Skip to main content
Top
Published in: Hereditary Cancer in Clinical Practice 1/2019

Open Access 01-12-2019 | Ovarian Cancer | Research

Validation of a digital identification tool for individuals at risk for hereditary cancer syndromes

Authors: Leslie Bucheit, Katherine Johansen Taber, Kaylene Ready

Published in: Hereditary Cancer in Clinical Practice | Issue 1/2019

Login to get access

Abstract

Background

The number of individuals meeting criteria for genetic counseling and testing for hereditary cancer syndromes (HCS) is far less than the number that actually receive it. To facilitate identification of patients at risk for HCS, Counsyl developed a digital identification tool (digital ID tool) to match personal and family cancer history to National Comprehensive Cancer Network (NCCN) BRCA-related Hereditary Breast and Ovarian Cancer (HBOC), Lynch syndrome, and polyposis testing criteria in one-to-one, automated fashion. The purpose of this study was to validate the ability of the digital ID tool to accurately identify histories that do and do not meet NCCN testing criteria.

Methods

Third-party recorded three-generation pedigrees were retrospectively reviewed by a certified genetic counselor (CGC) to determine if independent events included in pedigree histories met NCCN guidelines, and were then sorted into groups: high risk events (meets criteria) and low risk events (does not meet criteria). Events were entered into the digital ID tool to determine the extent of its concordance with events sorted by CGC review. Statistical tests of accuracy were calculated at a 95% confidence interval (CI).

Results

One hundred ninety-seven pedigrees were reviewed consecutively representing 765 independent events for analysis across groups. 382/382 (100%) high risk events identified by the digital ID tool and 381/383 (99.47%) low risk events identified by the digital ID tool were concordant with CGC sorting. The digital ID tool had a sensitivity of 100% (99.04–100% CI) and specificity of 99.48% (98.13–99.94% CI). The overall accuracy of the digital ID tool was estimated to be 99.74% (99.06–99.97% CI), reflecting the rate at which the digital ID tool reached the same conclusion as that of CGC review of pedigree events for the recommendation of genetic testing for individuals at risk for HCS.

Conclusions

The digital ID tool accurately matches NCCN criteria in one-to-one fashion to identify at-risk individuals for HCS and may be useful in clinical practice, specifically for BRCA-related HBOC and Lynch Syndrome.
Appendix
Available only for authorised users
Literature
1.
go back to reference Garber JE, Offit K. Hereditary cancer predisposition syndromes. J Clin Oncol. 2005;23(2):276–92.CrossRef Garber JE, Offit K. Hereditary cancer predisposition syndromes. J Clin Oncol. 2005;23(2):276–92.CrossRef
2.
go back to reference Coughlin SS, Khoury MJ, Steinberg KK. BRCA1 and BRCA2 gene mutations and risk of breast cancer: public health perspectives. Am J Prev Med. 1999;16(2):91–8.CrossRef Coughlin SS, Khoury MJ, Steinberg KK. BRCA1 and BRCA2 gene mutations and risk of breast cancer: public health perspectives. Am J Prev Med. 1999;16(2):91–8.CrossRef
3.
go back to reference Hampel H, de la Chapelle A. How do we approach the goal of identifying everyone with lynch syndrome? Familial Cancer. 2013;12(2):313–7.CrossRef Hampel H, de la Chapelle A. How do we approach the goal of identifying everyone with lynch syndrome? Familial Cancer. 2013;12(2):313–7.CrossRef
7.
go back to reference Patel SG, Ahnen DJ, Kinney AY, et al. (2016). Knowledge and uptake of genetic counseling and colonoscopic screening among individuals at increased risk for lynch syndrome and their endoscopists from the family health promotion project. Am J Gastroenterol. 2016;111(2):285–93.CrossRef Patel SG, Ahnen DJ, Kinney AY, et al. (2016). Knowledge and uptake of genetic counseling and colonoscopic screening among individuals at increased risk for lynch syndrome and their endoscopists from the family health promotion project. Am J Gastroenterol. 2016;111(2):285–93.CrossRef
8.
go back to reference Bellcross CA, Peipins LA, McCarty FA, Rodriguez JL, et al. Characteristics associated with genetic counseling referral and BRCA1/2 testing among women in a large integrated health system. Genet Med. 2015;17(1):43–50.CrossRef Bellcross CA, Peipins LA, McCarty FA, Rodriguez JL, et al. Characteristics associated with genetic counseling referral and BRCA1/2 testing among women in a large integrated health system. Genet Med. 2015;17(1):43–50.CrossRef
9.
go back to reference Hull LE, Haas SE, Simon SR. Provider discussions of genetic tests with U.S. women at risk for a BRCA mutation. Am J Prev Med. 2018;54(2):221–8.CrossRef Hull LE, Haas SE, Simon SR. Provider discussions of genetic tests with U.S. women at risk for a BRCA mutation. Am J Prev Med. 2018;54(2):221–8.CrossRef
10.
go back to reference Drohan B, Roche CA, Cusack JC Jr, Hughes KS. Hereditary breast and ovarian cancer syndromes: using technology to identify carriers. Ann Surg Oncol. 2012;19(6):1732–7.CrossRef Drohan B, Roche CA, Cusack JC Jr, Hughes KS. Hereditary breast and ovarian cancer syndromes: using technology to identify carriers. Ann Surg Oncol. 2012;19(6):1732–7.CrossRef
11.
go back to reference Wood ME, Kulback P, Pham TH, Wollins DS, et al. Quality of cancer family history and referral for genetic counseling and testing among oncology practices: a pilot test of quality measures as part of the American Society of Clinical Oncology quality oncology practice initiative. J Clin Oncol. 2014;32(8):824–9.CrossRef Wood ME, Kulback P, Pham TH, Wollins DS, et al. Quality of cancer family history and referral for genetic counseling and testing among oncology practices: a pilot test of quality measures as part of the American Society of Clinical Oncology quality oncology practice initiative. J Clin Oncol. 2014;32(8):824–9.CrossRef
13.
go back to reference Lu KH, Wood ME, Daniels M, Burke C, et al. American Society of Clinical Oncology expert statement: collection and use of a cancer family history for oncology providers. J Clin Oncol. 2014;32(8):833–40.CrossRef Lu KH, Wood ME, Daniels M, Burke C, et al. American Society of Clinical Oncology expert statement: collection and use of a cancer family history for oncology providers. J Clin Oncol. 2014;32(8):833–40.CrossRef
14.
go back to reference Vig HS, Armstrong J, Egleston BL, Mazar C, et al. Cancer genetic risk assessment and referral patterns in primary care. Genet Test Mol Biomarkers. 2009;13(6):735–41.CrossRef Vig HS, Armstrong J, Egleston BL, Mazar C, et al. Cancer genetic risk assessment and referral patterns in primary care. Genet Test Mol Biomarkers. 2009;13(6):735–41.CrossRef
16.
go back to reference Taxler BL, Martin ML, Kerber AS, Bellcross CA, et al. Implementation of a screening tool for identifying patients at risk for hereditary breast and ovarian cancer: a statewide initiative. Ann Surg Oncol. 2014;21(10):3342–77.CrossRef Taxler BL, Martin ML, Kerber AS, Bellcross CA, et al. Implementation of a screening tool for identifying patients at risk for hereditary breast and ovarian cancer: a statewide initiative. Ann Surg Oncol. 2014;21(10):3342–77.CrossRef
17.
go back to reference Kallenberg FG, IJspeert JE, Bossuyt PM, Aalfs CM, Dekker E. Validation of an online questionnaire for identifying people at risk of familial and hereditary colorectal cancer. Familial Cancer. 2015;14(3):401–10.CrossRef Kallenberg FG, IJspeert JE, Bossuyt PM, Aalfs CM, Dekker E. Validation of an online questionnaire for identifying people at risk of familial and hereditary colorectal cancer. Familial Cancer. 2015;14(3):401–10.CrossRef
18.
go back to reference Acheson LS, Zyzanski S, Stange KC, et al. Validation of a self-administered, computerized tool for collecting and displaying the family history of cancer. J Clin Oncol. 2006;24(34):5395–402.CrossRef Acheson LS, Zyzanski S, Stange KC, et al. Validation of a self-administered, computerized tool for collecting and displaying the family history of cancer. J Clin Oncol. 2006;24(34):5395–402.CrossRef
19.
go back to reference Wu RR, Himmel TL, Buchanan AH, Powell KP, et al. Quality of family history collection with use of a patient facing family history assessment tool. BMC Fam Pract. 2014;15:31.CrossRef Wu RR, Himmel TL, Buchanan AH, Powell KP, et al. Quality of family history collection with use of a patient facing family history assessment tool. BMC Fam Pract. 2014;15:31.CrossRef
20.
go back to reference Wang C, Bickmore T, Bowen DJ, et al. Acceptability and feasibility of a virtual counselor (VICKY) to collect family health histories. Genet Med. 2015;17(10):822–30.CrossRef Wang C, Bickmore T, Bowen DJ, et al. Acceptability and feasibility of a virtual counselor (VICKY) to collect family health histories. Genet Med. 2015;17(10):822–30.CrossRef
21.
go back to reference Qureshi N, Wilson B, Santaguida P, Carroll J, et al. Collection and use of cancer family history in primary care. Evid Rep Technol Assess (Full Rep). 2007;(159):1–84. Qureshi N, Wilson B, Santaguida P, Carroll J, et al. Collection and use of cancer family history in primary care. Evid Rep Technol Assess (Full Rep). 2007;(159):1–84.
22.
go back to reference Pritzlaff M, Yorczyk A, Robinson LS, Pirzadeh-Miller S, et al. An internal performance assessment of CancerGene Connect: an electronic tool to streamline, measure and improve the genetic counseling process. J Genet Couns. 2014;23(6):1034–44.CrossRef Pritzlaff M, Yorczyk A, Robinson LS, Pirzadeh-Miller S, et al. An internal performance assessment of CancerGene Connect: an electronic tool to streamline, measure and improve the genetic counseling process. J Genet Couns. 2014;23(6):1034–44.CrossRef
23.
go back to reference Birch PH. Interactive ecounselling for genetics pretest decisions: where are we now? Clin Genet. 2015;87(3):209–17.CrossRef Birch PH. Interactive e­counselling for genetics pre­test decisions: where are we now? Clin Genet. 2015;87(3):209–17.CrossRef
24.
go back to reference Doerr M, Edelman E, Gabitzsch E, et al. Formative evaluation of clinician experience with integrating family history-based clinical decision support into clinical practice. J Pers Med. 2014;4(2):115–36.CrossRef Doerr M, Edelman E, Gabitzsch E, et al. Formative evaluation of clinician experience with integrating family history­-based clinical decision support into clinical practice. J Pers Med. 2014;4(2):115–36.CrossRef
25.
go back to reference Kang HH, Williams R, Leary J, et al. Evaluation of models to predict BRCA mutations. Br J Cancer. 2006;95(7):914–20.CrossRef Kang HH, Williams R, Leary J, et al. Evaluation of models to predict BRCA mutations. Br J Cancer. 2006;95(7):914–20.CrossRef
26.
go back to reference Kastrinos F, Steyerberg EW, Mercado R, Balmaña J, et al. The PREMM(1,2,6) model predicts risk of MLH1, MSH2, and MSH6 germline mutations based on cancer history. Gastroenterology. 2011;140(1):73–81.CrossRef Kastrinos F, Steyerberg EW, Mercado R, Balmaña J, et al. The PREMM(1,2,6) model predicts risk of MLH1, MSH2, and MSH6 germline mutations based on cancer history. Gastroenterology. 2011;140(1):73–81.CrossRef
27.
go back to reference Panchal SM, Ennis M, Canon S, Bordeleau LJ. Selecting a BRCA risk assessment model for use in a familial cancer clinic. BMC Med Genet. 2008;9:116.CrossRef Panchal SM, Ennis M, Canon S, Bordeleau LJ. Selecting a BRCA risk assessment model for use in a familial cancer clinic. BMC Med Genet. 2008;9:116.CrossRef
29.
go back to reference Ozanne EM, O’Connell A, Bouzan C, Bosinoff P, et al. Bias in the reporting of family history: implications for clinical care. J Genet Couns. 2012;21(4):547–56.CrossRef Ozanne EM, O’Connell A, Bouzan C, Bosinoff P, et al. Bias in the reporting of family history: implications for clinical care. J Genet Couns. 2012;21(4):547–56.CrossRef
30.
go back to reference Gaff CL, Aragona C, MacInnis RJ, Cowan R, et al. Accuracy and completeness in reporting family history of prostate cancer by unaffected men. Urology. 2004;63(6):1111–6.CrossRef Gaff CL, Aragona C, MacInnis RJ, Cowan R, et al. Accuracy and completeness in reporting family history of prostate cancer by unaffected men. Urology. 2004;63(6):1111–6.CrossRef
31.
go back to reference Ziogas A, Anton-Culver H. Validation of family history data in cancer family registries. Am J Prev Med. 2003;24(2):190–8.CrossRef Ziogas A, Anton-Culver H. Validation of family history data in cancer family registries. Am J Prev Med. 2003;24(2):190–8.CrossRef
32.
go back to reference Modesitt SC, Lu K, Chen L, Powell CB. Of the committee on practice bulletins–gynecology, committee on genetics, Society of Gynecologic Oncology. Practice bulletin no 182: hereditary breast and ovarian Cancer syndrome. Obstet Gynecol. 2017;130(3):e110–26.CrossRef Modesitt SC, Lu K, Chen L, Powell CB. Of the committee on practice bulletins–gynecology, committee on genetics, Society of Gynecologic Oncology. Practice bulletin no 182: hereditary breast and ovarian Cancer syndrome. Obstet Gynecol. 2017;130(3):e110–26.CrossRef
33.
go back to reference LaDuca H, Stuenkel AJ, Dolinsky JS, Keiles S, et al. Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients. Genet Med. 2014 Nov;16(11):830–7.CrossRef LaDuca H, Stuenkel AJ, Dolinsky JS, Keiles S, et al. Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients. Genet Med. 2014 Nov;16(11):830–7.CrossRef
34.
go back to reference Couch FJ, Hart SN, Sharma P, Toland AE, et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol. 2015;33(4):304–11.CrossRef Couch FJ, Hart SN, Sharma P, Toland AE, et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol. 2015;33(4):304–11.CrossRef
35.
go back to reference Frey MK, Sandler G, Sobolev R, Kim SH, et al. Multigene panels in Ashkenazi Jewish patients yield high rates of actionable mutations in multiple non-BRCA cancer-associated genes. Gynecol Oncol. 2017 Jul;146(1):123–8.CrossRef Frey MK, Sandler G, Sobolev R, Kim SH, et al. Multigene panels in Ashkenazi Jewish patients yield high rates of actionable mutations in multiple non-BRCA cancer-associated genes. Gynecol Oncol. 2017 Jul;146(1):123–8.CrossRef
36.
go back to reference O’Leary E, Iacoboni D, Holle J, Michalski ST, et al. Expanded gene panel use for women with breast Cancer: identification and intervention beyond breast Cancer risk. Ann Surg Oncol. 2017;24(10):3060–6.CrossRef O’Leary E, Iacoboni D, Holle J, Michalski ST, et al. Expanded gene panel use for women with breast Cancer: identification and intervention beyond breast Cancer risk. Ann Surg Oncol. 2017;24(10):3060–6.CrossRef
Metadata
Title
Validation of a digital identification tool for individuals at risk for hereditary cancer syndromes
Authors
Leslie Bucheit
Katherine Johansen Taber
Kaylene Ready
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Hereditary Cancer in Clinical Practice / Issue 1/2019
Electronic ISSN: 1897-4287
DOI
https://doi.org/10.1186/s13053-018-0099-8

Other articles of this Issue 1/2019

Hereditary Cancer in Clinical Practice 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine