Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2007

Open Access 01-12-2007 | Research

Pairing virtual reality with dynamic posturography serves to differentiate between patients experiencing visual vertigo

Authors: Emily A Keshner, Jefferson Streepey, Yasin Dhaher, Timothy Hain

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2007

Login to get access

Abstract

Background

To determine if increased visual dependence can be quantified through its impact on automatic postural responses, we have measured the combined effect on the latencies and magnitudes of postural response kinematics of transient optic flow in the pitch plane with platform rotations and translations.

Methods

Six healthy (29–31 yrs) and 4 visually sensitive (27–57 yrs) subjects stood on a platform rotated (6 deg of dorsiflexion at 30 deg/sec) or translated (5 cm at 5 deg/sec) for 200 msec. Subjects either had eyes closed or viewed an immersive, stereo, wide field of view virtual environment (scene) moved in upward pitch for a 200 msec period for three 30 sec trials at 5 velocities. RMS values and peak velocities of head, trunk, and head with respect to trunk were calculated. EMG responses of 6 trunk and lower limb muscles were collected and latencies and magnitudes of responses determined.

Results

No effect of visual velocity was observed in EMG response latencies and magnitudes. Healthy subjects exhibited significant effects (p < 0.05) of visual field velocity on peak angular velocities of the head. Head and trunk velocities and RMS values of visually sensitive subjects were significantly larger than healthy subjects (p < 0.05), but their responses were not modulated by visual field velocity. When examined individually, patients with no history of vestibular disorder demonstrated exceedingly large head velocities; patients with a history of vestibular disorder exhibited head velocities that fell within the bandwidth of healthy subjects.

Conclusion

Differentiation of postural kinematics in visually sensitive subjects when exposed to the combined perturbations suggests that virtual reality technology could be useful for differential diagnosis and specifically designed interventions for individuals whose chief complaint is sensitivity to visual motion.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bronstein AM: The visual vertigo syndrome. Acta Otolaryngol Suppl 1995, 520 Pt 1: 45-48. 10.3109/00016489509125186CrossRefPubMed Bronstein AM: The visual vertigo syndrome. Acta Otolaryngol Suppl 1995, 520 Pt 1: 45-48. 10.3109/00016489509125186CrossRefPubMed
2.
go back to reference Yardley L, Owen N, Nazareth I, Luxon L: Prevalence and presentation of dizziness in a general practice community sample of working age people. Br J Gen Pract 1998,48(429):1131-1135.PubMedCentralPubMed Yardley L, Owen N, Nazareth I, Luxon L: Prevalence and presentation of dizziness in a general practice community sample of working age people. Br J Gen Pract 1998,48(429):1131-1135.PubMedCentralPubMed
3.
4.
go back to reference Guerraz M, Yardley L, Bertholon P, Pollak L, Rudge P, Gresty MA, Bronstein AM: Visual vertigo: symptom assessment, spatial orientation and postural control. Brain 2001,124(Pt 8):1646-1656. 10.1093/brain/124.8.1646CrossRefPubMed Guerraz M, Yardley L, Bertholon P, Pollak L, Rudge P, Gresty MA, Bronstein AM: Visual vertigo: symptom assessment, spatial orientation and postural control. Brain 2001,124(Pt 8):1646-1656. 10.1093/brain/124.8.1646CrossRefPubMed
5.
go back to reference Nashner L, Berthoz A: Visual contribution to rapid motor responses during postural control. Brain Res 1978,150(2):403-407. 10.1016/0006-8993(78)90291-3CrossRefPubMed Nashner L, Berthoz A: Visual contribution to rapid motor responses during postural control. Brain Res 1978,150(2):403-407. 10.1016/0006-8993(78)90291-3CrossRefPubMed
6.
go back to reference Peterka RJ, Benolken MS: Role of somatosensory and vestibular cues in attenuating visually induced human postural sway. Exp Brain Res 1995,105(1):101-110. 10.1007/BF00242186CrossRefPubMed Peterka RJ, Benolken MS: Role of somatosensory and vestibular cues in attenuating visually induced human postural sway. Exp Brain Res 1995,105(1):101-110. 10.1007/BF00242186CrossRefPubMed
7.
go back to reference Longridge NS, Mallinson AI: The dynamic illegible E-test. A technique for assessing the vestibulo-ocular reflex. Acta Otolaryngol 1987,103(3-4):273-279.CrossRef Longridge NS, Mallinson AI: The dynamic illegible E-test. A technique for assessing the vestibulo-ocular reflex. Acta Otolaryngol 1987,103(3-4):273-279.CrossRef
8.
go back to reference Grood ES, Suntay WJ: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 1983,105(2):136-144.CrossRefPubMed Grood ES, Suntay WJ: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 1983,105(2):136-144.CrossRefPubMed
9.
go back to reference Horak FB, Nashner LM: Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol 1986,55(6):1369-1381.PubMed Horak FB, Nashner LM: Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol 1986,55(6):1369-1381.PubMed
10.
go back to reference Talkowski ME, Redfern MS, Jennings JR, Furman JM: Cognitive requirements for vestibular and ocular motor processing in healthy adults and patients with unilateral vestibular lesions. J Cogn Neurosci 2005,17(9):1432-1441. 10.1162/0898929054985419CrossRefPubMed Talkowski ME, Redfern MS, Jennings JR, Furman JM: Cognitive requirements for vestibular and ocular motor processing in healthy adults and patients with unilateral vestibular lesions. J Cogn Neurosci 2005,17(9):1432-1441. 10.1162/0898929054985419CrossRefPubMed
11.
go back to reference Keshner EA, Allum JH, Pfaltz CR: Postural coactivation and adaptation in the sway stabilizing responses of normals and patients with bilateral vestibular deficit. Exp Brain Res 1987,69(1):77-92. 10.1007/BF00247031CrossRefPubMed Keshner EA, Allum JH, Pfaltz CR: Postural coactivation and adaptation in the sway stabilizing responses of normals and patients with bilateral vestibular deficit. Exp Brain Res 1987,69(1):77-92. 10.1007/BF00247031CrossRefPubMed
12.
go back to reference Keshner EA: Head-trunk coordination during linear anterior-posterior translations. J Neurophysiol 2003,89(4):1891-1901. 10.1152/jn.00836.2001CrossRefPubMed Keshner EA: Head-trunk coordination during linear anterior-posterior translations. J Neurophysiol 2003,89(4):1891-1901. 10.1152/jn.00836.2001CrossRefPubMed
Metadata
Title
Pairing virtual reality with dynamic posturography serves to differentiate between patients experiencing visual vertigo
Authors
Emily A Keshner
Jefferson Streepey
Yasin Dhaher
Timothy Hain
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2007
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-4-24

Other articles of this Issue 1/2007

Journal of NeuroEngineering and Rehabilitation 1/2007 Go to the issue