Skip to main content
Top
Published in: Molecular Cancer 1/2009

Open Access 01-12-2009 | Research

Overexpression of RRM2 decreases thrombspondin-1 and increases VEGF production in human cancer cells in vitro and in vivo: implication of RRM2 in angiogenesis

Authors: Keqiang Zhang, Shuya Hu, Jun Wu, Linling Chen, Jianming Lu, Xiaochen Wang, Xiyong Liu, Bingsen Zhou, Yun Yen

Published in: Molecular Cancer | Issue 1/2009

Login to get access

Abstract

Background

In addition to its essential role in ribonucleotide reduction, ribonucleotide reductase (RNR) small subunit, RRM2, has been known to play a critical role in determining tumor malignancy. Overexpression of RRM2 significantly enhances the invasive and metastatic potential of tumor. Angiogenesis is critical to tumor malignancy; it plays an essential role in tumor growth and metastasis. It is important to investigate whether the angiogenic potential of tumor is affected by RRM2.

Results

We examined the expression of antiangiogenic thrombospondin-1 (TSP-1) and proangiogenic vascular endothelial growth factor (VEGF) in two RRM2-overexpressing KB cells: KB-M2-D and KB-HURs. We found that TSP-1 was significantly decreased in both KB-M2-D and KB-HURs cells compared to the parental KB and mock transfected KB-V. Simultaneously, RRM2-overexpressing KB cells showed increased production of VEGF mRNA and protein. In contrast, attenuating RRM2 expression via siRNA resulted in a significant increased TSP-1 expression in both KB and LNCaP cells; while the expression of VEGF by the two cells was significantly decreased under both normoxia and hypoxia. In comparison with KB-V, overexpression of RRM2 had no significant effect on proliferation in vitro, but it dramatically accelerated in vivo subcutaneous growth of KB-M2-D. KB-M2-D possessed more angiogenic potential than KB-V, as shown in vitro by its increased chemotaxis for endothelial cells and in vivo by the generation of more vascularized tumor xenografts.

Conclusion

These findings suggest a positive role of RRM2 in tumor angiogenesis and growth through regulation of the expression of TSP-1 and VEGF.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nordlund P, Reichard P: Ribonucleotide reductases. Annu Rev Biochem. 2006, 75: 681-706. 10.1146/annurev.biochem.75.103004.142443CrossRefPubMed Nordlund P, Reichard P: Ribonucleotide reductases. Annu Rev Biochem. 2006, 75: 681-706. 10.1146/annurev.biochem.75.103004.142443CrossRefPubMed
2.
go back to reference Engstrom Y, Eriksson S, Jildevik I, Skog S, Thelander L, Tribukait B: Cell cycle-dependent expression of mammalian ribonucleotide reductase. Differential regulation of the two subunits. J Biol Chem. 1985, 260: 9114-9161.PubMed Engstrom Y, Eriksson S, Jildevik I, Skog S, Thelander L, Tribukait B: Cell cycle-dependent expression of mammalian ribonucleotide reductase. Differential regulation of the two subunits. J Biol Chem. 1985, 260: 9114-9161.PubMed
3.
go back to reference Zhou B, Yen Y: Characterization of the human ribonucleotide reductase M2 subunit gene; genomic structure and promoter analyses. Cytogenet Cell Genet. 2001, 95: 52-59. 10.1159/000057017CrossRefPubMed Zhou B, Yen Y: Characterization of the human ribonucleotide reductase M2 subunit gene; genomic structure and promoter analyses. Cytogenet Cell Genet. 2001, 95: 52-59. 10.1159/000057017CrossRefPubMed
4.
go back to reference Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K, Takei Y, Nakamura Y: A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature. 2000, 404: 42-49. 10.1038/35003506CrossRefPubMed Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K, Takei Y, Nakamura Y: A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature. 2000, 404: 42-49. 10.1038/35003506CrossRefPubMed
5.
go back to reference Guittet O, Håkansson P, Voevodskaya N, Gräslund A, Arakawa H, Nakamura Y, Thelander L: Mammalian p53R2 protein forms an active ribonucleotide reductase in vitro with the R1 protein, which is expressed both in resting cells in response to DNA damage and in proliferating cells. J Biol Chem. 2001, 276: 40647-40651. 10.1074/jbc.M106088200CrossRefPubMed Guittet O, Håkansson P, Voevodskaya N, Gräslund A, Arakawa H, Nakamura Y, Thelander L: Mammalian p53R2 protein forms an active ribonucleotide reductase in vitro with the R1 protein, which is expressed both in resting cells in response to DNA damage and in proliferating cells. J Biol Chem. 2001, 276: 40647-40651. 10.1074/jbc.M106088200CrossRefPubMed
6.
go back to reference Jensen RA, Page DL, Holt JT: Identification of genes expressed in premalignant breast disease by microscopy-directed cloning. Proc Natl Acad Sci USA. 1994, 91: 9257-9261. 10.1073/pnas.91.20.9257PubMedCentralCrossRefPubMed Jensen RA, Page DL, Holt JT: Identification of genes expressed in premalignant breast disease by microscopy-directed cloning. Proc Natl Acad Sci USA. 1994, 91: 9257-9261. 10.1073/pnas.91.20.9257PubMedCentralCrossRefPubMed
7.
go back to reference Schallreuter KU, Elgren TE, Nelson LS, MacFarlan S, Yan-Sze I, Hogenkamp HP: Ribonucleotide diphosphate reductase from human metastatic melanoma. Melanoma Res. 1992, 2: 393-400. 10.1097/00008390-199212000-00014CrossRefPubMed Schallreuter KU, Elgren TE, Nelson LS, MacFarlan S, Yan-Sze I, Hogenkamp HP: Ribonucleotide diphosphate reductase from human metastatic melanoma. Melanoma Res. 1992, 2: 393-400. 10.1097/00008390-199212000-00014CrossRefPubMed
8.
go back to reference Liu X, Zhou B, Xue L, Yen F, Chu P, Un F, Yen Y: Ribonucleotide reductase subunits M2 and p53R2 are potential biomarkers for metastasis of colon cancer. Clin Colorectal Cancer. 2007, 6: 374-381. 10.3816/CCC.2007.n.007CrossRefPubMed Liu X, Zhou B, Xue L, Yen F, Chu P, Un F, Yen Y: Ribonucleotide reductase subunits M2 and p53R2 are potential biomarkers for metastasis of colon cancer. Clin Colorectal Cancer. 2007, 6: 374-381. 10.3816/CCC.2007.n.007CrossRefPubMed
9.
go back to reference Fan H, Huang A, Villegas C, Wright JA: The R1 component of mammalian ribonucleotide reductase has malignancy-suppressing activity as demonstrated by gene transfer experiments. Proc Natl Acad Sci USA. 1997, 94: 13181-13186. 10.1073/pnas.94.24.13181PubMedCentralCrossRefPubMed Fan H, Huang A, Villegas C, Wright JA: The R1 component of mammalian ribonucleotide reductase has malignancy-suppressing activity as demonstrated by gene transfer experiments. Proc Natl Acad Sci USA. 1997, 94: 13181-13186. 10.1073/pnas.94.24.13181PubMedCentralCrossRefPubMed
10.
go back to reference Gautam A, Li ZR, Bepler G: RRM1-induced metastasis suppression through PTEN-regulated pathways. Oncogene. 2003, 22: 2135-2142. 10.1038/sj.onc.1206232CrossRefPubMed Gautam A, Li ZR, Bepler G: RRM1-induced metastasis suppression through PTEN-regulated pathways. Oncogene. 2003, 22: 2135-2142. 10.1038/sj.onc.1206232CrossRefPubMed
11.
go back to reference Cao MY, Lee Y, Feng NP, Xiong K, Jin H, Wang M, Vassilakos A, Viau S, Wright JA, Young AH: Adenovirus-mediated ribonucleotide reductase R1 gene therapy of human colon adenocarcinoma. Clin Cancer Res. 2003, 9: 4553-61.PubMed Cao MY, Lee Y, Feng NP, Xiong K, Jin H, Wang M, Vassilakos A, Viau S, Wright JA, Young AH: Adenovirus-mediated ribonucleotide reductase R1 gene therapy of human colon adenocarcinoma. Clin Cancer Res. 2003, 9: 4553-61.PubMed
12.
go back to reference Fan H, Villegas C, Huang A, Wright JA: The mammalian ribonucleotide reductase R2 component cooperates with a variety of oncogenes in mechanisms of cellular transformation. Cancer Res. 1998, 58: 1650-1653.PubMed Fan H, Villegas C, Huang A, Wright JA: The mammalian ribonucleotide reductase R2 component cooperates with a variety of oncogenes in mechanisms of cellular transformation. Cancer Res. 1998, 58: 1650-1653.PubMed
13.
go back to reference Fan H, Villegas C, Wright JA: Ribonucleotide reductase R2 component is a novel malignancy determinant that cooperates with activated oncogenes to determine transformation and malignant potential. Proc Natl Acad Sci USA. 1996, 93: 14036-14040. 10.1073/pnas.93.24.14036PubMedCentralCrossRefPubMed Fan H, Villegas C, Wright JA: Ribonucleotide reductase R2 component is a novel malignancy determinant that cooperates with activated oncogenes to determine transformation and malignant potential. Proc Natl Acad Sci USA. 1996, 93: 14036-14040. 10.1073/pnas.93.24.14036PubMedCentralCrossRefPubMed
14.
go back to reference Liu X, Zhou B, Xue L, Shih J, Tye K, Lin W, Qi C, Chu P, Un F, Wen W, Yen Y: Metastasis-suppressing potential of ribonucleotide reductase small subunit p53R2 in human cancer cells. Clin Cancer Res. 2006, 12: 6337-6344. 10.1158/1078-0432.CCR-06-0799CrossRefPubMed Liu X, Zhou B, Xue L, Shih J, Tye K, Lin W, Qi C, Chu P, Un F, Wen W, Yen Y: Metastasis-suppressing potential of ribonucleotide reductase small subunit p53R2 in human cancer cells. Clin Cancer Res. 2006, 12: 6337-6344. 10.1158/1078-0432.CCR-06-0799CrossRefPubMed
15.
go back to reference Zhou B, Tsai P, Ker R, Tsai J, Ho R, Yu J, Shih J, Yen Y: Overexpression of transfected human ribonucleotide reductase M2 subunit in human cancer cells enhances their invasive potential. Clin Exp Metastasis. 1998, 16: 43-49. 10.1023/A:1006559901771CrossRefPubMed Zhou B, Tsai P, Ker R, Tsai J, Ho R, Yu J, Shih J, Yen Y: Overexpression of transfected human ribonucleotide reductase M2 subunit in human cancer cells enhances their invasive potential. Clin Exp Metastasis. 1998, 16: 43-49. 10.1023/A:1006559901771CrossRefPubMed
16.
go back to reference Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE: RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine. Oncogene. 2004, 23: 1539-1548. 10.1038/sj.onc.1207272CrossRefPubMed Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE: RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine. Oncogene. 2004, 23: 1539-1548. 10.1038/sj.onc.1207272CrossRefPubMed
17.
go back to reference Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995, 1: 27-31. 10.1038/nm0195-27CrossRefPubMed Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995, 1: 27-31. 10.1038/nm0195-27CrossRefPubMed
18.
19.
go back to reference Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996, 86: 353-364. 10.1016/S0092-8674(00)80108-7CrossRefPubMed Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996, 86: 353-364. 10.1016/S0092-8674(00)80108-7CrossRefPubMed
20.
go back to reference Semenza GL: Angiogenesis in ischemic and neoplastic disorders. Annu Rev Med. 2003, 54: 17-28. 10.1146/annurev.med.54.101601.152418CrossRefPubMed Semenza GL: Angiogenesis in ischemic and neoplastic disorders. Annu Rev Med. 2003, 54: 17-28. 10.1146/annurev.med.54.101601.152418CrossRefPubMed
21.
go back to reference Ren B, Yee KO, Lawler J, Khosravi-Far R: Regulation of tumor angiogenesis by Thrombospondin-1. Biochim Biophys Acta. 2006, 1765 (2): 178-188.PubMed Ren B, Yee KO, Lawler J, Khosravi-Far R: Regulation of tumor angiogenesis by Thrombospondin-1. Biochim Biophys Acta. 2006, 1765 (2): 178-188.PubMed
22.
go back to reference Rak J, Yu JL, Kerbel RS, Coomber BL: What do oncogenic mutations have to do with angiogenesis/vascular dependence of tumors?. Cancer Res. 2002, 62: 1931-1934.PubMed Rak J, Yu JL, Kerbel RS, Coomber BL: What do oncogenic mutations have to do with angiogenesis/vascular dependence of tumors?. Cancer Res. 2002, 62: 1931-1934.PubMed
23.
go back to reference Hanahan D, Weinberg RA: The Hallmarks of Cancer. Cell. 2000, 100: 57-70. 10.1016/S0092-8674(00)81683-9CrossRefPubMed Hanahan D, Weinberg RA: The Hallmarks of Cancer. Cell. 2000, 100: 57-70. 10.1016/S0092-8674(00)81683-9CrossRefPubMed
24.
go back to reference Short SM, Derrien A, Narsimhan RP, Lawler J, Ingber DE, Zetter BR: Inhibition of endothelial cell migration by thrombospondin-1 type-1 repeats is mediated by β1 integrins. J Cell Biol. 2005, 168: 643-653. 10.1083/jcb.200407060PubMedCentralCrossRefPubMed Short SM, Derrien A, Narsimhan RP, Lawler J, Ingber DE, Zetter BR: Inhibition of endothelial cell migration by thrombospondin-1 type-1 repeats is mediated by β1 integrins. J Cell Biol. 2005, 168: 643-653. 10.1083/jcb.200407060PubMedCentralCrossRefPubMed
25.
go back to reference Heidel JD, Liu JY, Yen Y, Zhou B, Heale BS, Rossi JJ, Bartlett DW, Davis ME: Potent siRNA Inhibitors of Ribonucleotide Reductase Subunit RRM2 Reduce Cell Proliferation In vitro and In vivo. Clin Cancer Res. 2007, 13: 2207-2215. 10.1158/1078-0432.CCR-06-2218CrossRefPubMed Heidel JD, Liu JY, Yen Y, Zhou B, Heale BS, Rossi JJ, Bartlett DW, Davis ME: Potent siRNA Inhibitors of Ribonucleotide Reductase Subunit RRM2 Reduce Cell Proliferation In vitro and In vivo. Clin Cancer Res. 2007, 13: 2207-2215. 10.1158/1078-0432.CCR-06-2218CrossRefPubMed
26.
go back to reference Zhou B, Ker R, Ho R, Yu J, Zhao YR, Shih J, Yen Y: Determination of deoxyribonucleoside triphosphate pool sizes in ribonucleotide reductase cDNA transfected human KB cells. Biochem Pharmacol. 1998, 55: 1657-1665. 10.1016/S0006-2952(98)00042-2CrossRefPubMed Zhou B, Ker R, Ho R, Yu J, Zhao YR, Shih J, Yen Y: Determination of deoxyribonucleoside triphosphate pool sizes in ribonucleotide reductase cDNA transfected human KB cells. Biochem Pharmacol. 1998, 55: 1657-1665. 10.1016/S0006-2952(98)00042-2CrossRefPubMed
27.
go back to reference Bergers G, Benjamin LE: Angiogenesis: Tumorigenesis and the angiogenic switch. Nature Reviews Cancer. 2003, 3: 401-410. 10.1038/nrc1093CrossRefPubMed Bergers G, Benjamin LE: Angiogenesis: Tumorigenesis and the angiogenic switch. Nature Reviews Cancer. 2003, 3: 401-410. 10.1038/nrc1093CrossRefPubMed
28.
go back to reference Harris AL: Hypoxia – a key regulatory factor in tumor growth. Nat Rev Cancer. 2002, 2: 38-47. 10.1038/nrc704CrossRefPubMed Harris AL: Hypoxia – a key regulatory factor in tumor growth. Nat Rev Cancer. 2002, 2: 38-47. 10.1038/nrc704CrossRefPubMed
29.
go back to reference Bando H, Weich HA, Brokelmann M, Horiguchi S, Funata N, Ogawa T, Toi M: Association between intratumoral free and total VEGF, soluble VEGFR-1, VEGFR-2 and prognosis in breast cancer. Br J Cancer. 2005, 92: 553-561.PubMedCentralPubMed Bando H, Weich HA, Brokelmann M, Horiguchi S, Funata N, Ogawa T, Toi M: Association between intratumoral free and total VEGF, soluble VEGFR-1, VEGFR-2 and prognosis in breast cancer. Br J Cancer. 2005, 92: 553-561.PubMedCentralPubMed
30.
go back to reference Koukourakis MI, Giatromanolaki A, Thorpe PE, Brekken RA, Sivridis E, Kakolyris S, Georgoμlias V, Gatter KC, Harris AL: Vascular Endothelial Growth Factor/KDR Activated Microvessel Density versus CD31 Standard Microvessel Density in Non-Small Cell Lung Cancer. Cancer Res. 2000, 60: 3088-3095.PubMed Koukourakis MI, Giatromanolaki A, Thorpe PE, Brekken RA, Sivridis E, Kakolyris S, Georgoμlias V, Gatter KC, Harris AL: Vascular Endothelial Growth Factor/KDR Activated Microvessel Density versus CD31 Standard Microvessel Density in Non-Small Cell Lung Cancer. Cancer Res. 2000, 60: 3088-3095.PubMed
31.
go back to reference Graff P, Seim J, Amellem Ø, Arakawa H, Nakamura Y, Andersson KK, Stokke T, Pettersen EO: Counteraction of pRb-dependent protection after extreme hypoxia by elevated ribonucleotide reductase. Cell Prolif. 2004, 37: 367-383. 10.1111/j.1365-2184.2004.00319.xCrossRefPubMed Graff P, Seim J, Amellem Ø, Arakawa H, Nakamura Y, Andersson KK, Stokke T, Pettersen EO: Counteraction of pRb-dependent protection after extreme hypoxia by elevated ribonucleotide reductase. Cell Prolif. 2004, 37: 367-383. 10.1111/j.1365-2184.2004.00319.xCrossRefPubMed
32.
go back to reference Gutierrez LS, Suckow M, Lawler J, Ploplis VA, Castellino FJ: Thrombospondin 1-a regulator of adenoma growth and carcinoma progression in the APCMin/+ mouse model. Carcinogenesis. 2003, 24: 199-207. 10.1093/carcin/24.2.199CrossRefPubMed Gutierrez LS, Suckow M, Lawler J, Ploplis VA, Castellino FJ: Thrombospondin 1-a regulator of adenoma growth and carcinoma progression in the APCMin/+ mouse model. Carcinogenesis. 2003, 24: 199-207. 10.1093/carcin/24.2.199CrossRefPubMed
33.
go back to reference Yang QW, Liu S, Tian Y, Salwen HR, Chlenski A, Weinstein J, Cohn SL: Methylation-associated silencing of the thrombospondin-1 gene in human neuroblastoma. Cancer Res. 2003, 63: 6299-6310.PubMed Yang QW, Liu S, Tian Y, Salwen HR, Chlenski A, Weinstein J, Cohn SL: Methylation-associated silencing of the thrombospondin-1 gene in human neuroblastoma. Cancer Res. 2003, 63: 6299-6310.PubMed
34.
go back to reference Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA: Ras modμlates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell. 2003, 3: 219-231. 10.1016/S1535-6108(03)00030-8CrossRefPubMed Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA: Ras modμlates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell. 2003, 3: 219-231. 10.1016/S1535-6108(03)00030-8CrossRefPubMed
35.
go back to reference Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML: Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA. 2001, 98: 12485-12490. 10.1073/pnas.171460498PubMedCentralCrossRefPubMed Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML: Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA. 2001, 98: 12485-12490. 10.1073/pnas.171460498PubMedCentralCrossRefPubMed
36.
go back to reference Duxbury MS, Whang EE: RRM2 induces NF-kappaB-dependent MMP-9 activation and enhances cellular invasiveness. Biochem Biophys Res Commun. 2007, 354: 190-196. 10.1016/j.bbrc.2006.12.177CrossRefPubMed Duxbury MS, Whang EE: RRM2 induces NF-kappaB-dependent MMP-9 activation and enhances cellular invasiveness. Biochem Biophys Res Commun. 2007, 354: 190-196. 10.1016/j.bbrc.2006.12.177CrossRefPubMed
37.
go back to reference Xue L, Zhou B, Liu X, Qiu W, Jin Z, Yen Y: Wild-Type p53 regulates human ribonucleotide reductase by protein-protein Interaction with p53R2 as well as RRM2 Subunits. Cancer Res. 2003, 63: 980-986.PubMed Xue L, Zhou B, Liu X, Qiu W, Jin Z, Yen Y: Wild-Type p53 regulates human ribonucleotide reductase by protein-protein Interaction with p53R2 as well as RRM2 Subunits. Cancer Res. 2003, 63: 980-986.PubMed
38.
go back to reference Volpert OV, Dameron KM, Bouck N: Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene. 1997, 27 (14): 1495-502. 10.1038/sj.onc.1200977. 10.1038/sj.onc.1200977CrossRef Volpert OV, Dameron KM, Bouck N: Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene. 1997, 27 (14): 1495-502. 10.1038/sj.onc.1200977. 10.1038/sj.onc.1200977CrossRef
Metadata
Title
Overexpression of RRM2 decreases thrombspondin-1 and increases VEGF production in human cancer cells in vitro and in vivo: implication of RRM2 in angiogenesis
Authors
Keqiang Zhang
Shuya Hu
Jun Wu
Linling Chen
Jianming Lu
Xiaochen Wang
Xiyong Liu
Bingsen Zhou
Yun Yen
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2009
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-8-11

Other articles of this Issue 1/2009

Molecular Cancer 1/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine