Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 4/2015

01-10-2015 | Original Article

Overcoming ABCG2-mediated drug resistance with imidazo-[1,2-b]-pyridazine-based Pim1 kinase inhibitors

Authors: Richard A. J. Darby, Amanda Unsworth, Stefan Knapp, Ian D. Kerr, Richard Callaghan

Published in: Cancer Chemotherapy and Pharmacology | Issue 4/2015

Login to get access

Abstract

Purpose

Multidrug efflux pumps such as ABCG2 confer drug resistance to a number of cancer types, leading to poor prognosis and outcome. To date, the strategy of directly inhibiting multidrug efflux pumps in order to overcome drug resistance in cancer has been unsuccessful. An alternative strategy is to target proteins involved in the regulation of multidrug efflux pump activity or expression. Pim1 kinase has been demonstrated to phosphorylate ABCG2, promote its oligomerisation and contribute to its ability to confer drug resistance.

Methods

In the present manuscript, imidazo-pyridazine-based inhibitors of Pim1 were examined for their ability to overcome ABCG2-mediated drug resistance. Drug efficacy was measured as a cytotoxic response or an effect on transport by ABCG2. Protein expression patterns were assessed using western immuno-blotting.

Results

The two Pim1 inhibitors increased the potency of flavopiridol, mitoxantrone, topotecan and doxorubicin, specifically in ABCG2-expressing cells. This effect was associated with an increase in the cellular accumulation of [3H]-mitoxantrone, suggesting direct impairment of the transporter. However, prolonged pre-incubation with the studied inhibitors greatly enhanced the effect on mitoxantrone accumulation. The inhibitors caused a significant time-dependent reduction in the expression of ABCG2 in the resistant cells, an effect that would improve drug efficacy.

Conclusion

Consequently, it appears that the Pim1 inhibitors display a dual-mode effect on ABCG2-expressing cancer cells. This may provide a powerful new strategy in overcoming drug resistance by targeting proteins that regulate expression of efflux pumps.
Literature
1.
go back to reference Doyle LA, Yang WD, Abruzzo LV, Krogmann T, Gao YM, Rishi AK, Ross DD (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95(26):15665–15670PubMedCentralCrossRefPubMed Doyle LA, Yang WD, Abruzzo LV, Krogmann T, Gao YM, Rishi AK, Ross DD (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95(26):15665–15670PubMedCentralCrossRefPubMed
2.
go back to reference Robey RW, Medina-Perez WY, Nishiyama K, Lahusen T, Miyake K, Litman T, Senderowicz AM, Ross DD, Bates SE (2001) Overexpression of the ATP-binding cassette half-transporter, ABCG2 (MXR/BCRP/ABCP1), in flavopiridol-resistant human breast cancer cells. Clin Cancer Res 7(1):145–152PubMed Robey RW, Medina-Perez WY, Nishiyama K, Lahusen T, Miyake K, Litman T, Senderowicz AM, Ross DD, Bates SE (2001) Overexpression of the ATP-binding cassette half-transporter, ABCG2 (MXR/BCRP/ABCP1), in flavopiridol-resistant human breast cancer cells. Clin Cancer Res 7(1):145–152PubMed
3.
go back to reference Fellner S, Bauer B, Miller DS, Schaffrik M, Fankhanel M, Spruss T, Bernhardt G, Graeff C, Farber L, Gschaidmeier H, Buschauer A, Fricker G (2002) Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Investig 110(9):1309–1318PubMedCentralCrossRefPubMed Fellner S, Bauer B, Miller DS, Schaffrik M, Fankhanel M, Spruss T, Bernhardt G, Graeff C, Farber L, Gschaidmeier H, Buschauer A, Fricker G (2002) Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Investig 110(9):1309–1318PubMedCentralCrossRefPubMed
5.
go back to reference Ross DD, Wooten PJ, Tong Y, Cornblatt B, Levy C, Sridhara R, Lee EJ, Schiffer CA (1994) Synergistic reversal of multidrug-resistance phenotype in acute myeloid-leukemia cells by cyclosporine-A and cremophor EL. Blood 83(5):1337–1347PubMed Ross DD, Wooten PJ, Tong Y, Cornblatt B, Levy C, Sridhara R, Lee EJ, Schiffer CA (1994) Synergistic reversal of multidrug-resistance phenotype in acute myeloid-leukemia cells by cyclosporine-A and cremophor EL. Blood 83(5):1337–1347PubMed
6.
go back to reference Scheffer GL, Maliepaard M, Pijnenborg ACLM, van Gastelen MA, de Jong MC, Schroeijers AB, van der Kolk DM, Allen JD, Ross DD, van der Valk P, Dalton WS, Schellens JHM, Scheper RJ (2000) Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines. Cancer Res 60(10):2589–2593PubMed Scheffer GL, Maliepaard M, Pijnenborg ACLM, van Gastelen MA, de Jong MC, Schroeijers AB, van der Kolk DM, Allen JD, Ross DD, van der Valk P, Dalton WS, Schellens JHM, Scheper RJ (2000) Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines. Cancer Res 60(10):2589–2593PubMed
7.
go back to reference Ozvegy C, Litman T, Szakacs G, Nagy Z, Bates S, Varadi A, Sarkadi B (2001) Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem Biophys Res Commun 285(1):111–117. doi:10.1006/bbrc.2001.5130 CrossRefPubMed Ozvegy C, Litman T, Szakacs G, Nagy Z, Bates S, Varadi A, Sarkadi B (2001) Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem Biophys Res Commun 285(1):111–117. doi:10.​1006/​bbrc.​2001.​5130 CrossRefPubMed
9.
go back to reference Diop NK, Hrycyna CA (2005) N-linked glycosylation of the human ABC transporter ABCG2 on asparagine 596 is not essential for expression, transport activity, or trafficking to the plasma membrane. Biochemistry 44(14):5420–5429. doi:10.1021/Bi0479858 CrossRefPubMed Diop NK, Hrycyna CA (2005) N-linked glycosylation of the human ABC transporter ABCG2 on asparagine 596 is not essential for expression, transport activity, or trafficking to the plasma membrane. Biochemistry 44(14):5420–5429. doi:10.​1021/​Bi0479858 CrossRefPubMed
10.
11.
go back to reference Polgar O, Robey RW, Morisaki K, Dean M, Michejda C, Sauna ZE, Ambudkar SV, Tarasova N, Bates SE (2004) Mutational analysis of ABCG2: role of the GXXXG motif. Biochemistry 43(29):9448–9456. doi:10.1021/Bi0497953 CrossRefPubMed Polgar O, Robey RW, Morisaki K, Dean M, Michejda C, Sauna ZE, Ambudkar SV, Tarasova N, Bates SE (2004) Mutational analysis of ABCG2: role of the GXXXG motif. Biochemistry 43(29):9448–9456. doi:10.​1021/​Bi0497953 CrossRefPubMed
12.
13.
go back to reference Xie Y, Xu K, Linn DE, Yang X, Guo Z, Shimelis H, Nakanishi T, Ross DD, Chen H, Fazli L, Gleave ME, Qiu Y (2008) The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells. J Biol Chem 283(6):3349–3356. doi:10.1074/jbc.M707773200 CrossRefPubMed Xie Y, Xu K, Linn DE, Yang X, Guo Z, Shimelis H, Nakanishi T, Ross DD, Chen H, Fazli L, Gleave ME, Qiu Y (2008) The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells. J Biol Chem 283(6):3349–3356. doi:10.​1074/​jbc.​M707773200 CrossRefPubMed
14.
go back to reference Mogi M, Yang J, Lambert JF, Colvin GA, Shiojima I, Skurk C, Summer R, Fine A, Quesenberry PJ, Walsh K (2003) Akt signaling regulates side population cell phenotype via Bcrp1 translocation. J Biol Chem 278(40):39068–39075. doi:10.1074/jbc.M306362200 CrossRefPubMed Mogi M, Yang J, Lambert JF, Colvin GA, Shiojima I, Skurk C, Summer R, Fine A, Quesenberry PJ, Walsh K (2003) Akt signaling regulates side population cell phenotype via Bcrp1 translocation. J Biol Chem 278(40):39068–39075. doi:10.​1074/​jbc.​M306362200 CrossRefPubMed
17.
go back to reference Saris CJM, Domen J, Berns A (1991) The Pim-1 oncogene encodes 2 related protein-serine threonine kinases by alternative initiation at AUG and CUG. EMBO J 10(3):655–664PubMedCentralPubMed Saris CJM, Domen J, Berns A (1991) The Pim-1 oncogene encodes 2 related protein-serine threonine kinases by alternative initiation at AUG and CUG. EMBO J 10(3):655–664PubMedCentralPubMed
19.
go back to reference Mochizuki T, Kitanaka C, Noguchi K, Muramatsu T, Asai A, Kuchino Y (1999) Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase—implications for the Pim-1-mediated activation of the c-Myc signaling pathway. J Biol Chem 274(26):18659–18666. doi:10.1074/jbc.274.26.18659 CrossRefPubMed Mochizuki T, Kitanaka C, Noguchi K, Muramatsu T, Asai A, Kuchino Y (1999) Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase—implications for the Pim-1-mediated activation of the c-Myc signaling pathway. J Biol Chem 274(26):18659–18666. doi:10.​1074/​jbc.​274.​26.​18659 CrossRefPubMed
20.
go back to reference Koike N, Maita H, Taira T, Ariga H, Iguchi-Ariga SMM (2000) Identification of heterochromatin protein 1 (HP1) as a phosphorylation target by Pim-1 kinase and the effect of phosphorylation on the transcriptional repression function of HP1. FEBS Lett 467(1):17–21. doi:10.1016/S0014-5793(00)01105-4 CrossRefPubMed Koike N, Maita H, Taira T, Ariga H, Iguchi-Ariga SMM (2000) Identification of heterochromatin protein 1 (HP1) as a phosphorylation target by Pim-1 kinase and the effect of phosphorylation on the transcriptional repression function of HP1. FEBS Lett 467(1):17–21. doi:10.​1016/​S0014-5793(00)01105-4 CrossRefPubMed
21.
go back to reference Xie XM, Zhao XQ, Liu YF, Zhang JF, Matusik RJ, Slawin KM, Spencer DM (2001) Adenovirus-mediated tissue-targeted expression of a caspase-9-based artificial death switch for the treatment of prostate cancer. Cancer Res 61(18):6795–6804PubMed Xie XM, Zhao XQ, Liu YF, Zhang JF, Matusik RJ, Slawin KM, Spencer DM (2001) Adenovirus-mediated tissue-targeted expression of a caspase-9-based artificial death switch for the treatment of prostate cancer. Cancer Res 61(18):6795–6804PubMed
22.
go back to reference Palaty CK, ClarkLewis I, Leung D, Pelech SL (1997) Phosphorylation site substrate specificity determinants for the Pim-1 protooncogene-encoded protein kinase. Biochem Cell Biol-Biochimie Et Biologie Cellulaire 75(2):153–162. doi:10.1139/Bcb-75-2-153 CrossRef Palaty CK, ClarkLewis I, Leung D, Pelech SL (1997) Phosphorylation site substrate specificity determinants for the Pim-1 protooncogene-encoded protein kinase. Biochem Cell Biol-Biochimie Et Biologie Cellulaire 75(2):153–162. doi:10.​1139/​Bcb-75-2-153 CrossRef
24.
go back to reference Pogacic V, Bullock AN, Fedorov O, Filippakopoulos P, Gasser C, Biondi A, Meyer-Monard S, Knapp S, Schwaller J (2007) Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with In vitro antileukemic activity. Cancer Res 67(14):6916–6924. doi:10.1158/0008-5472.Can-07-0320 CrossRefPubMed Pogacic V, Bullock AN, Fedorov O, Filippakopoulos P, Gasser C, Biondi A, Meyer-Monard S, Knapp S, Schwaller J (2007) Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with In vitro antileukemic activity. Cancer Res 67(14):6916–6924. doi:10.​1158/​0008-5472.​Can-07-0320 CrossRefPubMed
26.
go back to reference Bullock AN, Debreczeni JE, Fedorov OY, Nelson A, Marsden BD, Knapp S (2005) Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM-1) kinase. J Med Chem 48(24):7604–7614. doi:10.1021/jm0504858 CrossRefPubMed Bullock AN, Debreczeni JE, Fedorov OY, Nelson A, Marsden BD, Knapp S (2005) Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM-1) kinase. J Med Chem 48(24):7604–7614. doi:10.​1021/​jm0504858 CrossRefPubMed
28.
go back to reference Scudiero DA, Monks A, Sausville EA (1998) Cell line designation change: multidrug-resistant cell line in the NCI anticancer screen. J Natl Cancer Inst 90(11):862CrossRefPubMed Scudiero DA, Monks A, Sausville EA (1998) Cell line designation change: multidrug-resistant cell line in the NCI anticancer screen. J Natl Cancer Inst 90(11):862CrossRefPubMed
30.
go back to reference Moroy T, Grzeschiczek A, Petzold S, Hartmann KU (1993) Expression of a Pim-1 transgene accelerates lymphoproliferation and inhibits apoptosis in lpr/lpr mice. Proc Natl Acad Sci USA 90(22):10734–10738PubMedCentralCrossRefPubMed Moroy T, Grzeschiczek A, Petzold S, Hartmann KU (1993) Expression of a Pim-1 transgene accelerates lymphoproliferation and inhibits apoptosis in lpr/lpr mice. Proc Natl Acad Sci USA 90(22):10734–10738PubMedCentralCrossRefPubMed
31.
go back to reference Moroy T, Verbeek S, Ma A, Achacoso P, Berns A, Alt F (1991) E mu N- and E mu L-myc cooperate with E mu Pim-1 to generate lymphoid tumors at high frequency in double-transgenic mice. Oncogene 6(11):1941–1948PubMed Moroy T, Verbeek S, Ma A, Achacoso P, Berns A, Alt F (1991) E mu N- and E mu L-myc cooperate with E mu Pim-1 to generate lymphoid tumors at high frequency in double-transgenic mice. Oncogene 6(11):1941–1948PubMed
32.
go back to reference Nieborowska-Skorska M, Hoser G, Kossev P, Wasik MA, Skorski T (2002) Complementary functions of the antiapoptotic protein A1 and serine/threonine kinase Pim-1 in the BCR/ABL-mediated leukemogenesis. Blood 99(12):4531–4539CrossRefPubMed Nieborowska-Skorska M, Hoser G, Kossev P, Wasik MA, Skorski T (2002) Complementary functions of the antiapoptotic protein A1 and serine/threonine kinase Pim-1 in the BCR/ABL-mediated leukemogenesis. Blood 99(12):4531–4539CrossRefPubMed
33.
go back to reference Selten G, Cuypers HT, Berns A (1985) Proviral activation of the putative oncogene Pim-1 in MuLV induced T-cell lymphomas. EMBO J 4(7):1793–1798PubMedCentralPubMed Selten G, Cuypers HT, Berns A (1985) Proviral activation of the putative oncogene Pim-1 in MuLV induced T-cell lymphomas. EMBO J 4(7):1793–1798PubMedCentralPubMed
36.
go back to reference Wang Z, Bhattacharya N, Weaver M, Petersen K, Meyer M, Gapter L, Magnuson NS (2001) Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J Vet Sci 2(3):167–179PubMed Wang Z, Bhattacharya N, Weaver M, Petersen K, Meyer M, Gapter L, Magnuson NS (2001) Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J Vet Sci 2(3):167–179PubMed
38.
go back to reference Qian KC, Wang L, Hickey ER, Studts J, Barringer K, Peng C, Kronkaitis A, Li J, White A, Mische S, Farmer B (2005) Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. J Biol Chem 280(7):6130–6137. doi:10.1074/jbc.M409123200 CrossRefPubMed Qian KC, Wang L, Hickey ER, Studts J, Barringer K, Peng C, Kronkaitis A, Li J, White A, Mische S, Farmer B (2005) Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. J Biol Chem 280(7):6130–6137. doi:10.​1074/​jbc.​M409123200 CrossRefPubMed
39.
go back to reference Swords R, Kelly K, Carew J, Nawrocki S, Mahalingam D, Sarantopoulos J, Bearss D, Giles F (2011) The Pim kinases: new targets for drug development. Curr Drug Targets 12(14):2059–2066CrossRefPubMed Swords R, Kelly K, Carew J, Nawrocki S, Mahalingam D, Sarantopoulos J, Bearss D, Giles F (2011) The Pim kinases: new targets for drug development. Curr Drug Targets 12(14):2059–2066CrossRefPubMed
41.
go back to reference Rabindran SK, Ross DD, Doyle LA, Yang W, Greenberger LM (2000) Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res 60(1):47–50PubMed Rabindran SK, Ross DD, Doyle LA, Yang W, Greenberger LM (2000) Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res 60(1):47–50PubMed
42.
go back to reference Natarajan K, Bhullar J, Shukla S, Burcu M, Chen ZS, Ambudkar SV, Baer MR (2013) The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms. Biochem Pharmacol 85(4):514–524. doi:10.1016/j.bcp.2012.12.006 CrossRefPubMed Natarajan K, Bhullar J, Shukla S, Burcu M, Chen ZS, Ambudkar SV, Baer MR (2013) The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms. Biochem Pharmacol 85(4):514–524. doi:10.​1016/​j.​bcp.​2012.​12.​006 CrossRefPubMed
43.
go back to reference Callaghan R, Crowley E, Potter S, Kerr ID (2008) P-glycoprotein: so many ways to turn it on. J Clin Pharmacol 48(3):365–378CrossRefPubMed Callaghan R, Crowley E, Potter S, Kerr ID (2008) P-glycoprotein: so many ways to turn it on. J Clin Pharmacol 48(3):365–378CrossRefPubMed
44.
go back to reference Nakanishi T, Shiozawa K, Hassel BA, Ross DD (2006) Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood 108(2):678–684. doi:10.1182/blood-2005-10-4020 CrossRefPubMed Nakanishi T, Shiozawa K, Hassel BA, Ross DD (2006) Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood 108(2):678–684. doi:10.​1182/​blood-2005-10-4020 CrossRefPubMed
Metadata
Title
Overcoming ABCG2-mediated drug resistance with imidazo-[1,2-b]-pyridazine-based Pim1 kinase inhibitors
Authors
Richard A. J. Darby
Amanda Unsworth
Stefan Knapp
Ian D. Kerr
Richard Callaghan
Publication date
01-10-2015
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 4/2015
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-015-2858-9

Other articles of this Issue 4/2015

Cancer Chemotherapy and Pharmacology 4/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine