Skip to main content
Top
Published in: Sleep and Breathing 2/2012

01-06-2012 | Original Article

Oxidative and carbonyl stress in patients with obstructive sleep apnea treated with continuous positive airway pressure

Authors: Peter Celec, Július Hodosy, Michal Behuliak, Roland Pálffy, Roman Gardlík, Lukáč Halčák, Imrich Mucska

Published in: Sleep and Breathing | Issue 2/2012

Login to get access

Abstract

Purpose

The pathogenesis of cardiovascular complications of obstructive sleep apnea syndrome (OSAS) can be explained by oxidative and carbonyl stress due to oxygenation and reoxygenation injury during sleep. This hypothesis has yet to be proved experimentally, although several clinical observations have found increased oxidative damage in plasma. Continuous positive airway pressure (CPAP) improves symptoms and prognosis of patients with OSAS.

Methods

Patients with confirmed SAS (n = 89) underwent polysomnography and received CPAP treatment. Plasma and saliva samples were taken before CPAP therapy as well as after 1 and 6 months of CPAP treatment. Selected markers of oxidative and carbonyl stress were measured in plasma and saliva, and their dynamics was statistically analyzed.

Results

Plasma levels of thiobarbituric acid reacting substances—a marker of lipoperoxidation—and advanced glycation end products (AGEs)—a marker of carbonyl stress—were decreased by the CPAP therapy. The decrease of AGEs and fructosamine was also found in saliva. Interestingly, no gender differences and no changes of antioxidant status measured as total antioxidant capacity and ferrous reducing ability were found in either of the samples.

Conclusion

Previous findings of lowered plasma markers of oxidative stress were confirmed. Plasma AGEs were lowered by CPAP therapy. This is the first study analyzing markers of oxidative and carbonyl stress in saliva. Non-invasive sampling of saliva makes it a very interesting source of information for repeated monitoring of therapy success. Salivary AGEs and fructosamine as markers of carbonyl stress were decreased by the CPAP therapy and might therefore have potential informative value for clinical observations, as well as for the understanding of the pathogenesis of OSAS complications.
Literature
1.
go back to reference Jurkovicova I, Celec P (2004) Sleep apnea syndrome and its complications. Acta Med Austriaca 31:45–50PubMed Jurkovicova I, Celec P (2004) Sleep apnea syndrome and its complications. Acta Med Austriaca 31:45–50PubMed
2.
go back to reference Lavie L, Lavie P (2009) Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link. Eur Respir J 33:1467–1484PubMedCrossRef Lavie L, Lavie P (2009) Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link. Eur Respir J 33:1467–1484PubMedCrossRef
3.
go back to reference Miyata T, de Strihou CV, Kurokawa K, Baynes JW (1999) Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications. Kidney Int 55:389–399PubMedCrossRef Miyata T, de Strihou CV, Kurokawa K, Baynes JW (1999) Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications. Kidney Int 55:389–399PubMedCrossRef
5.
go back to reference Celec P, Hodosy J, Celecova V, Vodrazka J, Cervenka T, Halcak L, Bozek P, Kopani M, Kudela M (2005) Salivary thiobarbituric acid reacting substances and malondialdehyde—their relationship to reported smoking and to parodontal status described by the papillary bleeding index. Dis Markers 21:133–137PubMed Celec P, Hodosy J, Celecova V, Vodrazka J, Cervenka T, Halcak L, Bozek P, Kopani M, Kudela M (2005) Salivary thiobarbituric acid reacting substances and malondialdehyde—their relationship to reported smoking and to parodontal status described by the papillary bleeding index. Dis Markers 21:133–137PubMed
6.
go back to reference Becker HF, Jerrentrup A, Ploch T, Grote L, Penzel T, Sullivan CE, Peter JH (2003) Effect of nasal continuous positive airway pressure treatment on blood pressure in patients with obstructive sleep apnea. Circulation 107:68–73PubMedCrossRef Becker HF, Jerrentrup A, Ploch T, Grote L, Penzel T, Sullivan CE, Peter JH (2003) Effect of nasal continuous positive airway pressure treatment on blood pressure in patients with obstructive sleep apnea. Circulation 107:68–73PubMedCrossRef
7.
go back to reference Kaneko Y, Floras JS, Usui K, Plante J, Tkacova R, Kubo T, Ando S, Bradley TD (2003) Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med 348:1233–1241PubMedCrossRef Kaneko Y, Floras JS, Usui K, Plante J, Tkacova R, Kubo T, Ando S, Bradley TD (2003) Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med 348:1233–1241PubMedCrossRef
8.
go back to reference Marin JM, Carrizo SJ, Vicente E, Agusti AGN (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea–hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365:1046–1053PubMed Marin JM, Carrizo SJ, Vicente E, Agusti AGN (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea–hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365:1046–1053PubMed
9.
go back to reference Murri M, Alcazar-Ramirez J, Garrido-Sanchez L, Linde F, Alcaide J, Cardona F, Tinahones FJ (2009) Oxidative stress and metabolic changes after continuous positive airway pressure treatment according to previous metabolic disorders in sleep apnea–hypopnea syndrome patients. Transl Res 154:111–121PubMedCrossRef Murri M, Alcazar-Ramirez J, Garrido-Sanchez L, Linde F, Alcaide J, Cardona F, Tinahones FJ (2009) Oxidative stress and metabolic changes after continuous positive airway pressure treatment according to previous metabolic disorders in sleep apnea–hypopnea syndrome patients. Transl Res 154:111–121PubMedCrossRef
10.
go back to reference Christou K, Kostikas K, Pastaka C, Tanou K, Antoniadou I, Gourgoulianis KI (2009) Nasal continuous positive airway pressure treatment reduces systemic oxidative stress in patients with severe obstructive sleep apnea syndrome. Sleep Med 10:87–94PubMedCrossRef Christou K, Kostikas K, Pastaka C, Tanou K, Antoniadou I, Gourgoulianis KI (2009) Nasal continuous positive airway pressure treatment reduces systemic oxidative stress in patients with severe obstructive sleep apnea syndrome. Sleep Med 10:87–94PubMedCrossRef
11.
go back to reference Carpagnano GE, Kharitonov SA, Resta O, Foschino-Barbaro MP, Gramiccioni E, Barnes PJ (2003) 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest 124:1386–1392PubMedCrossRef Carpagnano GE, Kharitonov SA, Resta O, Foschino-Barbaro MP, Gramiccioni E, Barnes PJ (2003) 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest 124:1386–1392PubMedCrossRef
12.
go back to reference Moser D, Anderer P, Gruber G, Parapatics S, Loretz E, Boeck M, Kloesch G, Heller E, Schmidt A, Danker-Hopfe H, Saletu B, Zeitlhofer J, Dorffner G (2009) Sleep classification according to AASM and Rechtschaffen & Kales: effects on sleep scoring parameters. Sleep 32:139–149PubMed Moser D, Anderer P, Gruber G, Parapatics S, Loretz E, Boeck M, Kloesch G, Heller E, Schmidt A, Danker-Hopfe H, Saletu B, Zeitlhofer J, Dorffner G (2009) Sleep classification according to AASM and Rechtschaffen & Kales: effects on sleep scoring parameters. Sleep 32:139–149PubMed
13.
go back to reference Hodosy J, Celec P (2005) Daytime of sampling, tooth-brushing and ascorbic acid influence salivary thiobarbituric acid reacting substances—a potential clinical marker of gingival status. Dis Markers 21:203–207PubMed Hodosy J, Celec P (2005) Daytime of sampling, tooth-brushing and ascorbic acid influence salivary thiobarbituric acid reacting substances—a potential clinical marker of gingival status. Dis Markers 21:203–207PubMed
14.
go back to reference Ohkawa H, Ohishi N, Yagi K (1978) Reaction of linoleic acid hydroperoxide with thiobarbituric acid. J Lipid Res 19:1053–1057PubMed Ohkawa H, Ohishi N, Yagi K (1978) Reaction of linoleic acid hydroperoxide with thiobarbituric acid. J Lipid Res 19:1053–1057PubMed
15.
go back to reference Witko-Sarsat V, Friedlander M, CapeillereBlandin C, NguyenKhoa T, Nguyen NT, Zingraff J, Jungers P, DescampsLatscha B (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304–1313PubMedCrossRef Witko-Sarsat V, Friedlander M, CapeillereBlandin C, NguyenKhoa T, Nguyen NT, Zingraff J, Jungers P, DescampsLatscha B (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304–1313PubMedCrossRef
16.
go back to reference Munch G, Keis R, Wessels A, Riederer P, Bahner U, Heidland A, Niwa T, Lemke HD, Schinzel R (1997) Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA. Eur J Clin Chem Clin Biochem 35:669–677PubMed Munch G, Keis R, Wessels A, Riederer P, Bahner U, Heidland A, Niwa T, Lemke HD, Schinzel R (1997) Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA. Eur J Clin Chem Clin Biochem 35:669–677PubMed
17.
go back to reference San-Gil F, Schier GM, Moses RG, Gan IE (1985) Improved estimation of fructosamine, as a measure of glycated serum protein, with the Technicon RA-1000 analyzer. Clin Chem 31:2005–2006PubMed San-Gil F, Schier GM, Moses RG, Gan IE (1985) Improved estimation of fructosamine, as a measure of glycated serum protein, with the Technicon RA-1000 analyzer. Clin Chem 31:2005–2006PubMed
18.
go back to reference Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37:277–285PubMedCrossRef Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37:277–285PubMedCrossRef
19.
go back to reference Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76PubMedCrossRef Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76PubMedCrossRef
20.
go back to reference Dikmenoglu N, Ciftci B, Ileri E, Guven SF, Seringec N, Aksoy Y, Ercil D (2006) Erythrocyte deformability, plasma viscosity and oxidative status in patients with severe obstructive sleep apnea syndrome. Sleep Med 7:255–261PubMedCrossRef Dikmenoglu N, Ciftci B, Ileri E, Guven SF, Seringec N, Aksoy Y, Ercil D (2006) Erythrocyte deformability, plasma viscosity and oxidative status in patients with severe obstructive sleep apnea syndrome. Sleep Med 7:255–261PubMedCrossRef
21.
go back to reference Jordan W, Cohrs S, Degner D, Meier A, Rodenbeck A, Mayer G, Pilz J, Ruther E, Kornhuber J, Bleich S (2006) Evaluation of oxidative stress measurements in obstructive sleep apnea syndrome. J Neural Transm 113:239–254PubMedCrossRef Jordan W, Cohrs S, Degner D, Meier A, Rodenbeck A, Mayer G, Pilz J, Ruther E, Kornhuber J, Bleich S (2006) Evaluation of oxidative stress measurements in obstructive sleep apnea syndrome. J Neural Transm 113:239–254PubMedCrossRef
22.
go back to reference Selmi C, Montano N, Furlan R, Keen CL, Gershwin ME (2007) Inflammation and oxidative stress in obstructive sleep apnea syndrome. Exp Biol Med 232:1409–1413CrossRef Selmi C, Montano N, Furlan R, Keen CL, Gershwin ME (2007) Inflammation and oxidative stress in obstructive sleep apnea syndrome. Exp Biol Med 232:1409–1413CrossRef
23.
go back to reference Ozkan Y, Firat H, Simsek B, Torun M, Yardim-Akaydin S (2008) Circulating nitric oxide (NO), asymmetric dimethylarginine (ADMA), homocysteine, and oxidative status in obstructive sleep apnea–hypopnea syndrome (OSAHS). Sleep Breath 12:149–154PubMedCrossRef Ozkan Y, Firat H, Simsek B, Torun M, Yardim-Akaydin S (2008) Circulating nitric oxide (NO), asymmetric dimethylarginine (ADMA), homocysteine, and oxidative status in obstructive sleep apnea–hypopnea syndrome (OSAHS). Sleep Breath 12:149–154PubMedCrossRef
24.
go back to reference Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–2667PubMedCrossRef Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–2667PubMedCrossRef
25.
go back to reference Greenberg H, Ye XB, Wilson D, Htoo AK, Hendersen T, Liu SF (2006) Chronic intermittent hypoxia activates nuclear factor-kappa B in cardiovascular tissues in vivo. Biochem Biophys Res Commun 343:591–596PubMedCrossRef Greenberg H, Ye XB, Wilson D, Htoo AK, Hendersen T, Liu SF (2006) Chronic intermittent hypoxia activates nuclear factor-kappa B in cardiovascular tissues in vivo. Biochem Biophys Res Commun 343:591–596PubMedCrossRef
26.
go back to reference Suzuki YJ, Jain V, Park AM, Day RM (2006) Oxidative stress and oxidant signaling in obstructive sleep apnea and associated cardiovascular diseases. Free Radic Biol Med 40:1683–1692PubMedCrossRef Suzuki YJ, Jain V, Park AM, Day RM (2006) Oxidative stress and oxidant signaling in obstructive sleep apnea and associated cardiovascular diseases. Free Radic Biol Med 40:1683–1692PubMedCrossRef
27.
go back to reference Yamauchi M, Kimura H (2008) Oxidative stress in obstructive sleep apnea: putative pathways to the cardiovascular complications. Antioxid Redox Signal 10:755–768PubMedCrossRef Yamauchi M, Kimura H (2008) Oxidative stress in obstructive sleep apnea: putative pathways to the cardiovascular complications. Antioxid Redox Signal 10:755–768PubMedCrossRef
28.
go back to reference Lykkesfeldt J (2007) Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clin Chim Acta 380:50–58PubMedCrossRef Lykkesfeldt J (2007) Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clin Chim Acta 380:50–58PubMedCrossRef
29.
go back to reference WitkoSarsat V, Friedlander M, CapeillereBlandin C, NguyenKhoa T, Nguyen NT, Zingraff J, Jungers P, DescampsLatscha B (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304–1313CrossRef WitkoSarsat V, Friedlander M, CapeillereBlandin C, NguyenKhoa T, Nguyen NT, Zingraff J, Jungers P, DescampsLatscha B (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304–1313CrossRef
30.
go back to reference Capeillere-Blandin C, Gausson V, Descamps-Latscha B, Witko-Sarsat V (2004) Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochim Biophys Acta Mol Basis Dis 1689:91–102 Capeillere-Blandin C, Gausson V, Descamps-Latscha B, Witko-Sarsat V (2004) Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochim Biophys Acta Mol Basis Dis 1689:91–102
31.
go back to reference Hernandez C, Abreu J, Abreu P, Colino R, Jimenez A (2006) Effects of nasal positive airway pressure treatment on oxidative stress in patients with sleep apnea–hypopnea syndrome. Arch Bronconeumol 42:125–129PubMedCrossRef Hernandez C, Abreu J, Abreu P, Colino R, Jimenez A (2006) Effects of nasal positive airway pressure treatment on oxidative stress in patients with sleep apnea–hypopnea syndrome. Arch Bronconeumol 42:125–129PubMedCrossRef
32.
go back to reference Takahashi KI, Chin K, Nakamura H, Morita S, Sumi K, Oga T, Matsumoto H, Niimi A, Fukuhara S, Yodoi J, Mishima M (2008) Plasma thioredoxin, a novel oxidative stress marker, in patients with obstructive sleep apnea before and after nasal continuous positive airway pressure. Antioxid Redox Signal 10:715–726PubMedCrossRef Takahashi KI, Chin K, Nakamura H, Morita S, Sumi K, Oga T, Matsumoto H, Niimi A, Fukuhara S, Yodoi J, Mishima M (2008) Plasma thioredoxin, a novel oxidative stress marker, in patients with obstructive sleep apnea before and after nasal continuous positive airway pressure. Antioxid Redox Signal 10:715–726PubMedCrossRef
33.
go back to reference Lavie P, Lavie L (2009) Unexpected survival advantage in elderly people with moderate sleep apnoea. J Sleep Res 18:397–403PubMedCrossRef Lavie P, Lavie L (2009) Unexpected survival advantage in elderly people with moderate sleep apnoea. J Sleep Res 18:397–403PubMedCrossRef
34.
go back to reference Grebe M, Eisele HJ, Weissmann N, Schaefer C, Tillmanns H, Seeger W, Schulz R (2006) Antioxidant vitamin C improves endothelial function in obstructive sleep apnea. Am J Respir Crit Care Med 173:897–901PubMedCrossRef Grebe M, Eisele HJ, Weissmann N, Schaefer C, Tillmanns H, Seeger W, Schulz R (2006) Antioxidant vitamin C improves endothelial function in obstructive sleep apnea. Am J Respir Crit Care Med 173:897–901PubMedCrossRef
Metadata
Title
Oxidative and carbonyl stress in patients with obstructive sleep apnea treated with continuous positive airway pressure
Authors
Peter Celec
Július Hodosy
Michal Behuliak
Roland Pálffy
Roman Gardlík
Lukáč Halčák
Imrich Mucska
Publication date
01-06-2012
Publisher
Springer-Verlag
Published in
Sleep and Breathing / Issue 2/2012
Print ISSN: 1520-9512
Electronic ISSN: 1522-1709
DOI
https://doi.org/10.1007/s11325-011-0510-4

Other articles of this Issue 2/2012

Sleep and Breathing 2/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine