tester W, Rosenberg N, et al. Cathepsins D, B, and L in malignant human lung tissue. Clin Cancer Res. 1996;2:561–8.PubMed Ledakis P, Tester W, Rosenberg N, et al. Cathepsins D, B, and L in malignant human lung tissue. Clin Cancer Res. 1996;2:561–8.PubMed
354.
go back to reference Kos J, Stabuc B, Schweiger A, et al. Cathepsins B, H, and L and their inhibitors stefin A and cystatin C in sera of melanoma patients. Clin Cancer Res. 1997;3:1815–22.PubMed Kos J, Stabuc B, Schweiger A, et al. Cathepsins B, H, and L and their inhibitors stefin A and cystatin C in sera of melanoma patients. Clin Cancer Res. 1997;3:1815–22.PubMed
355.
356.
go back to reference Lakka S, Gondi C, Yanamandra N, et al. Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene. 2004;23:4681–9.PubMedCrossRef Lakka S, Gondi C, Yanamandra N, et al. Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene. 2004;23:4681–9.PubMedCrossRef
357.
go back to reference Nalla A, Gorantla B, Gondi C, et al. Targeting MMP-9, uPAR and Cathepsin B inhibits invasion and migration and activates apoptosis in prostate cancer cells. Cancer Gene Ther. 2010;17:599–613.PubMedPubMedCentralCrossRef Nalla A, Gorantla B, Gondi C, et al. Targeting MMP-9, uPAR and Cathepsin B inhibits invasion and migration and activates apoptosis in prostate cancer cells. Cancer Gene Ther. 2010;17:599–613.PubMedPubMedCentralCrossRef
360.
go back to reference Khaket T, Singh MP, Khan I, et al. Targeting of cathepsin C induces autophagic dysregulation that directs ER stress mediated cellular cytotoxicity in colorectal cancer cells. Cell Signal. 2018;46:65.CrossRef Khaket T, Singh MP, Khan I, et al. Targeting of cathepsin C induces autophagic dysregulation that directs ER stress mediated cellular cytotoxicity in colorectal cancer cells. Cell Signal. 2018;46:65.CrossRef
361.
go back to reference Chiang KC, Lai CY, Chiou HL, et al. Timosaponin AIII inhibits metastasis of renal carcinoma cells through suppressing cathepsin C expression by AKT/miR-129-5p axis. J Cell Physiol. 2019;234:56.CrossRef Chiang KC, Lai CY, Chiou HL, et al. Timosaponin AIII inhibits metastasis of renal carcinoma cells through suppressing cathepsin C expression by AKT/miR-129-5p axis. J Cell Physiol. 2019;234:56.CrossRef
362.
go back to reference Cordes C, Bartling B, Simm A, et al. Simultaneous expression of Cathepsins B and K in pulmonary adenocarcinomas and squamous cell carcinomas predicts poor recurrence-free and overall survival. Lung Cancer. 2008;64:79–85.PubMedCrossRef Cordes C, Bartling B, Simm A, et al. Simultaneous expression of Cathepsins B and K in pulmonary adenocarcinomas and squamous cell carcinomas predicts poor recurrence-free and overall survival. Lung Cancer. 2008;64:79–85.PubMedCrossRef
363.
go back to reference Zhang G-P, Yue X, Li S-Q. Cathepsin C interacts with TNF-α/p38 MAPK signaling pathway to promote proliferation and metastasis in hepatocellular carcinoma. Cancer Res Treat. 2019;52:65. Zhang G-P, Yue X, Li S-Q. Cathepsin C interacts with TNF-α/p38 MAPK signaling pathway to promote proliferation and metastasis in hepatocellular carcinoma. Cancer Res Treat. 2019;52:65.
364.
go back to reference Ruffell B, Affara N, Cottone L, et al. Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes Dev. 2013;27:56.CrossRef Ruffell B, Affara N, Cottone L, et al. Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes Dev. 2013;27:56.CrossRef
365.
go back to reference Wang Z, Han B, Zhang Z, et al. Expression of angiopoietin-like 4 and tenascin C but not cathepsin C mRNA predicts prognosis of oral tongue squamous cell carcinoma. Biomarkers. 2009;00:090923083620087–8.CrossRef Wang Z, Han B, Zhang Z, et al. Expression of angiopoietin-like 4 and tenascin C but not cathepsin C mRNA predicts prognosis of oral tongue squamous cell carcinoma. Biomarkers. 2009;00:090923083620087–8.CrossRef
366.
go back to reference Husmann K, Muff R, Bolander M, et al. Cathepsins and osteosarcoma: expression analysis identifies Cathepsin K as an indicator of metastasis. Mol Carcinog. 2008;47:66–73.PubMedCrossRef Husmann K, Muff R, Bolander M, et al. Cathepsins and osteosarcoma: expression analysis identifies Cathepsin K as an indicator of metastasis. Mol Carcinog. 2008;47:66–73.PubMedCrossRef
367.
go back to reference Ji C, Zhao Y, Kou Y-W, et al. Cathepsin F knockdown induces proliferation and inhibits apoptosis in gastric cancer cells. Oncol Res. 2017;26:56. Ji C, Zhao Y, Kou Y-W, et al. Cathepsin F knockdown induces proliferation and inhibits apoptosis in gastric cancer cells. Oncol Res. 2017;26:56.
368.
go back to reference Vazquez-Ortiz G, Pina-Sanchez P, Vazquez-Santillan K, et al. Overexpression of cathepsin F, matrix metalloproteinases 11 and 12 in cervical cancer. BMC Cancer. 2005;5:68.PubMedPubMedCentralCrossRef Vazquez-Ortiz G, Pina-Sanchez P, Vazquez-Santillan K, et al. Overexpression of cathepsin F, matrix metalloproteinases 11 and 12 in cervical cancer. BMC Cancer. 2005;5:68.PubMedPubMedCentralCrossRef
369.
go back to reference Raghav N, Jangra S, Kumar A, et al. Quinazoline derivatives as cathepsins B, H and L inhibitors and cell proliferating agents. Int J Biol Macromol. 2016;94:56. Raghav N, Jangra S, Kumar A, et al. Quinazoline derivatives as cathepsins B, H and L inhibitors and cell proliferating agents. Int J Biol Macromol. 2016;94:56.
370.
go back to reference Gocheva V, Chen X, Peters C, et al. Deletion of cathepsin H perturbs angiogenic switching, vascularization and growth of tumors in a mouse model of pancreatic islet cell cancer. Biol Chem. 2010;391:937–45.PubMedPubMedCentralCrossRef Gocheva V, Chen X, Peters C, et al. Deletion of cathepsin H perturbs angiogenic switching, vascularization and growth of tumors in a mouse model of pancreatic islet cell cancer. Biol Chem. 2010;391:937–45.PubMedPubMedCentralCrossRef
371.
go back to reference Schweiger A, Staib A, Werle B, et al. Cysteine proteinase cathepsin H in tumours and sera of lung cancer patients: Relation to prognosis and cigarette smoking. Br J Cancer. 2000;82:782–8.PubMedPubMedCentralCrossRef Schweiger A, Staib A, Werle B, et al. Cysteine proteinase cathepsin H in tumours and sera of lung cancer patients: Relation to prognosis and cigarette smoking. Br J Cancer. 2000;82:782–8.PubMedPubMedCentralCrossRef
372.
go back to reference Sivaparvathi M, Sawaya R, Gokaslan ZL, et al. Expression and the role of cathepsin H in human glioma progression and invasion. Cancer Lett. 1996;104(1):121–6.PubMedCrossRef Sivaparvathi M, Sawaya R, Gokaslan ZL, et al. Expression and the role of cathepsin H in human glioma progression and invasion. Cancer Lett. 1996;104(1):121–6.PubMedCrossRef
373.
go back to reference Jevnikar Z, Rojnik M, Jamnik P, et al. Cathepsin H mediates the processing of talin and regulates migration of prostate cancer cells. J Biol Chem. 2012;288:56. Jevnikar Z, Rojnik M, Jamnik P, et al. Cathepsin H mediates the processing of talin and regulates migration of prostate cancer cells. J Biol Chem. 2012;288:56.
374.
go back to reference Froehlich E, Moehrle M, Klessen C. Cathepsins in basal cell carcinomas: activity, immunoreactivity and mRNA staining of cathepsins B, D, H and L. Arch Dermatol Res. 2004;295:411–21. Froehlich E, Moehrle M, Klessen C. Cathepsins in basal cell carcinomas: activity, immunoreactivity and mRNA staining of cathepsins B, D, H and L. Arch Dermatol Res. 2004;295:411–21.
375.
go back to reference Breznik B, Limbäck C, Porcnik A, et al. Localization patterns of cathepsins K and X and their predictive value in glioblastoma. Radiol Oncol. 2018;52:56.CrossRef Breznik B, Limbäck C, Porcnik A, et al. Localization patterns of cathepsins K and X and their predictive value in glioblastoma. Radiol Oncol. 2018;52:56.CrossRef
376.
go back to reference Gu X, Peng Y, Zhao Y, et al. A novel derivative of artemisinin inhibits cell proliferation and metastasis via down-regulation of cathepsin K in breast cancer. Eur J Pharmacol. 2019;858:56.CrossRef Gu X, Peng Y, Zhao Y, et al. A novel derivative of artemisinin inhibits cell proliferation and metastasis via down-regulation of cathepsin K in breast cancer. Eur J Pharmacol. 2019;858:56.CrossRef
377.
go back to reference Leusink F, Koudounarakis E, Frank M, et al. Cathepsin K associates with lymph node metastasis and poor prognosis in oral squamous cell carcinoma. BMC Cancer. 2018;18:385.PubMedPubMedCentralCrossRef Leusink F, Koudounarakis E, Frank M, et al. Cathepsin K associates with lymph node metastasis and poor prognosis in oral squamous cell carcinoma. BMC Cancer. 2018;18:385.PubMedPubMedCentralCrossRef
378.
go back to reference Li R, Zhou R, Wang H, et al. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ. 2019;26:56.CrossRef Li R, Zhou R, Wang H, et al. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ. 2019;26:56.CrossRef
379.
go back to reference Liang W, Wang F, Chen Q, et al. Targeting cathepsin K diminishes prostate cancer establishment and growth in murine bone. J Cancer Res Clin Oncol. 2019;67:1–14. Liang W, Wang F, Chen Q, et al. Targeting cathepsin K diminishes prostate cancer establishment and growth in murine bone. J Cancer Res Clin Oncol. 2019;67:1–14.
380.
go back to reference Tian K, Ma J, Wang L, et al. Expression of cathepsin K in skull base chordoma. World Neurosurg. 2017;101:67.CrossRef Tian K, Ma J, Wang L, et al. Expression of cathepsin K in skull base chordoma. World Neurosurg. 2017;101:67.CrossRef
381.
go back to reference Fan X, Wang C, Song X, et al. Elevated Cathepsin K potentiates metastasis of epithelial ovarian cancer. Histol Histopathol. 2018;33:11960. Fan X, Wang C, Song X, et al. Elevated Cathepsin K potentiates metastasis of epithelial ovarian cancer. Histol Histopathol. 2018;33:11960.
382.
go back to reference Petricevic S, Pavlovic A, Capkun V, et al. Cathepsin K expression in melanoma is associated with metastases. Histol Histopathol. 2016;32:11833. Petricevic S, Pavlovic A, Capkun V, et al. Cathepsin K expression in melanoma is associated with metastases. Histol Histopathol. 2016;32:11833.
383.
go back to reference Ikeguchi M, Fukuda K, Oka S, et al. Micro-lymph node metastasis and its correlation with cathepsin D expression in early gastric cancer. J Surg Oncol. 2001;77(3):188–94.PubMedCrossRef Ikeguchi M, Fukuda K, Oka S, et al. Micro-lymph node metastasis and its correlation with cathepsin D expression in early gastric cancer. J Surg Oncol. 2001;77(3):188–94.PubMedCrossRef
384.
go back to reference Burton L, Henderson V, Liburd L, et al. Snail transcription factor NLS and importin β1 regulate the subcellular localization of Cathepsin L and Cux1. Biochem Biophys Res Commun. 2017;491:66.CrossRef Burton L, Henderson V, Liburd L, et al. Snail transcription factor NLS and importin β1 regulate the subcellular localization of Cathepsin L and Cux1. Biochem Biophys Res Commun. 2017;491:66.CrossRef
385.
go back to reference Fei Y, Xiong Y, Zhao Y, et al. Cathepsin L knockdown enhances curcumin-mediated inhibition of growth, migration, and invasion of glioma cells. Brain Res. 2016;1646:65.CrossRef Fei Y, Xiong Y, Zhao Y, et al. Cathepsin L knockdown enhances curcumin-mediated inhibition of growth, migration, and invasion of glioma cells. Brain Res. 2016;1646:65.CrossRef
386.
go back to reference Mao Z, Sang M-M, Chen C, et al. CSN6 promotes the migration and invasion of cervical cancer cells by inhibiting autophagic degradation of Cathepsin L. Int J Biol Sci. 2019;15:1310–24.PubMedPubMedCentralCrossRef Mao Z, Sang M-M, Chen C, et al. CSN6 promotes the migration and invasion of cervical cancer cells by inhibiting autophagic degradation of Cathepsin L. Int J Biol Sci. 2019;15:1310–24.PubMedPubMedCentralCrossRef
387.
go back to reference Sui H, Shi C, Yan Z, et al. Overexpression of Cathepsin L is associated with chemoresistance and invasion of epithelial ovarian cancer. Oncotarget. 2016;7:56.CrossRef Sui H, Shi C, Yan Z, et al. Overexpression of Cathepsin L is associated with chemoresistance and invasion of epithelial ovarian cancer. Oncotarget. 2016;7:56.CrossRef
388.
go back to reference Plebani M, Herszènyi L, Cardin R, et al. Cysteine and serine proteases in gastric cancer. Cancer. 1995;76:367–75.PubMedCrossRef Plebani M, Herszènyi L, Cardin R, et al. Cysteine and serine proteases in gastric cancer. Cancer. 1995;76:367–75.PubMedCrossRef
389.
go back to reference Sullivan S, Tosetto M, Kevans D, et al. Localization of nuclear cathepsin L and its association with disease progression and poor outcome in colorectal cancer. Int J Cancer J Int Cancer. 2009;125:54–61.CrossRef Sullivan S, Tosetto M, Kevans D, et al. Localization of nuclear cathepsin L and its association with disease progression and poor outcome in colorectal cancer. Int J Cancer J Int Cancer. 2009;125:54–61.CrossRef
390.
go back to reference Wang L, Zhao Y, Xiong Y, et al. K-ras mutation promotes ionizing radiation-induced invasion and migration of lung cancer in part via the Cathepsin L/CUX1 pathway. Exp Cell Res. 2017;362:56. Wang L, Zhao Y, Xiong Y, et al. K-ras mutation promotes ionizing radiation-induced invasion and migration of lung cancer in part via the Cathepsin L/CUX1 pathway. Exp Cell Res. 2017;362:56.
391.
392.
go back to reference Klose A, Zigrino P, Dennhöfer R, et al. Identification and discrimination of extracellularly active cathepsins B and L in high-invasive melanoma cells. Anal Biochem. 2006;353:57–62.PubMedCrossRef Klose A, Zigrino P, Dennhöfer R, et al. Identification and discrimination of extracellularly active cathepsins B and L in high-invasive melanoma cells. Anal Biochem. 2006;353:57–62.PubMedCrossRef
393.
go back to reference Hato Y, Endo Y, Yoshimoto N, et al. Abstract P5–05-02: prognostic impact of single-nucleotide polymorphisms (SNPs) in or near the ZNF423 and CTSO genes in estrogen receptor (ER)-positive breast cancer patients receiving adjuvant endocrine therapy. Can Res. 2015;75:P5-05.CrossRef Hato Y, Endo Y, Yoshimoto N, et al. Abstract P5–05-02: prognostic impact of single-nucleotide polymorphisms (SNPs) in or near the ZNF423 and CTSO genes in estrogen receptor (ER)-positive breast cancer patients receiving adjuvant endocrine therapy. Can Res. 2015;75:P5-05.CrossRef
394.
go back to reference Lindahl C, Simonsson M, Bergh A, et al. Increased levels of macrophage-secreted cathepsin S during prostate cancer progression in TRAMP mice and patients. Cancer Genom Proteom. 2009;6:149–60. Lindahl C, Simonsson M, Bergh A, et al. Increased levels of macrophage-secreted cathepsin S during prostate cancer progression in TRAMP mice and patients. Cancer Genom Proteom. 2009;6:149–60.
395.
go back to reference Liu W-L, Liu D, Cheng K, et al. Evaluating the diagnostic and prognostic value of circulating cathepsin S in gastric cancer. Oncotarget. 2014;7:66. Liu W-L, Liu D, Cheng K, et al. Evaluating the diagnostic and prognostic value of circulating cathepsin S in gastric cancer. Oncotarget. 2014;7:66.
396.
go back to reference Wang X, Xiong L, Yu G, et al. Cathepsin S silencing induces apoptosis of human hepatocellular carcinoma cells. Am J Transl Res. 2015;7:100–10.PubMedPubMedCentral Wang X, Xiong L, Yu G, et al. Cathepsin S silencing induces apoptosis of human hepatocellular carcinoma cells. Am J Transl Res. 2015;7:100–10.PubMedPubMedCentral
397.
go back to reference Gautam J, Banskota S, Lee H, et al. Down-regulation of cathepsin S and matrix metalloproteinase-9 via Src, a non-receptor tyrosine kinase, suppresses triple-negative breast cancer growth and metastasis. Exp Mol Med. 2018;50:66.CrossRef Gautam J, Banskota S, Lee H, et al. Down-regulation of cathepsin S and matrix metalloproteinase-9 via Src, a non-receptor tyrosine kinase, suppresses triple-negative breast cancer growth and metastasis. Exp Mol Med. 2018;50:66.CrossRef
398.
go back to reference Tan J, Qian X, Song B, et al. Integrated bioinformatics analysis reveals that the expression of cathepsin S is associated with lymph node metastasis and poor prognosis in papillary thyroid cancer. Oncol Rep. 2018;40:56. Tan J, Qian X, Song B, et al. Integrated bioinformatics analysis reveals that the expression of cathepsin S is associated with lymph node metastasis and poor prognosis in papillary thyroid cancer. Oncol Rep. 2018;40:56.
399.
go back to reference Willumsen N, Bager C, Leeming D, et al. Nidogen-1 degraded by Cathepsin S can be quantified in serum and is associated with non-small cell lung cancer. Neoplasia. 2017;19:271–8.PubMedPubMedCentralCrossRef Willumsen N, Bager C, Leeming D, et al. Nidogen-1 degraded by Cathepsin S can be quantified in serum and is associated with non-small cell lung cancer. Neoplasia. 2017;19:271–8.PubMedPubMedCentralCrossRef
400.
go back to reference Santamaria I, Velasco G, Cazorla M, et al. Cathepsin L2, a novel human cysteine proteinase produced by breast and colorectal carcinomas. Can Res. 1998;58:1624–30. Santamaria I, Velasco G, Cazorla M, et al. Cathepsin L2, a novel human cysteine proteinase produced by breast and colorectal carcinomas. Can Res. 1998;58:1624–30.
401.
go back to reference Toss M, Miligy I, Gorringe K, et al. Prognostic significance of cathepsin V (CTSV/CTSL2) in breast ductal carcinoma in situ. J Clin Pathol. 2019;73(2):205939. Toss M, Miligy I, Gorringe K, et al. Prognostic significance of cathepsin V (CTSV/CTSL2) in breast ductal carcinoma in situ. J Clin Pathol. 2019;73(2):205939.
402.
go back to reference Skrzypczak M, Springwald A, Lattrich C, et al. Expression of cysteine protease cathepsin L is increased in endometrial cancer and correlates with expression of growth regulatory genes. Cancer Invest. 2012;30(5):398–403.PubMedCrossRef Skrzypczak M, Springwald A, Lattrich C, et al. Expression of cysteine protease cathepsin L is increased in endometrial cancer and correlates with expression of growth regulatory genes. Cancer Invest. 2012;30(5):398–403.PubMedCrossRef
403.
go back to reference Teller A, Kuester D, Hartig R, et al. Dysregulation of apoptotic signaling pathways by interaction of RPLP0 and cathepsin X/Z in gastric cancer. Pathol Res Pract. 2014;211:56. Teller A, Kuester D, Hartig R, et al. Dysregulation of apoptotic signaling pathways by interaction of RPLP0 and cathepsin X/Z in gastric cancer. Pathol Res Pract. 2014;211:56.
404.
go back to reference Nagler DK, Kruger S, Kellner A, et al. Up-regulation of cathepsin X in prostate cancer and prostatic intraepithelial neoplasia. Prostate. 2004;60(2):109–19.PubMedCrossRef Nagler DK, Kruger S, Kellner A, et al. Up-regulation of cathepsin X in prostate cancer and prostatic intraepithelial neoplasia. Prostate. 2004;60(2):109–19.PubMedCrossRef
405.
go back to reference Park S, Kwon W, Park J-K, et al. Suppression of cathepsin a inhibits growth, migration, and invasion by inhibiting the p38 MAPK signaling pathway in prostate cancer. Arch Biochem Biophys. 2020;688:108407.PubMedCrossRef Park S, Kwon W, Park J-K, et al. Suppression of cathepsin a inhibits growth, migration, and invasion by inhibiting the p38 MAPK signaling pathway in prostate cancer. Arch Biochem Biophys. 2020;688:108407.PubMedCrossRef
406.
go back to reference Kozłowski L, Stoklosa T, Omura S, et al. Lactacystin inhibits Cathepsin A activity in melanoma cell lines. Tumour Biol. 2001;22:211–5.PubMedCrossRef Kozłowski L, Stoklosa T, Omura S, et al. Lactacystin inhibits Cathepsin A activity in melanoma cell lines. Tumour Biol. 2001;22:211–5.PubMedCrossRef
407.
go back to reference Kozłowski L, Wojtukiewicz M, Ostrowska H. Cathepsin A activity in primary and metastatic human melanocytic tumors. Arch Dermatol Res. 2000;292:68–71.PubMedCrossRef Kozłowski L, Wojtukiewicz M, Ostrowska H. Cathepsin A activity in primary and metastatic human melanocytic tumors. Arch Dermatol Res. 2000;292:68–71.PubMedCrossRef
408.
go back to reference Hu B, Zhu X, Lu J. Cathepsin A knockdown decreases the proliferation and invasion of A549 lung adenocarcinoma cells. Mol Med Reps. 2020;21:56. Hu B, Zhu X, Lu J. Cathepsin A knockdown decreases the proliferation and invasion of A549 lung adenocarcinoma cells. Mol Med Reps. 2020;21:56.
409.
go back to reference Ni S, Weiwei W, Xu M-D, et al. miR-106b-5p inhibits the invasion and metastasis of colorectal cancer by targeting CTSA. Onco Targets Ther. 2018;11:3835–45.PubMedPubMedCentralCrossRef Ni S, Weiwei W, Xu M-D, et al. miR-106b-5p inhibits the invasion and metastasis of colorectal cancer by targeting CTSA. Onco Targets Ther. 2018;11:3835–45.PubMedPubMedCentralCrossRef
410.
go back to reference Toss M, Miligy I, Haj-Ahmad R, et al. The prognostic significance of lysosomal protective protein (Cathepsin A) in breast ductal carcinoma in situ. Histopathology. 2019;74:56.CrossRef Toss M, Miligy I, Haj-Ahmad R, et al. The prognostic significance of lysosomal protective protein (Cathepsin A) in breast ductal carcinoma in situ. Histopathology. 2019;74:56.CrossRef
411.
go back to reference Alatrash G, Garber H, Zhang M, et al. Cathepsin G is broadly expressed in acute myeloid leukemia and is an effective immunotherapeutic target. Leukemia. 2016;31:56. Alatrash G, Garber H, Zhang M, et al. Cathepsin G is broadly expressed in acute myeloid leukemia and is an effective immunotherapeutic target. Leukemia. 2016;31:56.
412.
go back to reference Featherston T, Marsh R, Schaijik B, et al. Expression and localization of Cathepsins B, D, and G in two cancer stem cell subpopulations in moderately differentiated oral tongue squamous cell carcinoma. Front Med. 2017;4:56.CrossRef Featherston T, Marsh R, Schaijik B, et al. Expression and localization of Cathepsins B, D, and G in two cancer stem cell subpopulations in moderately differentiated oral tongue squamous cell carcinoma. Front Med. 2017;4:56.CrossRef
413.
go back to reference Khan M, Carmona S, Sukhumalchandra P, et al. Cathepsin G is expressed by acute lymphoblastic leukemia and is a potential immunotherapeutic target. Front Immunol. 2018;8:56.CrossRef Khan M, Carmona S, Sukhumalchandra P, et al. Cathepsin G is expressed by acute lymphoblastic leukemia and is a potential immunotherapeutic target. Front Immunol. 2018;8:56.CrossRef
414.
go back to reference Koh S, Wickremesekera A, Brasch H, et al. Expression of Cathepsins B, D, and G in isocitrate dehydrogenase-wildtype glioblastoma. Front Surg. 2017;4:56.CrossRef Koh S, Wickremesekera A, Brasch H, et al. Expression of Cathepsins B, D, and G in isocitrate dehydrogenase-wildtype glioblastoma. Front Surg. 2017;4:56.CrossRef
415.
go back to reference Ozer E, Mungan MU, Tuna B, et al. Prognostic significance of angiogenesis and immunoreactivity of cathepsin D and type IV collagen in high-grade stage T1 primary bladder cancer. Urology. 1999;54(1):50–5.PubMedCrossRef Ozer E, Mungan MU, Tuna B, et al. Prognostic significance of angiogenesis and immunoreactivity of cathepsin D and type IV collagen in high-grade stage T1 primary bladder cancer. Urology. 1999;54(1):50–5.PubMedCrossRef
416.
go back to reference Gemoll T, Epping F, Heinrich L, et al. Increased cathepsin D protein expression is a biomarker for osteosarcomas, pulmonary metastases and other bone malignancies. Oncotarget. 2015;6(18):16517–26.PubMedPubMedCentralCrossRef Gemoll T, Epping F, Heinrich L, et al. Increased cathepsin D protein expression is a biomarker for osteosarcomas, pulmonary metastases and other bone malignancies. Oncotarget. 2015;6(18):16517–26.PubMedPubMedCentralCrossRef
417.
go back to reference Ashraf Y, Mansouri H, Laurent-Matha V, et al. Immunotherapy of triple-negative breast cancer with cathepsin D-targeting antibodies. J Immunother Cancer. 2019;7(1):29–29.PubMedPubMedCentralCrossRef Ashraf Y, Mansouri H, Laurent-Matha V, et al. Immunotherapy of triple-negative breast cancer with cathepsin D-targeting antibodies. J Immunother Cancer. 2019;7(1):29–29.PubMedPubMedCentralCrossRef
418.
go back to reference Bosscher J, Gercel-Taylor C, Watkins C, et al. Epitope recognition by anti-cathepsin D autoantibodies in endometrial cancer patients. Gynecol Oncol. 2001;81:138–43.PubMedCrossRef Bosscher J, Gercel-Taylor C, Watkins C, et al. Epitope recognition by anti-cathepsin D autoantibodies in endometrial cancer patients. Gynecol Oncol. 2001;81:138–43.PubMedCrossRef
419.
go back to reference Brouillet J-P, Hanslick B, Maudelonde T, et al. Increased plasma cathepsin D concentration in hepatic carcinoma and cirrhosis but not in breast cancer. Clin Biochem. 1992;24:491–6.CrossRef Brouillet J-P, Hanslick B, Maudelonde T, et al. Increased plasma cathepsin D concentration in hepatic carcinoma and cirrhosis but not in breast cancer. Clin Biochem. 1992;24:491–6.CrossRef
420.
go back to reference Chen L, Li H, Liu W, et al. Olfactomedin 4 suppresses prostate cancer cell growth and metastasis via negative interaction with cathepsin D and SDF-1. Carcinogenesis. 2011;32:986–94.PubMedPubMedCentralCrossRef Chen L, Li H, Liu W, et al. Olfactomedin 4 suppresses prostate cancer cell growth and metastasis via negative interaction with cathepsin D and SDF-1. Carcinogenesis. 2011;32:986–94.PubMedPubMedCentralCrossRef
421.
go back to reference Cheng A-L, Huang W-G, Chen Z-C, et al. Identification of novel nasopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis. Clin Cancer Res. 2008;14:435–45.PubMedCrossRef Cheng A-L, Huang W-G, Chen Z-C, et al. Identification of novel nasopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis. Clin Cancer Res. 2008;14:435–45.PubMedCrossRef
422.
go back to reference Dumartin L, Whiteman H, Weeks M, et al. AGR2 is a novel surface antigen that promotes the dissemination of pancreatic cancer cells through regulation of cathepsins B and D. Can Res. 2011;71:7091–102.CrossRef Dumartin L, Whiteman H, Weeks M, et al. AGR2 is a novel surface antigen that promotes the dissemination of pancreatic cancer cells through regulation of cathepsins B and D. Can Res. 2011;71:7091–102.CrossRef
423.
go back to reference Fan C, Lin X, Wang E. Clinicopathological significance of cathepsin D expression in non-small cell lung cancer is conditional on apoptosis-associated protein phenotype: an immunohistochemistry study. Tumour Biol. 2012;33:1045–52.PubMedCrossRef Fan C, Lin X, Wang E. Clinicopathological significance of cathepsin D expression in non-small cell lung cancer is conditional on apoptosis-associated protein phenotype: an immunohistochemistry study. Tumour Biol. 2012;33:1045–52.PubMedCrossRef
424.
go back to reference Satelur KP, Kumar GS. Immunohistochemical expression of cathepsin D in primary and recurrent squamous cell carcinoma. J Contemp Dent Pract. 2017;18(9):795–801.PubMedCrossRef Satelur KP, Kumar GS. Immunohistochemical expression of cathepsin D in primary and recurrent squamous cell carcinoma. J Contemp Dent Pract. 2017;18(9):795–801.PubMedCrossRef
425.
go back to reference Podhajcer OL, Bover L, Bravo AI, et al. Expression of cathepsin D in primary and metastatic human melanoma and dysplastic nevi. J Invest Dermatol. 1995;104(3):340–4.PubMedCrossRef Podhajcer OL, Bover L, Bravo AI, et al. Expression of cathepsin D in primary and metastatic human melanoma and dysplastic nevi. J Invest Dermatol. 1995;104(3):340–4.PubMedCrossRef
426.
go back to reference Skrzydlewska E, Sulkowska M, Wincewicz A, et al. Evaluation of serum cathepsin B and D in relation to clinicopathological staging of colorectal cancer. World J Gastroenterol. 2005;11(27):4225–9.PubMedPubMedCentralCrossRef Skrzydlewska E, Sulkowska M, Wincewicz A, et al. Evaluation of serum cathepsin B and D in relation to clinicopathological staging of colorectal cancer. World J Gastroenterol. 2005;11(27):4225–9.PubMedPubMedCentralCrossRef
427.
go back to reference Chai Y, Wu W, Zhou C, et al. The potential prognostic value of cathepsin D protein in serous ovarian cancer. Arch Gynecol Obstet. 2012;286(2):465–71.PubMedCrossRef Chai Y, Wu W, Zhou C, et al. The potential prognostic value of cathepsin D protein in serous ovarian cancer. Arch Gynecol Obstet. 2012;286(2):465–71.PubMedCrossRef
428.
go back to reference Cruz-Monserrate Z, Abd-Elgaliel W, Grote T, et al. Detection of pancreatic cancer tumours and precursor lesions by cathepsin E activity in mouse models. Gut. 2011;61:1315–22.PubMedCrossRef Cruz-Monserrate Z, Abd-Elgaliel W, Grote T, et al. Detection of pancreatic cancer tumours and precursor lesions by cathepsin E activity in mouse models. Gut. 2011;61:1315–22.PubMedCrossRef
429.
go back to reference Konno-Shimizu M, Yamamichi N, Inada K-I, et al. Cathepsin E is a marker of gastric differentiation and signet-ring cell carcinoma of stomach: a novel suggestion on gastric tumorigenesis. PloS ONE. 2013;8:56766.CrossRef Konno-Shimizu M, Yamamichi N, Inada K-I, et al. Cathepsin E is a marker of gastric differentiation and signet-ring cell carcinoma of stomach: a novel suggestion on gastric tumorigenesis. PloS ONE. 2013;8:56766.CrossRef
430.
go back to reference Hayashi N, Kataoka H, Yano S, et al. A novel photodynamic therapy targeting cancer cells and tumor-associated macrophages. Mol Cancer Ther. 2015;14(2):452–60.PubMedCrossRef Hayashi N, Kataoka H, Yano S, et al. A novel photodynamic therapy targeting cancer cells and tumor-associated macrophages. Mol Cancer Ther. 2015;14(2):452–60.PubMedCrossRef
Metadata
Title
Role of lysosomes in physiological activities, diseases, and therapy
Authors
Ziqi Zhang
Pengfei Yue
Tianqi Lu
Yang Wang
Yuquan Wei
Xiawei Wei
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2021
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-021-01087-1

Other articles of this Issue 1/2021

Journal of Hematology & Oncology 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine