Skip to main content
Top
Published in: Acta Neurochirurgica 4/2015

01-04-2015 | Clinical Article - Pediatrics

Paediatric cranial defect reconstruction using bioactive fibre-reinforced composite implant: early outcomes

Authors: Jaakko M. Piitulainen, Jussi P. Posti, Kalle M. J. Aitasalo, Ville Vuorinen, Pekka K. Vallittu, Willy Serlo

Published in: Acta Neurochirurgica | Issue 4/2015

Login to get access

Abstract

Background

In children, approximately half of cryopreserved allograft bone flaps fail due to infection and resorption. Synthetic materials offer a solution for allograft bone flap resorption. Fibre-reinforced composite with a bioactive glass particulate filling is a new synthetic material for bone reconstruction. Bioactive glass is capable of chemically bonding with bone and is osteoinductive, osteoconductive and bacteriostatic. Fibre-reinforced composite allows for fabricating thin (0.8 mm) margins for implant, which are designed as onlays on the existing bone. Bioactive glass is dissolved over time, whereas the fibre-reinforced composite serves as a biostable part of the implant, and these have been tested in preclinical and adult clinical trials. In this study, we tested the safety and other required properties of this composite material in large skull bone reconstruction with children.

Method

Eight cranioplasties were performed on seven patients, aged 2.5–16 years and having large (>16 cm2) skull bone defects. The implant used in this study was a patient-specific, glass-fibre-reinforced composite, which contained a bioactive glass particulate compound, S53P4.

Results

During follow-up (average 35.1 months), one minor complication was observed and three patients needed revision surgery. Two surgical site infections were observed. After treatment of complications, a good functional and cosmetic outcome was observed in all patients. The implants had an onlay design and fitted the defect well. In clinical and imaging examinations, the implants were in the original position with no signs of implant migration, degradation or mechanical breakage.

Conclusions

Here, we found that early cranioplasty outcomes with the fibre-reinforced composite implant were promising. However, a longer follow-up time and a larger group of patients are needed to draw firmer conclusions regarding the long-term benefits of the proposed novel biomaterial and implant design. The glass-fibre-reinforced composite implant incorporated by particles of bioactive glass may offer an original, non-metallic and bioactive alternative for reconstruction of large skull bone defects in a paediatric population.
Literature
1.
go back to reference Aitasalo KM, Piitulainen JM, Rekola J, Vallittu PK (2014) Craniofacial bone reconstruction with bioactive fiber-reinforced composite implant. Head Neck 36:722–728CrossRefPubMed Aitasalo KM, Piitulainen JM, Rekola J, Vallittu PK (2014) Craniofacial bone reconstruction with bioactive fiber-reinforced composite implant. Head Neck 36:722–728CrossRefPubMed
2.
go back to reference Ballo AM, Akca EA, Ozen T, Lassila L, Vallittu PK, Närhi TO (2009) Bone tissue responses to glass fiber-reinforced composite implants–a histomorphometric study. Clin Oral Implants Res 20:608–615PubMed Ballo AM, Akca EA, Ozen T, Lassila L, Vallittu PK, Närhi TO (2009) Bone tissue responses to glass fiber-reinforced composite implants–a histomorphometric study. Clin Oral Implants Res 20:608–615PubMed
3.
go back to reference Bowers CA, Riva-Cambrin J, 2nd Hertzler DA, Walker ML (2013) Risk factors and rates of bone flap resorption in pediatric patients after decompressive craniectomy for traumatic brain injury. J Neurosurg Pediatr 11:526–532CrossRefPubMed Bowers CA, Riva-Cambrin J, 2nd Hertzler DA, Walker ML (2013) Risk factors and rates of bone flap resorption in pediatric patients after decompressive craniectomy for traumatic brain injury. J Neurosurg Pediatr 11:526–532CrossRefPubMed
4.
go back to reference De Bonis P, Frassanito P, Mangiola A, Nucci CG, Anile C, Pompucci A (2012) Cranial repair: how complicated is filling a “hole”? J Neurotrauma 29:1071–1076CrossRefPubMed De Bonis P, Frassanito P, Mangiola A, Nucci CG, Anile C, Pompucci A (2012) Cranial repair: how complicated is filling a “hole”? J Neurotrauma 29:1071–1076CrossRefPubMed
5.
go back to reference DeLuca L, Raszewski R, Tresser N, Guyuron B (1997) The fate of preserved autogenous bone graft. Plast Reconstr Surg 99:1324–1328CrossRefPubMed DeLuca L, Raszewski R, Tresser N, Guyuron B (1997) The fate of preserved autogenous bone graft. Plast Reconstr Surg 99:1324–1328CrossRefPubMed
6.
go back to reference Drago L, Romano D, De Vecchi E, Vassena C, Logoluso N, Mattina R, Romano CL (2013) Bioactive glass BAG-S53P4 for the adjunctive treatment of chronic osteomyelitis of the long bones: an in vitro and prospective clinical study. BMC Infect Dis 13:584CrossRefPubMedCentralPubMed Drago L, Romano D, De Vecchi E, Vassena C, Logoluso N, Mattina R, Romano CL (2013) Bioactive glass BAG-S53P4 for the adjunctive treatment of chronic osteomyelitis of the long bones: an in vitro and prospective clinical study. BMC Infect Dis 13:584CrossRefPubMedCentralPubMed
7.
go back to reference Dünisch P, Walter J, Sakr Y, Kalff R, Waschke A, Ewald C (2013) Risk factors of aseptic bone resorption: a study after autologous bone flap reinsertion due to decompressive craniotomy. J Neurosurg 118:1141–1147CrossRefPubMed Dünisch P, Walter J, Sakr Y, Kalff R, Waschke A, Ewald C (2013) Risk factors of aseptic bone resorption: a study after autologous bone flap reinsertion due to decompressive craniotomy. J Neurosurg 118:1141–1147CrossRefPubMed
8.
go back to reference Engstrand T, Kihlström L, Neovius E, Skogh AC, Lundgren TK, Jacobsson H, Bohlin J, Aberg J, Engqvist H (2014) Development of a bioactive implant for repair and potential healing of cranial defects. J Neurosurg 120:273–277CrossRefPubMed Engstrand T, Kihlström L, Neovius E, Skogh AC, Lundgren TK, Jacobsson H, Bohlin J, Aberg J, Engqvist H (2014) Development of a bioactive implant for repair and potential healing of cranial defects. J Neurosurg 120:273–277CrossRefPubMed
9.
go back to reference Frassanito P, Massimi L, Caldarelli M, Tamburrini G, Di Rocco C (2012) Complications of delayed cranial repair after decompressive craniectomy in children less than 1 year old. Acta Neurochir (Wien) 154:927–933CrossRef Frassanito P, Massimi L, Caldarelli M, Tamburrini G, Di Rocco C (2012) Complications of delayed cranial repair after decompressive craniectomy in children less than 1 year old. Acta Neurochir (Wien) 154:927–933CrossRef
10.
go back to reference Frassanito P, Massimi L, Caldarelli M, Tamburrini G, Di Rocco C (2014) Bone flap resorption in infants. J Neurosurg Pediatr 13:243–244CrossRefPubMed Frassanito P, Massimi L, Caldarelli M, Tamburrini G, Di Rocco C (2014) Bone flap resorption in infants. J Neurosurg Pediatr 13:243–244CrossRefPubMed
11.
go back to reference Goldstein JA, Paliga JT, Bartlett SP (2013) Cranioplasty: indications and advances. Curr Opin Otolaryngol Head Neck Surg 21:400–409CrossRefPubMed Goldstein JA, Paliga JT, Bartlett SP (2013) Cranioplasty: indications and advances. Curr Opin Otolaryngol Head Neck Surg 21:400–409CrossRefPubMed
12.
go back to reference Grant GA, Jolley M, Ellenbogen RG, Roberts TS, Gruss JR, Loeser JD (2004) Failure of autologous bone-assisted cranioplasty following decompressive craniectomy in children and adolescents. J Neurosurg 100:163–168PubMed Grant GA, Jolley M, Ellenbogen RG, Roberts TS, Gruss JR, Loeser JD (2004) Failure of autologous bone-assisted cranioplasty following decompressive craniectomy in children and adolescents. J Neurosurg 100:163–168PubMed
13.
go back to reference Güresir E, Schuss P, Vatter H, Raabe A, Seifert V, Beck J (2009) Decompressive craniectomy in subarachnoid hemorrhage. Neurosurg Focus 26:E4CrossRefPubMed Güresir E, Schuss P, Vatter H, Raabe A, Seifert V, Beck J (2009) Decompressive craniectomy in subarachnoid hemorrhage. Neurosurg Focus 26:E4CrossRefPubMed
14.
go back to reference Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res 7:25–42CrossRefPubMed Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res 7:25–42CrossRefPubMed
15.
go back to reference Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36:309–332CrossRefPubMed Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36:309–332CrossRefPubMed
16.
go back to reference Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH (1970) Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 4:433–456CrossRefPubMed Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH (1970) Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 4:433–456CrossRefPubMed
17.
go back to reference Kamdar MR, Gomez RA, Ascherman JA (2009) Intracranial volumes in a large series of healthy children. Plast Reconstr Surg 124:2072–2075CrossRefPubMed Kamdar MR, Gomez RA, Ascherman JA (2009) Intracranial volumes in a large series of healthy children. Plast Reconstr Surg 124:2072–2075CrossRefPubMed
18.
go back to reference Klawitter JJ, Bagwell JG, Weinstein AM, Sauer BW (1976) An evaluation of bone growth into porous high density polyethylene. J Biomed Mater Res 10:311–323CrossRefPubMed Klawitter JJ, Bagwell JG, Weinstein AM, Sauer BW (1976) An evaluation of bone growth into porous high density polyethylene. J Biomed Mater Res 10:311–323CrossRefPubMed
19.
go back to reference Leppäranta O, Vaahtio M, Peltola T, Zhang D, Hupa L, Hupa M, Ylänen H, Salonen JI, Viljanen MK, Eerola E (2008) Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. J Mater Sci Mater Med 19:547–551CrossRefPubMed Leppäranta O, Vaahtio M, Peltola T, Zhang D, Hupa L, Hupa M, Ylänen H, Salonen JI, Viljanen MK, Eerola E (2008) Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. J Mater Sci Mater Med 19:547–551CrossRefPubMed
20.
go back to reference Lin AY, Kinsella CR Jr, Rottgers SA, Smith DM, Grunwaldt LJ, Cooper GM, Losee JE (2012) Custom porous polyethylene implants for large-scale pediatric skull reconstruction: early outcomes. J Craniofac Surg 23:67–70CrossRefPubMed Lin AY, Kinsella CR Jr, Rottgers SA, Smith DM, Grunwaldt LJ, Cooper GM, Losee JE (2012) Custom porous polyethylene implants for large-scale pediatric skull reconstruction: early outcomes. J Craniofac Surg 23:67–70CrossRefPubMed
21.
go back to reference Lindfors NC, Hyvönen P, Nyyssönen M, Kirjavainen M, Kankare J, Gullichsen E, Salo J (2010) Bioactive glass S53P4 as bone graft substitute in treatment of osteomyelitis. Bone 47:212–218CrossRefPubMed Lindfors NC, Hyvönen P, Nyyssönen M, Kirjavainen M, Kankare J, Gullichsen E, Salo J (2010) Bioactive glass S53P4 as bone graft substitute in treatment of osteomyelitis. Bone 47:212–218CrossRefPubMed
22.
go back to reference Martin KD, Franz B, Kirsch M, Polanski W, von der Hagen M, Schackert G, Sobottka SB (2014) Autologous bone flap cranioplasty following decompressive craniectomy is combined with a high complication rate in pediatric traumatic brain injury patients. Acta Neurochir (Wien) 156:813–824CrossRef Martin KD, Franz B, Kirsch M, Polanski W, von der Hagen M, Schackert G, Sobottka SB (2014) Autologous bone flap cranioplasty following decompressive craniectomy is combined with a high complication rate in pediatric traumatic brain injury patients. Acta Neurochir (Wien) 156:813–824CrossRef
23.
go back to reference McAndrew J, Efrimescu C, Sheehan E, Niall D (2013) Through the looking glass; bioactive glass S53P4 (BonAlive®) in the treatment of chronic osteomyelitis. Ir J Med Sci 182:509–511CrossRefPubMed McAndrew J, Efrimescu C, Sheehan E, Niall D (2013) Through the looking glass; bioactive glass S53P4 (BonAlive®) in the treatment of chronic osteomyelitis. Ir J Med Sci 182:509–511CrossRefPubMed
24.
go back to reference Munukka E, Leppäranta O, Korkeamäki M, Vaahtio M, Peltola T, Zhang D, Hupa L, Ylänen H, Salonen JI, Viljanen MK, Eerola E (2008) Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J Mater Sci Mater Med 19:27–32CrossRefPubMed Munukka E, Leppäranta O, Korkeamäki M, Vaahtio M, Peltola T, Zhang D, Hupa L, Ylänen H, Salonen JI, Viljanen MK, Eerola E (2008) Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J Mater Sci Mater Med 19:27–32CrossRefPubMed
25.
go back to reference Neovius E, Engstrand T (2010) Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J Plast Reconstr Aesthet Surg 63:1615–1623CrossRefPubMed Neovius E, Engstrand T (2010) Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J Plast Reconstr Aesthet Surg 63:1615–1623CrossRefPubMed
26.
go back to reference Peltola M, Aitasalo K, Suonpää J, Varpula M, Yli-Urpo A (2006) Bioactive glass S53P4 in frontal sinus obliteration: a long-term clinical experience. Head Neck 28:834–841CrossRefPubMed Peltola M, Aitasalo K, Suonpää J, Varpula M, Yli-Urpo A (2006) Bioactive glass S53P4 in frontal sinus obliteration: a long-term clinical experience. Head Neck 28:834–841CrossRefPubMed
27.
go back to reference Piedra MP, Thompson EM, Selden NR, Ragel BT, Guillaume DJ (2012) Optimal timing of autologous cranioplasty after decompressive craniectomy in children. J Neurosurg Pediatr 10:268–272CrossRefPubMed Piedra MP, Thompson EM, Selden NR, Ragel BT, Guillaume DJ (2012) Optimal timing of autologous cranioplasty after decompressive craniectomy in children. J Neurosurg Pediatr 10:268–272CrossRefPubMed
28.
go back to reference Qiu W, Guo C, Shen H, Chen K, Wen L, Huang H, Ding M, Sun L, Jiang Q, Wang W (2009) Effects of unilateral decompressive craniectomy on patients with unilateral acute post-traumatic brain swelling after severe traumatic brain injury. Crit Care 13:R185CrossRefPubMedCentralPubMed Qiu W, Guo C, Shen H, Chen K, Wen L, Huang H, Ding M, Sun L, Jiang Q, Wang W (2009) Effects of unilateral decompressive craniectomy on patients with unilateral acute post-traumatic brain swelling after severe traumatic brain injury. Crit Care 13:R185CrossRefPubMedCentralPubMed
29.
go back to reference Ritter L, Elger MC, Rothamel D, Fienitz T, Zinser M, Schwarz F, Zoller JE (2014) Accuracy of peri-implant bone evaluation using cone beam CT, digital intra-oral radiographs and histology. Dentomaxillofac Radiol 43:20130088CrossRefPubMed Ritter L, Elger MC, Rothamel D, Fienitz T, Zinser M, Schwarz F, Zoller JE (2014) Accuracy of peri-implant bone evaluation using cone beam CT, digital intra-oral radiographs and histology. Dentomaxillofac Radiol 43:20130088CrossRefPubMed
30.
go back to reference Rocque BG, Amancherla K, Lew SM, Lam S (2013) Outcomes of cranioplasty following decompressive craniectomy in the pediatric population. J Neurosurg Pediatr 12:120–125CrossRefPubMed Rocque BG, Amancherla K, Lew SM, Lam S (2013) Outcomes of cranioplasty following decompressive craniectomy in the pediatric population. J Neurosurg Pediatr 12:120–125CrossRefPubMed
31.
go back to reference Rogers GF, Greene AK (2012) Autogenous bone graft: basic science and clinical implications. J Craniofac Surg 23:323–327CrossRefPubMed Rogers GF, Greene AK (2012) Autogenous bone graft: basic science and clinical implications. J Craniofac Surg 23:323–327CrossRefPubMed
32.
go back to reference Sarin J, Grénman R, Aitasalo K, Pulkkinen J (2012) Bioactive glass S53P4 in mastoid obliteration surgery for chronic otitis media and cerebrospinal fluid leakage. Ann Otol Rhinol Laryngol 121:563–569CrossRefPubMed Sarin J, Grénman R, Aitasalo K, Pulkkinen J (2012) Bioactive glass S53P4 in mastoid obliteration surgery for chronic otitis media and cerebrospinal fluid leakage. Ann Otol Rhinol Laryngol 121:563–569CrossRefPubMed
33.
go back to reference Schuss P, Vatter H, Marquardt G, Imohl L, Ulrich CT, Seifert V, Guresir E (2012) Cranioplasty after decompressive craniectomy: the effect of timing on postoperative complications. J Neurotrauma 29:1090–1095CrossRefPubMed Schuss P, Vatter H, Marquardt G, Imohl L, Ulrich CT, Seifert V, Guresir E (2012) Cranioplasty after decompressive craniectomy: the effect of timing on postoperative complications. J Neurotrauma 29:1090–1095CrossRefPubMed
34.
go back to reference Staffa G, Barbanera A, Faiola A, Fricia M, Limoni P, Mottaran R, Zanotti B, Stefini R (2012) Custom made bioceramic implants in complex and large cranial reconstruction: a two-year follow-up. J Craniomaxillofac Surg 40:e65–e70CrossRefPubMed Staffa G, Barbanera A, Faiola A, Fricia M, Limoni P, Mottaran R, Zanotti B, Stefini R (2012) Custom made bioceramic implants in complex and large cranial reconstruction: a two-year follow-up. J Craniomaxillofac Surg 40:e65–e70CrossRefPubMed
35.
go back to reference Staffa G, Nataloni A, Compagnone C, Servadei F (2007) Custom made cranioplasty prostheses in porous hydroxy-apatite using 3D design techniques: 7 years experience in 25 patients. Acta Neurochir (Wien) 149:161–170, discussion 170CrossRef Staffa G, Nataloni A, Compagnone C, Servadei F (2007) Custom made cranioplasty prostheses in porous hydroxy-apatite using 3D design techniques: 7 years experience in 25 patients. Acta Neurochir (Wien) 149:161–170, discussion 170CrossRef
36.
go back to reference Tuusa SM, Peltola MJ, Tirri T, Puska MA, Röyttä M, Aho H, Sandholm J, Lassila LVJ, Vallittu PK (2008) Reconstruction of critical size calvarial bone defects in rabbits with glass-fiber-reinforced composite with bioactive glass granule coating. J Biomed Mater Res B Appl Biomater 84:510–519CrossRefPubMed Tuusa SM, Peltola MJ, Tirri T, Puska MA, Röyttä M, Aho H, Sandholm J, Lassila LVJ, Vallittu PK (2008) Reconstruction of critical size calvarial bone defects in rabbits with glass-fiber-reinforced composite with bioactive glass granule coating. J Biomed Mater Res B Appl Biomater 84:510–519CrossRefPubMed
37.
go back to reference Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M (2007) Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res 86:754–757CrossRefPubMed Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M (2007) Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res 86:754–757CrossRefPubMed
38.
go back to reference Wang D, Kunzel A, Golubovic V, Mihatovic I, John G, Chen Z, Becker J, Schwarz F (2013) Accuracy of peri-implant bone thickness and validity of assessing bone augmentation material using cone beam computed tomography. Clin Oral Investig 17:1601–1609CrossRefPubMed Wang D, Kunzel A, Golubovic V, Mihatovic I, John G, Chen Z, Becker J, Schwarz F (2013) Accuracy of peri-implant bone thickness and validity of assessing bone augmentation material using cone beam computed tomography. Clin Oral Investig 17:1601–1609CrossRefPubMed
39.
go back to reference Yli-Urpo H, Närhi T, Söderling E (2003) Antimicrobial effects of glass ionomer cements containing bioactive glass (S53P4) on oral micro-organisms in vitro. Acta Odontol Scand 61:241–246CrossRefPubMed Yli-Urpo H, Närhi T, Söderling E (2003) Antimicrobial effects of glass ionomer cements containing bioactive glass (S53P4) on oral micro-organisms in vitro. Acta Odontol Scand 61:241–246CrossRefPubMed
40.
go back to reference Zehnder M, Söderling E, Salonen J, Waltimo T (2004) Preliminary evaluation of bioactive glass S53P4 as an endodontic medication in vitro. J Endod 30:220–224CrossRefPubMed Zehnder M, Söderling E, Salonen J, Waltimo T (2004) Preliminary evaluation of bioactive glass S53P4 as an endodontic medication in vitro. J Endod 30:220–224CrossRefPubMed
41.
go back to reference Zehnder M, Waltimo T, Sener B, Söderling E (2006) Dentin enhances the effectiveness of bioactive glass S53P4 against a strain of Enterococcus faecalis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101:530–535CrossRefPubMed Zehnder M, Waltimo T, Sener B, Söderling E (2006) Dentin enhances the effectiveness of bioactive glass S53P4 against a strain of Enterococcus faecalis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101:530–535CrossRefPubMed
42.
go back to reference Zhang D, Leppäranta O, Munukka E, Ylänen H, Viljanen MK, Eerola E, Hupa M, Hupa L (2010) Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res A 93:475–483PubMed Zhang D, Leppäranta O, Munukka E, Ylänen H, Viljanen MK, Eerola E, Hupa M, Hupa L (2010) Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res A 93:475–483PubMed
Metadata
Title
Paediatric cranial defect reconstruction using bioactive fibre-reinforced composite implant: early outcomes
Authors
Jaakko M. Piitulainen
Jussi P. Posti
Kalle M. J. Aitasalo
Ville Vuorinen
Pekka K. Vallittu
Willy Serlo
Publication date
01-04-2015
Publisher
Springer Vienna
Published in
Acta Neurochirurgica / Issue 4/2015
Print ISSN: 0001-6268
Electronic ISSN: 0942-0940
DOI
https://doi.org/10.1007/s00701-015-2363-2

Other articles of this Issue 4/2015

Acta Neurochirurgica 4/2015 Go to the issue