Skip to main content
Top
Published in: Tumor Biology 2/2016

01-02-2016 | Original Article

Over-expression of miR-31 or loss of KCNMA1 leads to increased cisplatin resistance in ovarian cancer cells

Authors: Priya Samuel, Ryan Charles Pink, Daniel Paul Caley, James Michael Stevenson Currie, Susan Ann Brooks, David Raul Francisco Carter

Published in: Tumor Biology | Issue 2/2016

Login to get access

Abstract

Ovarian cancers have a high mortality rate; this is in part due to resistance to the platinum-based compounds used in chemotherapy. In this paper, we assess the role of microRNA-31 in the development of chemoresistance to cisplatin. We used previous data from microarray experiments to identify potential microRNAs (miRNAs) involved in chemoresistance. The functional significance of these microRNAs was tested using miRNA mimics. We used RNA-seq to identify pathways and genes de-regulated in the resistant cell line and then determined their role using RNAi. Analysis of publically available datasets reveals the potential clinical significance. Our data show that miR-31 is increased, whilst potassium channel calcium activated large conductance subfamily M alpha, member 1 (KCNMA1), a subunit of calcium-regulated big potassium (BK) channels, is reduced in resistant ovarian cells. Over-expression of miR-31 increased resistance, as did knockdown of KCNMA1 or inhibition of BK channels. This suggests that these genes directly modulate cisplatin response. Our data also suggest that miR-31 represses KCNMA1 expression. Comparing the levels of miR-31 and KCNMA1 to cisplatin resistance in the NCI60 panel or chemoresistance in cohorts of ovarian cancer tumours reveals correlations that support a role for these genes in vitro and in vivo. Here we show that miR-31 and KCNMA1 are involved in mediating cisplatin resistance in ovarian cancer. Our data gives a new insight into the potential mechanisms to therapeutically target in cisplatin resistance common to ovarian cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMed Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMed
2.
go back to reference Aletti G, Gallenberg M, Cliby W, Jatoi A, Hartmann L. Current management strategies for ovarian cancer. Mayo Clin Proc. 2007;82:751–70.CrossRefPubMed Aletti G, Gallenberg M, Cliby W, Jatoi A, Hartmann L. Current management strategies for ovarian cancer. Mayo Clin Proc. 2007;82:751–70.CrossRefPubMed
4.
5.
go back to reference Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.CrossRefPubMed Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.CrossRefPubMed
6.
go back to reference Berkenblit A, Cannistra S. Advances in the management of epithelial ovarian cancer. J Reprod Med. 2005;50:426–38.PubMed Berkenblit A, Cannistra S. Advances in the management of epithelial ovarian cancer. J Reprod Med. 2005;50:426–38.PubMed
7.
go back to reference Eastman A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol Ther. 1987;34:155–66.CrossRefPubMed Eastman A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol Ther. 1987;34:155–66.CrossRefPubMed
8.
go back to reference Cohen SM, Lippard SJ. Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucleic Acid Res Mol Biol. 2001;67:93–130.CrossRefPubMed Cohen SM, Lippard SJ. Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucleic Acid Res Mol Biol. 2001;67:93–130.CrossRefPubMed
9.
go back to reference Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31:1869–83.CrossRefPubMed Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31:1869–83.CrossRefPubMed
10.
go back to reference Meijer HA, Kong YW, Lu WT, Wilczynska A, Spriggs RV, Robinson SW, et al. Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science. 2013;340:82–5.CrossRefPubMed Meijer HA, Kong YW, Lu WT, Wilczynska A, Spriggs RV, Robinson SW, et al. Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science. 2013;340:82–5.CrossRefPubMed
11.
12.
go back to reference Pink RC, Samuel P, Massa D, Caley DP, Brooks SA, Carter DR. The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol. 2015;137:143–51.CrossRefPubMed Pink RC, Samuel P, Massa D, Caley DP, Brooks SA, Carter DR. The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol. 2015;137:143–51.CrossRefPubMed
13.
go back to reference Pors K, Plumb JA, Brown R, Teesdale-Spittle P, Searcey M, Smith PJ, et al. Development of nonsymmetrical 1,4-disubstituted anthraquinones that are potently active against cisplatin-resistant ovarian cancer cells. J Med Chem. 2005;48:6690–5.CrossRefPubMed Pors K, Plumb JA, Brown R, Teesdale-Spittle P, Searcey M, Smith PJ, et al. Development of nonsymmetrical 1,4-disubstituted anthraquinones that are potently active against cisplatin-resistant ovarian cancer cells. J Med Chem. 2005;48:6690–5.CrossRefPubMed
14.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative pcr and the 2(−delta delta c(t)) method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative pcr and the 2(−delta delta c(t)) method. Methods. 2001;25:402–8.CrossRefPubMed
15.
go back to reference Patnaik SK, Dahlgaard J, Mazin W, Kannisto E, Jensen T, Knudsen S, et al. Expression of microRNAs in the NCI-60 cancer cell-lines. PLoS One. 2012;7, e49918.CrossRefPubMedPubMedCentral Patnaik SK, Dahlgaard J, Mazin W, Kannisto E, Jensen T, Knudsen S, et al. Expression of microRNAs in the NCI-60 cancer cell-lines. PLoS One. 2012;7, e49918.CrossRefPubMedPubMedCentral
16.
go back to reference Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet. 2000;24:227–35.CrossRefPubMed Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet. 2000;24:227–35.CrossRefPubMed
17.
go back to reference Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.CrossRef Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.CrossRef
18.
go back to reference Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.CrossRef Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.CrossRef
19.
go back to reference Liang F, Schulte BA, Qu C, Hu W, Shen Z. Inhibition of the calcium- and voltage-dependent big conductance potassium channel ameliorates cisplatin-induced apoptosis in spiral ligament fibrocytes of the cochlea. Neuroscience. 2005;135:263–71.CrossRefPubMed Liang F, Schulte BA, Qu C, Hu W, Shen Z. Inhibition of the calcium- and voltage-dependent big conductance potassium channel ameliorates cisplatin-induced apoptosis in spiral ligament fibrocytes of the cochlea. Neuroscience. 2005;135:263–71.CrossRefPubMed
20.
go back to reference Ziliak D, Gamazon ER, Lacroix B, Kyung Im H, Wen Y, Huang RS. Genetic variation that predicts platinum sensitivity reveals the role of miR-193b* in chemotherapeutic susceptibility. Mol Cancer Ther. 2012;11:2054–61.CrossRefPubMedPubMedCentral Ziliak D, Gamazon ER, Lacroix B, Kyung Im H, Wen Y, Huang RS. Genetic variation that predicts platinum sensitivity reveals the role of miR-193b* in chemotherapeutic susceptibility. Mol Cancer Ther. 2012;11:2054–61.CrossRefPubMedPubMedCentral
21.
go back to reference Dweep H, Sticht C, Pandey P, Gretz N. miRWalk—database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform. 2011;44:839–47.CrossRefPubMed Dweep H, Sticht C, Pandey P, Gretz N. miRWalk—database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform. 2011;44:839–47.CrossRefPubMed
22.
go back to reference Reinhold WC, Sunshine M, Liu H, Varma S, Kohn KW, Morris J, et al. Cellminer: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 2012;72:3499–511.CrossRefPubMedPubMedCentral Reinhold WC, Sunshine M, Liu H, Varma S, Kohn KW, Morris J, et al. Cellminer: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 2012;72:3499–511.CrossRefPubMedPubMedCentral
23.
go back to reference Peters D, Freund J, Ochs RL. Genome-wide transcriptional analysis of carboplatin response in chemosensitive and chemoresistant ovarian cancer cells. Mol Cancer Ther. 2005;4:1605–16.CrossRefPubMed Peters D, Freund J, Ochs RL. Genome-wide transcriptional analysis of carboplatin response in chemosensitive and chemoresistant ovarian cancer cells. Mol Cancer Ther. 2005;4:1605–16.CrossRefPubMed
24.
go back to reference Network CGAR. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.CrossRef Network CGAR. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.CrossRef
25.
go back to reference Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest. 2010;120:1298–309.CrossRefPubMedPubMedCentral Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest. 2010;120:1298–309.CrossRefPubMedPubMedCentral
26.
go back to reference Zhang T, Wang Q, Zhao D, Cui Y, Cao B, Guo L, et al. The oncogenetic role of microRNA-31 as a potential biomarker in oesophageal squamous cell carcinoma. Clin Sci (Lond). 2011;121:437–47.CrossRef Zhang T, Wang Q, Zhao D, Cui Y, Cao B, Guo L, et al. The oncogenetic role of microRNA-31 as a potential biomarker in oesophageal squamous cell carcinoma. Clin Sci (Lond). 2011;121:437–47.CrossRef
27.
go back to reference Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24:652–7.CrossRefPubMed Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24:652–7.CrossRefPubMed
28.
go back to reference Yamagishi M, Nakano K, Miyake A, Yamochi T, Kagami Y, Tsutsumi A, et al. Polycomb-mediated loss of miR-31 activates NIK-dependent NF-κb pathway in adult T cell leukemia and other cancers. Cancer Cell. 2012;21:121–35.CrossRefPubMed Yamagishi M, Nakano K, Miyake A, Yamochi T, Kagami Y, Tsutsumi A, et al. Polycomb-mediated loss of miR-31 activates NIK-dependent NF-κb pathway in adult T cell leukemia and other cancers. Cancer Cell. 2012;21:121–35.CrossRefPubMed
29.
go back to reference Bhatnagar N, Li X, Padi SK, Zhang Q, Tang MS, Guo B. Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis. 2010;1, e105.CrossRefPubMedPubMedCentral Bhatnagar N, Li X, Padi SK, Zhang Q, Tang MS, Guo B. Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis. 2010;1, e105.CrossRefPubMedPubMedCentral
30.
go back to reference Körner C, Keklikoglou I, Bender C, Wörner A, Münstermann E, Wiemann S. MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase c {epsilon} (pkc{epsilon}). J Biol Chem. 2013;288:8750–61.CrossRefPubMedPubMedCentral Körner C, Keklikoglou I, Bender C, Wörner A, Münstermann E, Wiemann S. MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase c {epsilon} (pkc{epsilon}). J Biol Chem. 2013;288:8750–61.CrossRefPubMedPubMedCentral
31.
go back to reference Wang CJ, Stratmann J, Zhou ZG, Sun XF. Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells. BMC Cancer. 2010;10:616.CrossRefPubMedPubMedCentral Wang CJ, Stratmann J, Zhou ZG, Sun XF. Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells. BMC Cancer. 2010;10:616.CrossRefPubMedPubMedCentral
32.
go back to reference Salkoff L, Butler A, Ferreira G, Santi C, Wei A. High-conductance potassium channels of the SLO family. Nat Rev Neurosci. 2006;7:921–31.CrossRefPubMed Salkoff L, Butler A, Ferreira G, Santi C, Wei A. High-conductance potassium channels of the SLO family. Nat Rev Neurosci. 2006;7:921–31.CrossRefPubMed
33.
go back to reference Sokolowski B, Orchard S, Harvey M, Sridhar S, Sakai Y. Conserved BK channel-protein interactions reveal signals relevant to cell death and survival. PLoS One. 2011;6, e28532.CrossRefPubMedPubMedCentral Sokolowski B, Orchard S, Harvey M, Sridhar S, Sakai Y. Conserved BK channel-protein interactions reveal signals relevant to cell death and survival. PLoS One. 2011;6, e28532.CrossRefPubMedPubMedCentral
34.
go back to reference Bloch M, Ousingsawat J, Simon R, Schraml P, Gasser TC, Mihatsch MJ, et al. KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene. 2007;26:2525–34.CrossRefPubMed Bloch M, Ousingsawat J, Simon R, Schraml P, Gasser TC, Mihatsch MJ, et al. KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene. 2007;26:2525–34.CrossRefPubMed
36.
go back to reference Cambien B, Rezzonico R, Vitale S, Rouzaire-Dubois B, Dubois JM, Barthel R, et al. Silencing of HSLO potassium channels in human osteosarcoma cells promotes tumorigenesis. Int J Cancer. 2008;123:365–71.CrossRefPubMed Cambien B, Rezzonico R, Vitale S, Rouzaire-Dubois B, Dubois JM, Barthel R, et al. Silencing of HSLO potassium channels in human osteosarcoma cells promotes tumorigenesis. Int J Cancer. 2008;123:365–71.CrossRefPubMed
37.
go back to reference Partheen K, Levan K, Osterberg L, Horvath G. Expression analysis of stage III serous ovarian adenocarcinoma distinguishes a sub-group of survivors. Eur J Cancer. 2006;42:2846–54.CrossRefPubMed Partheen K, Levan K, Osterberg L, Horvath G. Expression analysis of stage III serous ovarian adenocarcinoma distinguishes a sub-group of survivors. Eur J Cancer. 2006;42:2846–54.CrossRefPubMed
38.
go back to reference Zeller C, Dai W, Steele NL, Siddiq A, Walley AJ, Wilhelm-Benartzi CS, et al. Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene. 2012;31:4567–76.CrossRefPubMed Zeller C, Dai W, Steele NL, Siddiq A, Walley AJ, Wilhelm-Benartzi CS, et al. Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene. 2012;31:4567–76.CrossRefPubMed
Metadata
Title
Over-expression of miR-31 or loss of KCNMA1 leads to increased cisplatin resistance in ovarian cancer cells
Authors
Priya Samuel
Ryan Charles Pink
Daniel Paul Caley
James Michael Stevenson Currie
Susan Ann Brooks
David Raul Francisco Carter
Publication date
01-02-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 2/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4081-z

Other articles of this Issue 2/2016

Tumor Biology 2/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine